Feuille d'exercices n°31

Exercice 1 (*)

Soit E un K-evn. Montrer que si $B_f(0,1)$ est compacte, alors S(0,1) l'est aussi.

Exercice 2 (*)

Soit E un \mathbb{K} -evn et K un compact et $F \subset E$.

- 1. Montrer que si F est un compact, alors F + K est un compact.
- 2. Montrer que si F est fermé, alors F + K est un fermé.

Exercice 3 (**)

Soit E un \mathbb{K} -evn et $(K_n)_{n\in\mathbb{N}}$ une suite décroissante de compacts non vides de E et $K = \bigcap_{n\in\mathbb{N}} K_n$. Montrer que l'ensemble K est un compact non vide.

Exercice 4 (**)

Soient E, F des evn, $f \in \mathscr{C}(E, F)$ et $(K_n)_{n \in \mathbb{N}}$ une suite décroissante de compacts de E.

Montrer que

$$f\left(\bigcap_{n\in\mathbb{N}}\mathbf{K}_n\right) = \bigcap_{n\in\mathbb{N}}f(\mathbf{K}_n)$$

Exercice 5 (**)

Soit E un K-evn et K un compact. Pour r>0, montrer que $\mathcal{F}=\bigcup_{x\in\mathcal{K}}\mathcal{B}_f(x,r)$ est un fermé.

Exercice 6 (**)

Soit E un \mathbb{K} -evn et A, B des compacts de E. Montrer que $A \cup B$ est compact.

Exercice 7 (**)

Soit E un K-evn. Montrer que si S(0,1) est compacte, alors $B_f(0,1)$ l'est aussi.

Exercice 8 (**)

Soit $(\Omega, \mathscr{A}, \mathbb{P})$ un espace probabilisé, $(X_n)_n$ et X des variables aléatoires discrètes à valeurs dans un compact K de \mathbb{R} et $f \in \mathscr{C}^0(K, \mathbb{R})$. Montrer

$$\forall \varepsilon > 0 \qquad \mathbb{P}(|\mathbf{X}_n - \mathbf{X}| \geqslant \varepsilon) \xrightarrow[n \to \infty]{} 0 \quad \Longrightarrow \quad \forall \varepsilon > 0 \qquad \mathbb{P}(|f(\mathbf{X}_n) - f(\mathbf{X})| \geqslant \varepsilon) \xrightarrow[n \to \infty]{} 0$$

Exercice 9 (**)

Soit E un \mathbb{K} -evn, F et K des parties de E non vides et disjointes. On suppose K compact. On note

$$d(K, F) = \inf_{(x,y) \in K \times F} ||x - y||$$

- 1. Si F compact, montrer d(K, F) > 0.
- 2. Que peut-on dire si F fermé?

Exercice 10 (*)

Soient E, F des evn et $A \subset E$ et $B \subset F$ des parties connexes par arc.

- 1. Montrer que $A \times B$ est connexe par arcs.
- 2. On suppose E = F. Montrer que A + B est connexe par arcs.

Exercice 11 (*)

Soit $A = \left\{ x = (x_1, \dots, x_n) \in \mathbb{R}^n_+ \mid \sum_{i=1}^n x_i = 1 \right\}$. L'ensemble A est-il compact? Connexe par arcs?

Exercice 12 (**)

Soit I intervalle de \mathbb{R} non vide non réduit à un point et $f: \mathbb{I} \to \mathbb{R}$ continue et injective. Montrer que f est strictement monotone.

Exercice 13 (*)

L'ensemble des matrices diagonalisables de $\mathcal{M}_n(\mathbb{K})$ est-il connexe par arcs?

Exercice 14 (**)

Soit $E = \mathcal{M}_n(\mathbb{K})$. Montrer \mathcal{N} l'ensemble des matrices nilpotentes de E est un fermé non compact d'intérieur vide connexe par arcs.

Exercice 15 (*)

Le cône C d'équation $x^2 + y^2 = z^2$ est-il connexe par arcs?

Exercice 16 (**)

Soit E un K-ev normé de dimension infinie ou finie $n \ge 2$. Pour $R \ge 0$, on pose

$$\Gamma_{\mathbf{R}} = \{ x \in \mathbf{E} : ||x|| > \mathbf{R} \}$$

Montrer que Γ_R est connexe par arcs.