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Feuille d'exercices n°33

Exercice 1 (***)

Soit E un K-evn, K un compact de E et f : K → E localement lipschitzienne, i.e. pour tout
a ∈ K, il existe un voisinage Va de a et une constante Ca > 0 tels que

∀(x, y) ∈ (Va ∩K)2 ∥f(x)− f(y)∥ ⩽ Ca∥x− y∥

Montrer que f est en fait lipschitzienne.

Corrigé : Supposons f non-lipschitzienne sur K. Alors, pour tout n entier, il existe xn et yn
dans K tels que

∥f(xn)− f(yn)∥ > n∥xn − yn∥

On remarque en particulier que xn ̸= yn pour tout n entier sans quoi l'inégalité ne serait pas
stricte. La fonction f est continue sur K donc bornée. Ainsi, il existe M ⩾ 0 tel que Im f ⊂
Bf (0,M) et par conséquent

∥xn − yn∥ ⩽
2M

n

d'où ∥xn − yn∥ −−−→
n→∞

0

Comme (xn)n est à valeurs dans le compact K, il existe φ extractrice telle que xφ(n) −−−→
n→∞

x ∈ K

et de même yφ(n) −−−→
n→∞

x. Or, il existe un voisinage Vx tel que

∀(a, b) ∈ (Vx ∩K)2 ∥f(a)− f(b)∥ ⩽ Cx∥a− b∥

Or, à partir d'un certain rang, les suites (xφ(n))n et (yφ(n))n sont à valeurs dans Vx d'où

φ(n)∥xφ(n) − yφ(n)∥ < ∥f(xφ(n))− f(yφ(n))∥ ⩽ Cx∥xφ(n) − yφ(n)∥

En�n, comme on sait que xn ̸= yn pour tout n entier, en divisant par ∥xφ(n) − yφ(n)∥, on en
déduit notamment φ(n) < Cx pour tout n entier ce qui est absurde puisque φ(n) −−−→

n→∞
+∞. On

conclut

La fonction f est lipschitzienne.

Exercice 2 (***)

Soit (un)n suite réelle bornée telle que un +
1

2
un+1 = an avec an −−−→

n→∞
a. Montrer que (un)n

converge et déterminer sa limite.

Corrigé : D'après le théorème de Bolzano-Weierstrass, il existe une extractrice φ tel que
uφ(n) −−−→

n→∞
ℓ. Par suite

uφ(n)+1 = 2aφ(n) − 2uφ(n) −−−→
n→∞

2a− 2ℓ

Considérons la suite (vn)n dé�nie par v0 = ℓ et vn+1 = 2a− 2vn. Il s'agit d'une suite de valeurs
d'adhérences de (un)n d'après le résultat précédent. La suite (vn)n est arithmético-géométrique.
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Son point �xe α véri�e α = 2a− 2α ⇐⇒ α =
2a

3

La suite (vn − α)n est géométrique de raison −2 et on trouve

∀n ∈ N vn = (−2)n
Å
ℓ− 2a

3

ã
+

2a

3

Comme la suite (un)n est bornée, l'ensemble de ses valeurs d'adhérences l'est aussi et d'après

l'expression ci-dessus, il s'ensuit que ℓ =
2a

3
. Ainsi, la suite (un)n est une suite réelle bornée avec

une unique valeur d'adhérence. On conclut

un −−−→
n→∞

2a

3

Exercice 3 (***)

Soit f : ] 0 ; 1 ] → R uniformément continue. Montrer que f admet un prolongement par conti-
nuité en 0.

