SERIES ET FONCTIONS VECTORIELLES
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Dans ce chapitre, 'ensemble E désigne un K-ev normé de dimension finie de base # = (e;)1<i<p
et T un intervalle de R non vide, non réduit a un point. Pour (u,), € EN et f : T — E, on

p p
note u, = Y uine; et f = > fie; o les (u;,), et f; sont respectivement suites et fonctions
i=1 i=1

coordonnées.

Notations : Soit g : I — R et a € I. On définit f(z) = o(g(x)) si
T—a
Ve >0 VeV | VeeV |f(z)]] <elg(x)]

On suppose que la fonction g ne s’annule pas sur [N {a}. On a f(z) = o(g(x)) si et seulement
Tr—a
si f(x) = g(z)e(x) avec e(x) — Og. L’expression o(1) signifie ici une fonction de limite nulle
T—a

dans E en a. Ainsi, la relation f(z) = o(g(z)) équivaut a f(x) = g(z)o(1).
T—a Tr—a

I Seéries vectorielles

1 Définitions, propriétés

Définition 1. Soit (u,), une suite & valeurs dans E. Pour tout n € N, on pose S, = > uy.
k=0

On appelle série de terme général u, la suite (S,), que Uon note Y u, ou > u,. On dit que S,
n=0
est la somme partielle d’indice n (ou d’ordre n) de la série Y u,.

Remarque : Pour une suite de terme général u,, définie a partir du rang ng, on définit la série
n

a partir du méme rang et on la note »_ u, = (Sn)n>no avec S, = > uy.
nzng k=ngo

Définition 2. La série Y u, a valeurs dans E est dite convergente (ou converge) si la suite des

sommes partielles (S,,), converge. Dans ce cas, la limite de (S,,), est appelée somme de la série
+00

et notée > u,. La série Y u, est dite divergente (ou diverge) si la suite (S,), est divergente.
n=0

Remarques : (1) Pour une suite (u,),>n, & valeurs dans E définie a partir du rang ny telle que
+00

> u, converge, la somme de la série est notée > u,. On adapte de la méme maniére toutes
n=no n=ng

les définitions et résultats qui suivent.

(2) On a > u, converge <= Vie[1l;p] > u;, converge
+00o P +00o

et dans ce cas du, =] ( um) €
n=0 i=1 “n=0

Vocabulaire : Deux séries & valeurs dans E sont dites de méme nature si elles sont toutes

deux convergentes ou toutes deux divergentes. Les séries Y u, et > u, avec ng entier sont
nzng
clairement de méme nature.

1 o
Exemple : Soit 0 réel. La série Zz—nR(ﬁ)" converge avec R(#) = (2?283 C?;Eé?) et on

trouve
too ] _ 2 2 —cos(f) —sin(h)
,;02_”R<9) 5 —4cos(f) ( sin(9) 2 -— cos(Q))

B. Landelle 2 ISM MP




Définition 3. Soit > u, une série a valeurs dans E convergente de somme S. On appelle reste
de la série Y u, d’ordre n la quantité définie par

+00
Rm ::S-—-Sn:: z: U

k=n+1

Proposition 1. Si Y u, converge, alors la suite (R,,), est convergente de limite nulle.

Démonstration. Immeédiate. O

Théoréme 1 (Condition Nécessaire de convergence). Si la série Y u, & valeurs dans E

converge, alors u, —— 0.
n—oo

Démonstration. On a u,, =S, —S,—1 —— S—S = 0. O

n—oo

Vocabulaire : La contraposée donne : si (u,), ne tend pas zéro, alors Y u,, diverge. Une série
> u, dont le terme général u,, ne tend pas vers zéro sera dite grossiérement divergente.

Exemple : Pour 6 réel, la série > R(0)" = > R(nf) diverge grossiérement puisque
IR(nO)ll2 = v2 —/>0

Théoréme 2. L’ensemble des séries a valeurs dans E convergentes muni de ['addition et du
produit extérieur par un scalaire est un K-ev comme sev de EN et on a la linéarité de la somme :

+00 +00
1. Soit > u, convergente et A € K, alors Y X - u, converge et Y - u, =X+ > uy.
n=0 n=0
+00 +00
2. Soient Y u, et Y v, convergentes, alors (U, + v,) converge et > (up +v,) = D> Uy +
n= n=0

0
+00
> Un-
n=0

Démonstration. Immédiat d’aprés les résultats sur les suites a valeurs dans E. O

Définition 4. Une série Y v, & valeurs dans E est dite téléscopique s’il existe une suite (up,)n
a valeurs dans E telle que v, = u,11 — u, pour tout n entier.

