Feuille d'exercices n°32

Exercice 1 (***)

Soit $f: \mathbb{R} \to \mathbb{R}$ et $\Gamma_f = \{(x, f(x)), x \in \mathbb{R}\}$ son graphe.

- 1. Montrer que si f est continue, alors Γ_f est fermé.
- 2. Montrer que si f est bornée et Γ_f fermé, alors f est continue.
- 3. Le résultat précédent a-t-il lieu sans l'hypothèse f bornée ?

Exercice 2 (***)

Soit $A \in \mathcal{M}_n(\mathbb{K})$ telle que $(A^p)_p$ bornée. Pour p entier non nul, on pose $B_p = \frac{1}{p} \sum_{k=0}^{p-1} A^k$.

- 1. Montrer que la suite $(B_p)_{p\geqslant 1}$ admet une valeur d'adhérence B.
- 2. Montrer que B vérifie $B(I_n A) = 0$.
- 3. En déduire B est une matrice de projection sur $\operatorname{Ker}(A I_n)$ parallèlement à $\operatorname{Im}(A I_n)$.
- 4. Conclure sur le comportement asymptotique de $(B_p)_{p\geqslant 1}$.

Exercice 3 (***)

Soit E un K-ev normé de dimension finie et U un ouvert de E. Montrer que U peut s'écrire comme une union croissante de compacts.

Exercice 4 (***)

Soit E un K-evn et F un sev de dimension finie de E. Montrer

$$\forall x \in E \quad \exists y \in F \quad | \quad d(x, F) = ||x - y||$$

Exercice 5 (***)

Soit E un evn, X une partie compacte non vide de E et $f: X \to X$ telle que

$$\forall (x,y) \in \mathbf{X}^2 \quad \text{avec} \quad x \neq y \qquad \|f(x) - f(y)\| < \|x - y\|$$

- 1. Montrer que f admet un unique point fixe α (considérer $\inf_{x \in \mathcal{X}} \|x f(x)\|$).
- 2. Soit $(u_n)_n$ définie par $u_0 \in X$ et $u_{n+1} = f(u_n)$. Montrer que $(u_n)_n$ converge vers α .

Exercice 6 (***)

Soit E un \mathbb{K} -evn, K un compact convexe non vide et $f: \mathbb{K} \to \mathbb{K}$ une application 1-lipschitzienne. Montrer que f admet un point fixe.

Exercice 7 (****)

Soit E un \mathbb{K} -evn. Montrer que si la sphère unité S(0,1) est compacte, alors E est de dimension finie.

Exercice 8 (***)

Soit E un K-evn.

1. Soit $(x_n)_n$ suite à valeurs dans E pour laquelle il existe $\varepsilon > 0$ tel que

$$\forall (n,p) \in \mathbb{N}^2 \qquad n \neq p \implies ||x_n - x_p|| \geqslant \varepsilon$$

Montrer que $(x_n)_n$ n'admet aucune sous-suite convergente.

2. Soit K un compact de E. Montrer que pour tout $\varepsilon > 0$, il existe un entier p non nul et x_1, \ldots, x_p dans E tels que

$$K \subset \bigcup_{i=1}^p B(x_i, \varepsilon)$$

Exercice 9 (***)

Soit E un \mathbb{R} evn de dimension finie, $g \in \mathscr{C}(E, \mathbb{R}_+)$ avec $g(x) \xrightarrow{\|x\| \to +\infty} +\infty$. On note $m = \inf_{x \in E} g(x)$. Montrer que g admet un minimum global.

Exercice 10 (***)

Soit E, F des K-ev normés de dimension finie, $f: E \to F$ continue. On dit que f est propre si pour tout K compact de F, l'ensemble $f^{-1}(K)$ est un compact de E.

- 1. Montrer que si f est propre, alors pour tout C fermé, l'ensemble f(C) est fermé.
- 2. Montrer $f \text{ propre} \iff ||f(x)|| \xrightarrow{||x|| \to +\infty} +\infty$

Exercice 11 (***)

Montrer que $\mathrm{GL}_n(\mathbb{C})$ est connexe par arcs.

Exercice 12 (***)

Montrer que les composantes connexes d'un ouvert de \mathbb{R}^n sont ouvertes. En déduire que tout ouvert de \mathbb{R} est réunion d'une famille au plus dénombrable d'intervalles ouverts deux à deux disjoints.