Corrigé : Soit ε > 0. On dispose de η ∈ ] 0 ; 1 ] tel que

∀(x, y) ∈ ] 0 ; 1 ]2 |x− y| ⩽ η =⇒ |f(x)− f(y)| ⩽ ε

Soit (xn)n à valeurs dans ] 0 ; 1 ] de limite nulle. Pour n assez grand, on a xn ⩽ η d'où

|f(xn)| ⩽ |f(η)|+ ε

ce qui prouve que la suite (f(xn))n est bornée. D'après le théorème de Bolzano-Weierstrass, on
dispose de φ extractrice et ℓ réel tels que

f(xφ(n)) −−−→
n→∞

ℓ

Soit (yn)n une suite à valeurs dans ] 0 ; 1 ] de limite nulle. Pour n assez grand, on a
∣∣yn − xφ(n)

∣∣ ⩽ η
d'où

|f(yn)− ℓ| ⩽
∣∣f(yn)− f(xφ(n))

∣∣+ ∣∣f(xφ(n))− ℓ
∣∣ ⩽ 2ε

ce qui prouve, par caractérisation séquentielle, que la fonction f admet une limite �nie en 0.
Ainsi

La fonction f admet un prolongement par continuité en 0.

Exercice 4 (****)

Soit E un evn, X une partie compacte non vide de E et f : X → X telle que

∀(x, y) ∈ X2 ∥f(x)− f(y)∥ ⩾ ∥x− y∥

1. Soit a ∈ X. Montrer que a est valeur d'adhérence de (un)n dé�nie par u0 = a et un+1 =
f(un).

2. Montrer que f est une isométrie, i.e.

∀(x, y) ∈ X2 ∥f(x)− f(y)∥ = ∥x− y∥

3. Montrer que f est une bijection de X sur X.
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Corrigé : 1. Par récurrence immédiate, on a

∀k ∈ N ∀(x, y) ∈ X2 ∥x− y∥ ⩽ ∥fk(x)− fk(y)∥

d'où ∀(k, n) ∈ N2 ∥un − u0∥ ⩽ ∥fk(un)− fk(u0)∥ = ∥un+k − uk∥

La suite (un)n est à valeurs dans X compact donc il existe φ une extractrice telle que
(
uφ(n)

)
n

converge dans X. On dé�nit ψ sur N par ψ(0) = φ(0) puis

∀n ∈ N ψ(n+ 1) = min {φ(k), k > 2ψ(n)}

D'après le résultat préliminaire, pour n entier

∥uψ(n+1)−ψ(n) − u0∥ ⩽ ∥uψ(n+1) − uψ(n)∥

Il s'ensuit uψ(n+1)−ψ(n) −−−→
n→∞

a

En�n, par construction, on a ψ(n+ 1) > 2ψ(n) pour n entier d'où

ψ(n+ 2)− ψ(n+ 1)− (ψ(n+ 1)− ψ(n)) > ψ(n) ⩽ 0

ce qui prouve la stricte croissance de (ψ(n+ 1)− ψ(n))n qui est donc une extractrice. Ainsi

La valeur a est valeur d'adhérence de (un)n.

Remarque : L'extractrice ψ(·+ 1)− ψ est complètement déterminée par le choix de φ.

2. Soit (a, b) ∈ X2. On construit (un)n et (vn)n comme précédemment. L'espace X2 est compact
comme produit d'espaces compacts. Ainsi, la suite (un, vn)n admet une valeur d'adhérence et
avec le même procédé que celui vu précédemment, on construit une extractrice χ telle que

uχ(n) −−−→
n→∞

a et vχ(n) −−−→
n→∞

b

Par ailleurs, comme χ(n) ⩾ 1 pour tout entier n ⩾ 1, il vient

∀n ⩾ 1 ∥f(a)− f(b)∥ ⩽ ∥fχ(n)−1(f(a))− fχ(n)(f(b))∥ = ∥uχ(n) − vχ(n)∥

Faisant tendre n → +∞, on obtient ∥f(a) − f(b)∥ ⩽ ∥a − b∥ et l'autre inégalité est vraie par
hypothèse. Ainsi, on conclut que

L'application f est une isométrie.