Proposition 2. Soit > v, une série téléscopique a valeurs dans E avec v, = up11 — Uyp. La
série Y v, converge si et seulement si la suite (u,), converge et dans ce cas

+00
v, = lim w, —ug
n=0 n—+00
n—1 n—1
Démonstration. Pour n entier non nul, on a > vxy = > [upr1 — ux] = up, — up et le résultat
. k=0 k=0
suit. [

B. Landelle 3 ISM MP




2 Convergence absolue

AOH rappelle que I'espace E est de dimension finie.

Définition 5. Une série Y u, a valeurs dans E est dite absolument convergente (ou converge
absolument) si la série numérique Y _||u,| converge.

Théoréme 3. Soit Y u, une série & valeurs dans E absolument convergente. Alors la série
> u, converge et on a l'inégalité triangulaire généralisée

+00 +00
122 unll < 32 [unl
n=0 n=0

Démonstration. Les normes étant équivalentes, on munit E de || ||x.2. On a

Vie[l;p] Uin| < ||tn|co,2

Par comparaison, on obtient la convergence absolue et donc la convergence des séries numériques
Zuz n et par sulte la convergence de la série Y u,. D’aprés 'inégalité triangulaire classique, on
a || ZukH E ||ug|| pour n entier et par continuité de la norme, le résultat suit faisant tendre

k=0
n — +00. O

Remarques : (1) On a utilisé de maniére essentielle le fait que 'espace E est de dimension finie
dans la preuve. La convergence absolue implique la convergence dans un cadre plus général,
celui des espaces de Banach mais ceci dépasse le cadre de ce cours.

(2) L’inégalité généralisée est & redémontrer en cas de besoin.

1
Exemple : Soit 6 réel. La série 22—nR(9)” converge absolument puisque

1 V2
Sl RO = Y
+00 2\/§

et on a HE ()"||2:\/m<2\/§

Théoréme 4. L’ensemble des séries a valeurs dans E absolument convergentes est un K-ev.

Démonstration. Conséquence de l'inégalité triangulaire. O

3 Exemples importants

Les résultats qui suivent existent a l'identique en version vectorielle et matricielle.

On rappelle que I'espace E étant de dimension finie, on a Z,(E) = Z(E) et qu’on définit pour
u € Z(E) sa norme subordonnée ou norme d’opérateur par

[ullop = Sup [[u(z)]

[l[|=1
qui vérifie Ve e E Ju(@)[] < [Jullopllz|]

et V(w,v) € Z(E)?  [luovllop < [lullopl[vllop
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Théoréme 5. La norme subordonnée est une norme d’algébre sur £ (E), ¢’est-a-dire ¢’est une
norme sur £ (E) telle que

V(u,v) € Z(E)*  [uovllop < ||ullop|[v]lop
On a de plus || id ||op = 1.

Démonstration. La séparation et I'inégalité triangulaire découlent d’une des propriétés précé-

1
dentes. Pour A € K et u € Z(E), on montre ||Aullop < |A|||ulop puis ||ullop < WH)\UHOP
pour A # 0. L’inégalité sous-multiplicative a été rappelée précédemment et on a clairement
lid [Jop = 1. 0

Proposition 3 (A savoir refaire). Soit u € Z(E) tel que |lullop < 1. La série > u" converge
absolument et l’endomorphisme id —u est inversible d’inverse

+00
(id —u)™t = Y un
n=0

Démonstration. Par récurrence immédiate, on a [[u”[|op < ||ully, et > [[ulls, converge d’ou la
convergence absolue puis, par téléscopage et continuité de la composition (linéaire en dimension
finie), il vient

n n +00
(id —u) o YukF =3 [uF —ufH] =id —u" ——id = (id —u) o Y u"
k=0 k=0 n—roo n=0
O
un
Proposition 4. Soit u € Z(E). La série ) ,— converge absolument.
n!
) . [t lop _ [lullp : o .
Démonstration. On a ' < [ bour n entier. La convergence suit d’aprés le critére de
n! !
d’Alembert d’ou la convergence absolue de la série. O]

Proposition 5 (A savoir refaire). Soit (2,), € EN vérifiant
Jke[0;1] | VneN |Zns1 — 20| < Ellzn — 2n-1]|

Alors, la suite (x,,), converge.

