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Feuille d’exercices n°33

Exercice 1 (**%*)

Soit E un K-evn, K un compact de E et f : K — E localement lipschitzienne, i.e. pour tout
a € K, il existe un voisinage V, de a et une constante C, > 0 tels que

V(z,y) € VaNK)?  [If(z) = f(W)]l < Callz =yl

Montrer que f est en fait lipschitzienne.

Corrigé : Supposons [ non-lipschitzienne sur K. Alors, pour tout n entier, il existe z, et y,
dans K tels que

1f (n) = f(yn) | > nllzn = ynll

On remarque en particulier que x,, # y, pour tout n entier sans quoi 'inégalité ne serait pas
stricte. La fonction f est continue sur K donc bornée. Ainsi, il existe M > 0 tel que Im f C
Bf(0,M) et par conséquent

2M
[z = ynll < —
n

d’ou |zn — yn|]| —— 0
n—oo

Comme (x,), est & valeurs dans le compact K, il existe ¢ extractrice telle que z,,) —— 2 € K
n—o0

et de méme y,(,) — x. Or, il existe un voisinage V, tel que
n—oo
V(a,b) € (V. NK)*  [[f(a) = fFO)I < Calla — b
Or, a partir d’un certain rang, les suites (z,(n))n et (Ypm))n sont a valeurs dans V, d’ou

Sp(n)”xw(n) - y@(ﬂ)” < Hf(xcp(n)) - f(yw(n))H < Cx”ng(n) - y@(n)”

Enfin, comme on sait que x, # y, pour tout n entier, en divisant par ||Z,m) — Yew) ||, on en
déduit notamment ¢(n) < C, pour tout n entier ce qui est absurde puisque ¢(n) —— +00. On
n—oo

conclut

’La fonction f est 1ipschitzienne.‘

Exercice 2 (***)

Soit (uy), suite réelle bornée telle que u, + §un+1 = a, avec a, — a. Montrer que (uy),
n—oo

converge et déterminer sa limite.

Corrigé : D’aprés le théoréme de Bolzano-Weierstrass, il existe une extractrice ¢ tel que
Up(ny — . Par suite

n—o0

Up(n)+1 = 20p(n) = 2Up(n) ——— 2a — 2L

Considérons la suite (v,,), définie par vy = ¢ et v,11 = 2a — 2v,. 1l s’agit d’une suite de valeurs
d’adhérences de (u,), d’aprés le résultat précédent. La suite (vy,), est arithmético-géométrique.



2a
Son point fixe a vérifie a=2a—-200 &= o= —

3
La suite (v, — «), est géométrique de raison —2 et on trouve
2a 2a
en am o (e-2) 42
n v, = (—2)" 3 3

Comme la suite (uy,), est bornée, I'ensemble de ses valeurs d’adhérences l'est aussi et d’aprés

I'expression ci-dessus, il s’ensuit que ¢ = 3 Ainsi, la suite (u,,), est une suite réelle bornée avec

une unique valeur d’adhérence. On conclut

Exercice 3 (***)

Soit f :]0;1] — R uniformément continue. Montrer que f admet un prolongement par conti-
nuité en 0.

Corrigé : Soit € > 0. On dispose de n € |0;1] tel que
V(z,y) €]0:1°  Je—yl<n = |f2) - [yl <e

Soit (z,,), & valeurs dans | 0; 1] de limite nulle. Pour n assez grand, on a z,, < n d’ou

[f(@n)| < [f(n)] + €

ce qui prouve que la suite (f(z,)), est bornée. D’aprés le théoréme de Bolzano-Weierstrass, on
dispose de ¢ extractrice et ¢ réel tels que

f(.%'@(n)) —

n—oo
Soit (yy)n une suite & valeurs dans ] 0; 1] de limite nulle. Pour n assez grand, on a |y, — ()| <7
d’ou
1 (yn) = U< [ f () = F(@om)] + | F(@pm) — €] < 2

ce qui prouve, par caractérisation séquentielle, que la fonction f admet une limite finie en 0.
Ainsi

’La fonction f admet un prolongement par continuité en O.‘

Exercice 4 (****)
Soit E un evn, X une partie compacte non vide de E et f : X — X telle que
V(z,y) e X*  |f(z) = fWIl =z -yl

1. Soit a € X. Montrer que a est valeur d’adhérence de (u,), définie par vy = a et u,,1 =
f(un).
2. Montrer que f est une isométrie, i.e.