3. Comme f est une isométrie, elle est injective et continue. Comme X est compact, l'ensemble
f(X) est compact. D'après le résultat de la première question, on a X ⊂ f(X) et comme f(X)
est compact donc fermé, il s'ensuit que X ⊂ f(X) = f(X). L'autre inclusion étant vraie par
hypothèse, on a f(X) = X et on conclut

L'application f est une bijection de X sur X.

Exercice 5 (***)

Soit E un K-evn, F un sev fermé et G un sev de dimension �nie. Montrer que F + G fermé.

Corrigé : Supposons G = Vect (a) avec a /∈ F sinon le résultat est trivial. Soit (xn)n ∈ (F+G)N

avec xn −−−→
n→∞

x. Pour n entier, il existe (tn, λn) ∈ F × K tel que xn = tn + λna. Si (λn)n est

bornée, il existe φ extractrice telle que λφ(n) −−−→
n→∞

λ ∈ K. Par suite, on a

tφ(n) = xφ(n) − λφ(n)a −−−→
n→∞

t = x− λa
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avec t ∈ F par fermeture de F. On en déduit x = t + λa ∈ F + G. Si (λn)n n'est pas bornée, il
existe ψ extractrice telle que λψ(n) −−−→

n→∞
+∞. Par suite, comme (xn)n converge, alors xn = O(1)

et par fermeture de F, on trouve

tψ(n)
λψ(n)

=
xn
λψ(n)

− a −−−→
n→∞

−a ∈ F

ce qui est absurde. On en déduit F + G fermé pour le cas G = Vect (a) et on procède par
récurrence immédiate pour G de dimension �nie. On conclut

L'ensemble F + G est fermé.

Exercice 6 (***)

Soit E un K-evn, K un compact convexe non vide et u ∈ Lc(E) tel que u(K) ⊂ K. On note
C = (id −u)(K) puis on pose

∀n ∈ N∗ un =
1

n

n−1∑
k=0

uk et xn = (id −u) ◦ un(a) avec a ∈ K

1. Montrer que C est un compact.

2. Montrer que (xn)n ∈ CN puis xn −−−→
n→∞

0.

3. En déduire que u admet un point �xe dans K.

Corrigé : 1. On a id −u continue et C = (id −u)(K) est l'image directe d'un compact par une
application continue donc

L'ensemble C est compact.

2. Par récurrence immédiate, on a uk(K) ⊂ K pour tout k entier. Par convexité de K, on a

∀n ∈ K× N∗ un(a) =
1

n

n−1∑
k=0

uk(a) ∈ K

Par conséquent, on a xn ∈ (id −u)(K) pour tout n entier. Puis, par téléscopage,

∀n ∈ N∗ xn =
1

n

n−1∑
k=0

[
uk(a)− uk+1(a)

]
=

1

n
[a− un(a)]

L'ensemble K est compact donc borné et par conséquent, il existe M ⩾ 0 tel que

∀n ∈ N∗ ∥xn∥ ⩽
1

n
(∥a∥+ ∥un(a)∥) ⩽ 2M

n

On conclut (xn)n ∈ CN et xn −−−→
n→∞

0

3. L'ensemble C est compact donc fermé. Or, on a construit une suite à valeurs dans C convergente
de limite nulle. Par fermeture de C, on en déduit

0 ∈ C = (id −u)(K)

Autrement dit ∃x ∈ K | u(x) = x

Remarque : Il s'agit du théorème de Markov-Kakutani.

4



Exercice 7 (***)

Soit E un R-ev. On rappelle que pour X ⊂ E, l'enveloppe convexe de X notée Conv(X) véri�e

Conv(X) =

ß
n∑
i=1

αixi, n ⩾ 1, (xi)i∈[[ 1 ;n ]] ∈ Xn, (αi)i∈[[ 1 ;n ]] ∈ Rn
+ et

n∑
i=1

αi = 1

™
Si E est de dimension n, alors tout élément de Conv(X) peut s'écrire comme combinaison convexe
de n+1 éléments de X (théorème de Carathéodory, voir feuilles de convexité). Montrer que dans
ce cas, si X est compact, alors Conv(X) est compact.