Démonstration. Par récurrence immédiate, on obtient
Vi €N [frass — oall < 7lJes — o
Par comparaison, la série ) [z,11 — x,] converge absolument donc converge et par théoréme

sur les séries téléscopiques, la convergence de (z,), s’en déduit. O
?

Exemple important : Soit f : E — E application contractante, i.e. il existe k € [0; 1] tel que
la fonction f est k-lipschitzienne. La fonction f admet un unique point fixe. On choisit xg € E
puis on pose x,.1 = f(z,) pour n entier. On a

Vn € N~ |Tn1 — 2ol = [|f(2n) = f(@n-1)l| < Ekllzn — 201

On en déduit z, —— o € E et f(z,,) —— f(a) par continuité de f. Par unicité de la limite,
n—oo

n—oo
on conclut

a= f(a)
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L’unicité découle immédiatement de la contractance de f. On dispose également d’une vitesse
de convergence en observant pour n entier non nul

[z = all = [If (#n1) = F(@)]] < Elznn —af
d’ont Vn e N lzn — af| < E"||xo — o

Application : Soit E = .#,(K) muni d’une norme subordonnée et (X,), € EY définie par
Xo € E et X,,11 = AX,, + B avec (A,B) € E? et ||A||op < 1. Alors la suite (X,,),, converge. On
peut aussi retrouver ce résultat en clonant la démarche d’une suite arithmético-géométrique
numérique.

IT Dérivation

1 Définitions

Pour a € I, 'ensemble —a + I est un intervalle contenant 0 et non réduit a {0}.

Définition 6. Soit f : I — E. La fonction f est dite dérivable en a € 1 si le taur d’accroisse-
+h)—
ment (—a +1) N {0} - E,h — flath) = fla)
cette limite appelée vecteur dérivé ou simplement dérivée de f en a. La fonction [ est dérivable
a droite en a si le taux d’accroissement admet une limite pour h — 0% notée fi(a) et appelée

vecteur dérivé ou simplement dérivé de [ en a a droite (respectivement dérivable a gauche en
a si le taur d’accroissement admet une limite pour h — 07 notée f,(a)).

admet une limite pour h — 0. On note f'(a)

Proposition 6. Soit f: 1 > Eetacl Ona

[ dérivable en a <= [ dérivable a droite et a gauche en a et fi(a) = f,(a)

Démonstration. Immeédiate. O

Proposition 7. Soit f: 1 — E. On a

[ continue <= Vie[1;p] fi continue

puis avec a € 1 f dérivable en a <= Vi€ [1;p] fi dérivable en a

p
et dans ce cas fl(a) =>"fl(a)e;

i=1
Démonstration. Immédiate par propriétés sur les limites. O

Proposition 8. Soit (¢;)1<j<q € E? et (9;)1<j<q des fonctions de 1 dans K. On note g = Zgjaj
j=
Si les g; sont continues, alors g l'est aussi. Si les g; sont dérivables en a € 1, alors g Uest aussi

et g'(a) = ;gj(a)ﬁj

Démonstration. La continuité des g; entraine celle de g par opération sur les limites. Puis, soit
h € (—a+1)~ {0}, siles g; sont dérivables en a, il vient

o) —ole) _ z slath -gle), égﬁ'(“)@

d’ou le résultat. ]
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Notation : On note Z(I, E) 'ensemble des fonctions dérivables sur I a valeurs dans E.

Exemples : 1. Pour x : I — K"t — (21(t),...,2,(t)), on a = dérivable si et seulement les x;
sont dérivables et dans ce cas z/(t) = (2 (t),..., 2, (t)) pour tout t € L.