V(z,y) €X®  [If(x) = fW)ll = llz -yl
3. Montrer que f est une bijection de X sur X.



Corrigé : 1. Par récurrence immédiate, on a

VEeN  VY(z,y) e X*  lz—y| <[ @) - Al

d’ott V(k,n) € N lun — uoll < 1" (un) = f*(uo)ll = lltnsk — uall

La suite (uy), est & valeurs dans X compact donc il existe ¢ une extractrice telle que (uw(n))n
converge dans X. On définit ¢ sur N par ¢(0) = ¢(0) puis

VneN  ¢(n+1)=min{p(k), k> 2¢(n)}
D’aprés le résultat préliminaire, pour n entier
[t 1)—pm) — Uoll < [ttty — Uyl

Il s’ensuit Uap(n41)—tp(n) — 7 Q

n—o0

Enfin, par construction, on a ¥ (n + 1) > 2¢(n) pour n entier d’ou

v(n+2) =d(n+1) = (Pn+1) —d(n) >¢d(n) <0

ce qui prouve la stricte croissance de ((n + 1) —1(n)), qui est donc une extractrice. Ainsi

La valeur a est valeur d’adhérence de (uy,),.

Remarque : L’extractrice ¢(- + 1) — ¢ est complétement déterminée par le choix de ¢.

2. Soit (a,b) € X% On construit (uy,), et (v,), comme précédemment. L’espace X? est compact
comme produit d’espaces compacts. Ainsi, la suite (u,,v,), admet une valeur d’adhérence et
avec le méme procédé que celui vu précédemment, on construit une extractrice y telle que

Uy(n) — > @ et Vyp) — b

n—oo n— o0

Par ailleurs, comme x(n) > 1 pour tout entier n > 1, il vient

V=1 [f(a) = fFOI < I/ @) = OO = lligm — vl

) -
Faisant tendre n — +oo, on obtient || f(a) — f(b)|| < ||la — b|| et lautre inégalité est vraie par
hypothése. Ainsi, on conclut que

’L’application f est une isométrie. ‘

3. Comme f est une isométrie, elle est injective et continue. Comme X est compact, I'ensemble
f(X) est compact. D’apreés le résultat de la premiére question, on a X C f(X) et comme f(X)
est compact donc fermé, il s’ensuit que X C f(X) = f(X). L’autre inclusion étant vraie par
hypothése, on a f(X) = X et on conclut

’L’application f est une bijection de X sur X.‘

Exercice 5 (***)

Soit E un K-evn, F un sev fermé et G un sev de dimension finie. Montrer que F + G fermé.

Corrigé : Supposons G = Vect (a) avec a ¢ F sinon le résultat est trivial. Soit (x,), € (F+G)N
avec x,, —— x. Pour n entier, il existe (f,,\,) € F x K tel que x, = t, + A,a. Si (\,), est

n—oo
bornée, il existe ¢ extractrice telle que A,y —— A € K. Par suite, on a
n—oo

tcp(n) = Tp(n) — )\@(”)a ——t=x— )\

n—o0



avec t € F par fermeture de F. On en déduit z =t + Aa € F + G. Si (\,), n’est pas bornée, il
existe 1 extractrice telle que Ay(,) —— +o0o. Par suite, comme (z,,), converge, alors z,, = O(1)
n—o0

et par fermeture de F, on trouve

t n n
v o T G eF
Apn)  A(n) n—o0

ce qui est absurde. On en déduit F + G fermé pour le cas G = Vect (a) et on procéde par
récurrence immédiate pour G de dimension finie. On conclut

I’ensemble F + G est fermé.‘

Exercice 6 (***)

Soit E un K-evn, K un compact convexe non vide et u € Z.(E) tel que u(K) C K. On note
C = (id —u)(K) puis on pose
1n=1
VneN wu,=->Yu* et x,=(d —u)ou,(a) avec a€K
Ng=0
1. Montrer que C est un compact.

