Feuille d'exercices n°33

Exercice 1 (***)

Soit E un K-evn, K un compact de E et $f: K \to E$ localement lipschitzienne, i.e. pour tout $a \in K$, il existe un voisinage V_a de a et une constante $C_a > 0$ tels que

$$\forall (x,y) \in (V_a \cap K)^2 \qquad ||f(x) - f(y)|| \leqslant C_a ||x - y||$$

Montrer que f est en fait lipschitzienne.

Indications: Supposer f non lipschitzienne sur K et considérer des suites $(x_n)_n$ et $(y_n)_n$ à valeurs dans K vérifiant

$$\forall n \in \mathbb{N} \qquad ||f(x_n) - f(y_n)|| > n||x_n - y_n||$$

puis observer que f est bornée sur K. Établir ensuite une contradiction.

Exercice 2 (***)

Soit $(u_n)_n$ suite réelle bornée telle que $u_n + \frac{1}{2}u_{n+1} = a_n$ avec $a_n \xrightarrow[n \to \infty]{} a$. Montrer que $(u_n)_n$ converge et déterminer sa limite.

Indications: Montrer que l'ensemble des valeurs d'adhérence de $(u_n)_n$ vérifie une relation arithmético-géométrique. Conclure en remarquant que la suite $(u_n)_n$ est bornée.

Exercice 3 (***)

Soit $f:]0;1] \to \mathbb{R}$ uniformément continue. Montrer que f admet un prolongement par continuité en 0.

Indications: Considérer $(x_n)_n$ à valeurs dans]0;1] de limite nulle et justifier que $(f(x_n))_n$ est bornée. En déduire l'existence d'une sous-suite de $(f(x_n))_n$ convergente puis montrer que sa limite est la limite de f en 0.

Exercice 4 (****)

Soit E un evn, X une partie compacte non vide de E et $f: X \to X$ telle que

$$\forall (x,y) \in \mathcal{X}^2 \qquad \|f(x) - f(y)\| \geqslant \|x - y\|$$

- 1. Soit $a \in X$. Montrer que a est valeur d'adhérence de $(u_n)_n$ définie par $u_0 = a$ et $u_{n+1} = f(u_n)$.
- 2. Montrer que f est une isométrie, i.e.

$$\forall (x, y) \in X^2$$
 $||f(x) - f(y)|| = ||x - y||$

3. Montrer que f est une bijection de X sur X.

Indications: 1. Minorer $||f^k(x) - f^k(y)||$ pour $(x, y) \in X^2$ puis considérer $||u_{\varphi(n+1)-\varphi(n)} - u_0||$ avec φ extractrice.

- 2. Pour $(a, b) \in X^2$, utiliser des suites construites comme précédemment.
- 3. Montrer $X = \overline{f(X)} = f(X)$.

Exercice 5 (***)

Soit E un K-evn, F un sev fermé et G un sev de dimension finie. Montrer que F + G fermé.

Indications: Procéder par récurrence. Pour G = Vect(a) avec $a \notin F$, considérer $(x_n)_n \in (F+G)^{\mathbb{N}}$ convergente avec $x_n = t_n + \lambda_n a$ et montrer que $(\lambda_n)_n$ est nécessairement bornée.

Exercice 6 (***)

Soit E un K-evn, K un compact convexe non vide et $u \in \mathcal{L}_c(E)$ tel que $u(K) \subset K$. On note C = (id - u)(K) puis on pose

$$\forall n \in \mathbb{N}^*$$
 $u_n = \frac{1}{n} \sum_{k=0}^{n-1} u^k$ et $x_n = (\mathrm{id} - u) \circ u_n(a)$ avec $a \in K$

- 1. Montrer que C est un compact.
- 2. Montrer que $(x_n)_n \in \mathbb{C}^{\mathbb{N}}$ puis $x_n \xrightarrow[n \to \infty]{} 0$.
- 3. En déduire que u admet un point fixe dans K.

Indications : 2. Invoquer la convexité de K puis simplifier l'expression de x_n et remarquer que K est borné.

3. Utiliser la fermeture de C.

Exercice 7 (***)

Soit E un \mathbb{R} -ev. On rappelle que pour $X \subset E$, l'enveloppe convexe de X notée Conv(X) vérifie

$$Conv(X) = \left\{ \sum_{i=1}^{n} \alpha_i x_i, n \geqslant 1, (x_i)_{i \in \llbracket 1; n \rrbracket} \in X^n, (\alpha_i)_{i \in \llbracket 1; n \rrbracket} \in \mathbb{R}_+^n \quad \text{et} \quad \sum_{i=1}^{n} \alpha_i = 1 \right\}$$

Si E est de dimension n, alors tout élément de Conv(X) peut s'écrire comme combinaison convexe de n+1 éléments de X (théorème de Carathéodory, voir feuilles de convexité). Montrer que dans ce cas, si X est compact, alors Conv(X) est compact.

Indications: Considérer $\Phi: \mathbb{R}^{n+1} \times \mathbb{E}^{n+1} \to \mathbb{E}$, $(\alpha, x) \mapsto \sum_{i=1}^{n+1} \alpha_i x_i$ et K l'ensemble des n+1-uplets de réels positifs dont la somme vaut 1.

Exercice 8 (***)

Une matrice $A \in \mathscr{M}_n(\mathbb{C})$ est dite *cyclique* s'il existe $X \in \mathscr{M}_{n,1}(\mathbb{C})$ tel que

$$\mathrm{Vect}\left(\mathbf{X},\mathbf{A}\mathbf{X},\ldots,\mathbf{A}^{n-1}\mathbf{X}\right)=\mathscr{M}_{n,1}(\mathbb{C})$$

Montrer que l'ensemble des matrices cycliques $\mathscr{C}_n(\mathbb{C})$ est un ouvert dense connexe par arcs.

Indications: Pour $A \in \mathscr{C}_n(\mathbb{C})$, considérer $\Phi : M \mapsto \det(X, MX, \dots, M^{n-1}X)$. Pour $M \in \mathscr{D}_n^s(\mathbb{C})$ matrice diagonalisable à valeurs propres simples, montrer que M est cyclique puis utiliser la densité de $\mathscr{D}_n^s(\mathbb{C})$ dans $\mathscr{M}_n(\mathbb{C})$. Remarquer enfin que A est cyclique si et seulement elle est semblable à une matrice compagne.