Devoir en temps libre n°07

Problème I

Soit E un K-evn, U un ouvert et K un compact avec $K \subset U$. Montrer qu'il existe r > 0 tel que

$$\forall x \in \mathbf{K} \qquad \mathbf{B}(x,r) \subset \mathbf{U}$$

Problème II

Soit $E = \mathbb{R}_{n-1}[X]$ avec n entier non nul et x_1, \ldots, x_n des réels dans]0;1] deux à deux distincts.

On pose

$$\forall P \in E$$
 $||P||_{\infty} = \sup_{t \in [0;1]} |P(t)|$

$$\forall (\mathbf{P}, i) \in \mathbf{E} \times [1; n] \qquad \varphi_i(\mathbf{P}) = \int_0^{x_i} \mathbf{P}(t) \, dt \quad \text{et} \quad \mathbf{A} = \bigcap_{i=1}^n \{ \mathbf{P} \in \mathbf{E} : |\varphi_i(\mathbf{P})| \leqslant 1 \}$$

et $(L_i)_{0 \le i \le n}$ la famille de $\mathbb{R}_n[X]$ des polynômes de Lagrange associés à $(0, x_1, \dots, x_n)$.

- 1. Justifier que $\|\cdot\|_{\infty}$ est une norme sur E.
- 2. Justifier que $\mathscr{B} = (L'_i)_{1 \leq i \leq n}$ est une base de E. On note $\|\cdot\|_{\infty,\mathscr{B}}$ la norme infinie relative à cette base.
- 3. Pour $P \in E$, déterminer une expression simple de $\|P\|_{\infty,\mathscr{B}}$ en fonction des φ_i .
- 4. Établir que A est un compact.
- 5. Soit $(P_k)_k \in E^{\mathbb{N}}$ vérifiant $\varphi_i(P_k) \xrightarrow[k \to +\infty]{} 0$ pour tout $i \in [1; n]$. Établir $\|P_k\|_{\infty} \xrightarrow[k \to +\infty]{} 0$

Problème III

Un polynôme P de $\mathbb{R}[X]$ est dit *pair* s'il vérifie P(X) = P(-X). Soit N entier. On note A_N l'ensemble des polynômes $P \in \mathbb{R}_N[X]$ vérifiant P(-1) = P(1) = 1 et $P(x) \ge 0$ pour tout $x \in [-1;1]$ puis

$$\forall P \in \mathbb{R}_N[X]$$
 $L(P) = \int_{-1}^1 P(x) dx$ et $a_N = \inf \{L(P), P \in A_N\}$

- 1. Montrer que A_N est une partie convexe de $\mathbb{R}_N[X]$.
- 2. Montrer que $\|P\|_1 = \int_{-1}^1 |P(x)| dx$ définit une norme sur $\mathbb{R}_N[X]$.
- 3. Montrer que A_N est une fermé de $(\mathbb{R}_N[X], \|\cdot\|_1)$.
- 4. Montrer que la borne inférieure de L sur A_N est atteinte. On note $B_N = \{P \in A_N \mid L(P) = a_N\}.$
- 5. Montrer que B_N est une partie convexe compacte.
- 6. Vérifier que B_N contient un polynôme pair.