2. Montrer que (z,), € CY puis z,, — 0.

n—o0

3. En déduire que u admet un point fixe dans K.

Corrigé : 1. On a id —u continue et C = (id —u)(K) est 'image directe d’'un compact par une
application continue donc

’L’ensemble C est compact.‘

2. Par récurrence immédiate, on a u*(K) C K pour tout k entier. Par convexité de K, on a

1n=l
Vn € K x N* un(a):EZuk(a) e K
k=0

Par conséquent, on a z, € (id —u)(K) pour tout n entier. Puis, par téléscopage,

1nl 1
VneN* oz, == [uF(a) — v (a)] = = [a — u"(a)]
N =0 n
[’ensemble K est compact donc borné et par conséquent, il existe M > 0 tel que
1 2M
Vne N gl < = (o] + [[u"(a)[]) < —
n n
On conclut (7)€ CY et 2, —— 0
n—oo

3. L’ensemble C est compact donc fermé. Or, on a construit une suite a valeurs dans C convergente
de limite nulle. Par fermeture de C, on en déduit

0€C=(id —u)(K)

Autrement dit dJreK | ulx)==x

Remarque : Il s’agit du théoréme de Markov-Kakutani.



Exercice 7 (***)

Soit E un R-ev. On rappelle que pour X C E, I'enveloppe convexe de X notée Conv(X) vérifie
COHV(X) = {Z()élﬂli, n 2 1, (xi>i€[[1;n}] € Xn’ (ai)ie[[l;nﬂ € RZ et Zai = 1}
i=1 i=1

Si E est de dimension n, alors tout élément de Conv(X) peut s’écrire comme combinaison convexe
de n+1 éléments de X (théoréme de Carathéodory, voir feuilles de convexité). Montrer que dans
ce cas, si X est compact, alors Conv(X) est compact.

n+1
Corrigé : Posons K= {(al, ey Q) ERTTL ] Sy = 1}
i=1

L’ensemble K est un fermé borné de R"*! espace de dimension finie d’ott K compact. On note
Rn+1 X En+1 S E
b n+1
(,x) — > oy
i=1
Soient (o, x) et (B3,y) dans R™™! x E*™1. On obtient

[®(a, ) = (B, y)| = [|P(a, ) — D(ev, y) + P(a,y) — (5,9

< laflillz = yllo + lylliller = Bl
et la continuité de ® s’en déduit. Puis, on observe que
Conv(X) = ®(K x X"*t1)

Or, I'ensemble K x X" est compact comme produit de compacts et I'image d’un compact par
une application continue étant compact, on conclut

Si X est compact dans E un R-ev de dimension n, alors Conv(X) est compacte.

Exercice 8 (***)

Une matrice A € #,(C) est dite cyclique s’il existe X € 4, 1(C) tel que
Vect (X, AX, ..., A" 'X) = 4,1(C)

Montrer que I’ensemble des matrices cycliques %,,(C) est un ouvert dense connexe par arcs.

Corrigé : Soit A € 6,(C) et X € 4, 1(C) telle que rg (X, AX, ..., A" 'X) = n. On pose
o M,(C) — C
' M —s det(X, MX, ..., M"1X)

L’application ® est polynomiale en les coefficients de M donc continue. On a ®(A) # 0 et par

conséquent, 'ensemble ®~1(C*), ouvert comme image réciproque d’un ouvert par une application

continue, est un voisinage ouvert de A dans %,,(C). Soit Z;(C) I'ensemble des matrices de .#,,(C)

diagonalisables & valeurs propres simples. Soit M € 25(C), u € Z(C™) canoniquement associé
n

et B = (ey,...,e,) une base de diagonalisation. On pose z = ) ¢;. On obtient
i=1
IO VD W
I X ... At
detg(z,u(x),...,u" () =|. . = I (\—=X)#0
Do ; 1<i<j<n
1 Ay ... Ant



en reconnaissant un déterminant de Vandermonde. La famille (x, u(x),...,u" !(z)) est donc une
base de C™ ce qui prouve que M est cyclique. Autrement dit, on a

2:(C) C 6,(C)

Comme 'ensemble Z:(C) est dense dans .#,(C) (vu en TD), la densité de %,(C) en résulte.
Enfin, on a

A€ %,(C) < 3I(P,ap,...,a,_1) € GL,(C) xC" | A=PC(ag,...,a,1)P*

n—1

ott C(ay, .. .,a,) désigne la matrice compagne du polynome X" — >, X*. 11 suffit en effet de
k=0

considérer u € £ (C") canoniquement associé a A avec x € C" tel que £ = (z,u(x), ..., u" (z))

soit une base de C" et d’écrire mat ou. Ainsi, posant
v GL,(C)xC" — #,(C)
. (P,aq,...,a, 1) — P~ 1C(ag,...,a, 1)P
On a U (GL,(C) x C™) = %,(C)

C’est I'image d’un produit de deux connexes par arcs par une application continue. On conclut

[’ensemble %,(C) est un ouvert dense connexe par arcs de ., (C).