2. Pour A : 1 — #,(K),t— (a;;(t)), on a A dérivable si et seulement si les a;; sont dérivables
et dans ce cas A'(t) = (aj;(t)) pour t € L.

Théoréme 6. Soit f : 1 — E et a € 1. La fonction [ est dérivable en a si et seulement s’il
existe A € E tel que

f(z) = fla)+ (x —a)A+ o(z — a)

et dans ce cas, on a A = f'(a).

Démonstration. Immeédiate. O

‘Corollaire 1. Soit f: 1 - E etaecl Sif est dérivable en a, alors elle est continue en a.

Démonstration. Immeédiate. O

2 Propriétés

Proposition 9. L’ensemble Z(1,E) est un K-ev et Uapplication (1, E) — Z(LE), f — [ est
linéaire.

Démonstration. Conséquence immédiate de la proposition O

Proposition 10. Soit f : I — E dérivable en a € I, F un K-ev normé et L € Z(E,F). La
fonction L(f) : 1 — F,z — L(f(z)) est dérivable en a avec L(f)'(a) = L(f")(a).

Démonstration. Soit h € (—a + 1) ~ {0}. Par dérivabilité de f en a et continuité de L en tant
qu’application linéaire sur un espace de dimension finie, il vient

L(f)(a+h) = L(f)(a) ath)—f(a ,
. :L(f( +h})l f()) — L(f")(a)
0
Exemple : Soit A : I — ., (K) dérivable, alors t — Tr (A(t)) est dérivable avec
% Tr (A(t)) = Tr (A'(t))

Proposition 11. Soit E,F, G des K-ev normés avec E et F de dimensions finies, f : 1 — E,
g : 1 — F dérivables en a € 1 et B : E x F — G bilinéaire. La fonction B(f,g) : 1 — G,z —
B(f(x),g(x)) est dérivable en a avec

B(f,9)'(a) = B(/',9)(a) + B(f,9')(a)

Démonstration. Soit h € (—a + 1) ~ {0}. Par bilinéarité de B, il vient

T(h) _ B(f) g)(a + h]z — B(fa g)(a) - B (f(a+h})lff(a)7g(a + h)) +B (f((l), g(a+h})lfg(a)>

Par dérivabilité (et donc continuité) de f et g en a et continuité de B en tant qu’application
bilinéaire sur des espaces de dimension finie, on obtient

7(h) ~—2 B(f":9)(a) + B(f. 9')(a)

B. Landelle 7 ISM MP



Proposition 12. Soit E euclidien et f,g : 1 — E dérivables en a € 1. La fonction (f,g) : 1 —
F,z— (f(z),g(x)) est dérivable en a avec

(f,9) (a) = (f'.9) (@) + (/. 4) (a)

Démonstration. Conséquence immédiate du résultat précédent. O

Proposition 13. Soit Eq,... E,, et F des K-ev normés avec les E; de dimensions finies, f; :
p
I — E; dérivable en a € T pour tout i € [1;p] et M : [[E; — F application p-linéaire. La

=1
fonction M(f1,...,f,) : I = F,x— M(fi(x),..., f,(z)) est dérivable en a avec

M(f1,..., fp)'(a) = M(f1, fo,-- -, fo)(a) + M(f1, fo, .-, fp)(a) + ... + M(fa, ..., f,)(a)

Démonstration. On procéde par récurrence sur p. L’initialisation pour p = 1 est la proposition
[10] Considérons la configuration pour p + 1 avec p entier non nul et supposons le résultat vrai
au rang p. On pose

Vh e (—a+1)~{0} T(h) = — [M(f1,..., fyr1)(a+h) = M(f1,-.., for1)(a)]

SRS

On a pour h € (—a+1) ~ {0}
r(h) = M (fi(a+h),..., fyla+ h), lehihnto)

+% M(f1s s fo Fora(@))(a+ h) = M(f1, ., fria(a))(a)]

Par continuité des f; et de M en tant qu’application p-linéaire sur des espaces de dimension
finie, il vient