Corrigé : Posons K =

ß
(α1, . . . , αn+1) ∈ Rn+1

+ |
n+1∑
i=1

αi = 1

™
L'ensemble K est un fermé borné de Rn+1 espace de dimension �nie d'où K compact. On note

Φ:


Rn+1 × En+1 −→ E

(α, x) 7−→
n+1∑
i=1

αixi

Soient (α, x) et (β, y) dans Rn+1 × En+1. On obtient

∥Φ(α, x)− Φ(β, y)∥ = ∥Φ(α, x)− Φ(α, y) + Φ(α, y)− Φ(β, y)∥

⩽ ∥α∥1∥x− y∥∞ + ∥y∥1∥α− β∥∞
et la continuité de Φ s'en déduit. Puis, on observe que

Conv(X) = Φ(K× Xn+1)

Or, l'ensemble K×Xn+1 est compact comme produit de compacts et l'image d'un compact par
une application continue étant compact, on conclut

Si X est compact dans E un R-ev de dimension n, alors Conv(X) est compacte.

Exercice 8 (***)

Une matrice A ∈ Mn(C) est dite cyclique s'il existe X ∈ Mn,1(C) tel que
Vect (X,AX, . . . ,An−1X) = Mn,1(C)

Montrer que l'ensemble des matrices cycliques Cn(C) est un ouvert dense connexe par arcs.

Corrigé : Soit A ∈ Cn(C) et X ∈ Mn,1(C) telle que rg (X,AX, . . . ,An−1X) = n. On pose

Φ:

®
Mn(C) −→ C

M 7−→ det(X,MX, . . . ,Mn−1X)

L'application Φ est polynomiale en les coe�cients de M donc continue. On a Φ(A) ̸= 0 et par
conséquent, l'ensemble Φ−1(C∗), ouvert comme image réciproque d'un ouvert par une application
continue, est un voisinage ouvert de A dans Cn(C). Soit Ds

n(C) l'ensemble des matrices de Mn(C)
diagonalisables à valeurs propres simples. Soit M ∈ Ds

n(C), u ∈ L (Cn) canoniquement associé

et B = (ε1, . . . , εn) une base de diagonalisation. On pose x =
n∑
i=1

εi. On obtient

detB(x, u(x), . . . , u
n−1(x)) =

∣∣∣∣∣∣∣∣∣
1 λ1 . . . λn−1

1

1 λ2 . . . λn−1
2

...
...

...
1 λn . . . λn−1

n

∣∣∣∣∣∣∣∣∣ =
∏

1⩽i<j⩽n
(λj − λi) ̸= 0
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en reconnaissant un déterminant de Vandermonde. La famille (x, u(x), . . . , un−1(x)) est donc une
base de Cn ce qui prouve que M est cyclique. Autrement dit, on a

Ds
n(C) ⊂ Cn(C)

Comme l'ensemble Ds
n(C) est dense dans Mn(C) (vu en TD), la densité de Cn(C) en résulte.

En�n, on a

A ∈ Cn(C) ⇐⇒ ∃(P, a0, . . . , an−1) ∈ GLn(C)× Cn | A = PC(a0, . . . , an−1)P
−1

où C(a0, . . . , an) désigne la matrice compagne du polynôme Xn −
n−1∑
k=0

akX
k. Il su�t en e�et de

considérer u ∈ L (Cn) canoniquement associé à A avec x ∈ Cn tel que L = (x, u(x), . . . , un−1(x))
soit une base de Cn et d'écrire matL u. Ainsi, posant

Ψ:

®
GLn(C)× Cn −→ Mn(C)

(P, a0, . . . , an−1) 7−→ P−1C(a0, . . . , an−1)P

On a Ψ(GLn(C)× Cn) = Cn(C)

C'est l'image d'un produit de deux connexes par arcs par une application continue. On conclut

L'ensemble Cn(C) est un ouvert dense connexe par arcs de Mn(C).
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