7(h) ——> M(fi(a), ..., fy(a), f1(a)) + M(frs- s fy, fora(a)) (@)

h—0

I’hérédité suit ce qui clot la récurrence. O

P /
Application : Calcul de (H f,-) avec les f; : I — K dérivables.
i=1

Proposition 14. Soient ¢ : J — 1 dérivable en o € J un intervalle de R non vide, non réduit
a un point et f: 1 — E dérivable en a = o(«). La fonction f o ¢ est dérivable en o avec

(fop)(a)= (¢ - fop)(a)

p
Démonstration. On a fop =Y (f;op)e; et le résultat suit d’aprés la proposition O

=1

AAvertissement : Le théoréme de Rolle et son corollaire le théoréme des accroissements
finis sont faux dans un R-ev E de dimension p > 2. Par exemple, on considére f : t —
cos(t)e; + sin(t)ey avec (€1,e2) une famille libre d’'un R-ev E. On a f(0) = f(27) mais f’ ne
s’annule pas sur |0; 27 [.
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III Deérivations successives

1 Définitions

Soit n entier. Pour f : I — E qui est n fois dérivable, on définit f® par f© = fet fk+) = f®’
pour k+1 < n.

Définition 7. Une fonction f : 1 — E est dite de classe €™ si f est n fois dérivable et si
™) est continue et est dite de classe € si elle est de classe €™ pour tout n entier. On note

¢"(1,E) ’ensemble des fonctions de classe €™ de 1 dans E et on a €< (1,E) = ﬂ ¢"(1,E).

neN
Dans ce qui suit, on a n € NU {oo}, sauf mention contraire.
Proposition 15. Soit f: 1 — E. On a
fe®"(LE) < Vie[1; p] fi € €"(1,E)
Dans ce cas, pour k entier avec k <n f* = ifi(k)ei
Démonstration. Par récurrence avec la proposition O

Théoréme 7. L'espace €"(I,E) est un K-ev et pour n entier, application €"(I,E) —
E°(LE), f — f™ est linéaire.

Démonstration. Conséquence de la proposition avec la linéarité de la dérivation d’ordre n
pour des fonctions numeériques (appliquée aux fonctions coordonnées). ]

2 Propriétés

Soit n entier.

Proposition 16. Soient f € €"(L,E), F un K-ev normé et L € Z(E,F). On a L(f) € €"(L,F)
et L(f)™ = L(f™).

Démonstration. Par récurrence avec la proposition [L0] et la continuité de L(f™) comme com-
posée d’applications continues. O

Proposition 17. Soient E, F, G des K-ev normés avec E et ¥ de dimensions finies, f €
¢"(LE), g € €"(LF) et B : E x F — G bilinéaire. La fonction B(f,q) : 1 - G,z —
B(f(z),g(x)) est de classe €™ et pour n entier

n

B(f,9)™ = X (;)B(f®, 4" ")

k=0

Démonstration. Par récurrence avec la proposition (preuve identique a celle de la formule
de Leibniz) et continuité de B(f, g)"™ comme combinaison de composées de fonctions continues

(Bo (f®, g *) avec k € [0; n]). O
Proposition 18. Soient f € €"(ILE) et g € €™(1,K). La fonction gf est de classe €™ et pour
n entier
n
(gf)™ =S (Z)g(k)f(n_k)
k=0
Démonstration. Application immédiate de ce qui précéde. O]
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IV Intégration sur un segment

La plupart des résultats énoncés ci-aprés s’obtiennent par héritage de l'intégrale « classique »
(dans R ou C) sur un segment. Dans ce qui suit, on note a et b des réels vérifiant a < b, sauf
mention contraire.

1 Définitions

Définition 8. Soit f € Z([a;b],E). On dit que f est continue par morceaux sur [a;b] s’il
existe une subdivision o0 = (a;)icfo;n] de [a;b], i.e. a=ag <ay <...<a, =0 telle que pour
tout i € [0; n—1], f est continue sur|a;;a;11 | et f admet des limites en a] et a;,;.

Notations : On note 6,,,([a;b], E) I'ensemble des fonctions continues par morceaux sur [a;b].

Vocabulaire : Pour f € 6,,,([a;b],E), une subdivision o vérifiant la propriété décrite dans
la définition 8| est dite adaptée a f. 1l n’y pas unicité d’une telle subdivision : si o est adaptée
a f et o une sous-suite de o’ subdivision de [a;b] (on dit que o’ est plus fine que o), alors la
subdivision ¢’ est adaptée a f.

Définition 9. Soit f € F(I,E). On dit que f est continue par morceaux sur I si, pour tout

Notations : On note %, (I, E) 'ensemble des fonctions continues par morceaux sur I.

Proposition 19. Soit f € Z(I,E) .On a
f € GmLE) <= Vie[l;p]  fi € Gu(LK)

Démonstration. Soit [a;b] C L. Le sens direct est immédiat puisqu’une subdivision adaptée a
f o] est adaptée aux fonctions coordonnées. Réciproquement, on considére o une subdivision
a;

de [a;b] telle que o; subdivision adaptée & f; est sous-suite de o pour tout i € [1; p].

[{as]
C’est une subdivision adaptée & toutes les restrictions des fonctions coordonnées sur [a;b]| et
donc a f‘[a.b} . O

b
Définition 10. Pour f € €,m([a;b],E), on définit lintégrale de f sur [a;b] noté/ f(t) de
par ¢

/abf(t) dt:iil/abfi(t) dt e;

b
Notations : On note aussi f(t) dt ou / f pour lintégrale de f sur [a;b]. Pour f €
[a;b] a

b a
©m(LE) et (a,b) € I?, on conserve la convention usuelle / f(t)dt = —/ f(t)dtsib<a.
a b

b
Proposition 20. Soit f € €,,,([a;b],E). L’intégrale / f(t)dt ne dépend pas du choix d’une
base de E. ¢
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Démonstration. Soit B = (e;)ic[1;p] €t B = (€i)ie[1;p] des bases de E. On note P = mat;/;e@
Pii)1cijep € MH(K) et X(t) = matyf(t) et X(t) =
mat zf(t) pour t € [a;b]. On a X(t) = PX(t) pour t € [a;b] par changement de base. Puis, il
vient

D b__ » p b__ P » b » N » b
]; /a fi(t) dte; = ; /a fi (@) dtizzlpz}j@i = ; /a (;pi,j fi(t) dt) e; = ; /a f:(t) dte;

ce qui prouve le résultat attendu. O]

matrice de passage de # & A avec P = (pi,j)

2 Propriétés

b
Proposition 21 (Linéarité). L’application €pm([a;b],E) = E, f — / f(t) dt est une ap-

plication linéaire.

Démonstration. Héritage de la linéarité de l'intégrale classique sur un segment. O]

Proposition 22 (Chasles). Soit f € €,,(I,E). On a

W(a,b,c) € I /abf(t)dt:/acf(t) dt+/cbf(t) dt

Démonstration. Héritage de la relation de Chasles de 'intégrale classique sur un segment. [

Théoréme 8 (Sommes de Riemann). Soit f € €,,([a;b],E). On a

b‘“”if( %O/f et b;“f<a+kb;a)—> o) dt

n—oo a
Démonstration. Immédiate par convergence des sommes de Riemann des fonctions coordonnées.
O

Théoréme 9 (Inégalité triangulaire). Soit f € €, ([a;b],E). On a

b b
H / £(t) dt]) < / LF@)]]

Démonstration. Soit n entier non nul. Par inégahté triangulaire classique on a

b—an
l )

S (e e 22

Faisant tendre n — +o00, utilisant la continuité de la norme et la continuité par morceaux de la
composée || - || o f, le résultat suit. O

Théoréme 10 (Changement de variables). Soit f € €°(I,E) et ¢ € €' (J,1) avec J inter-
valle de R non vide, non réduit a un point. On a

»(B) B
V(, B) € I /( | f0)dt = [ fouwewdu
p(a @

Démonstration. Héritage du théoréme de changement de variables classique. O]
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Théoréme 11 (Intégration par parties). Soit u € €' (I,K) et v € €' (I,E). On a

b b
V(a,b) € I2 / W (B)o(t) dt = [u(t)u(t)]? — / w(t)v'(t) dt

Démonstration. Héritage de l'intégration par parties classique. ]

Proposition 23. Soit f € 6,,(LE) et L € Z(E,F) avec F un K-ev normé. On a L(f) €

Gpm(L,Im L) et
V(a,b) € I2 (/f dt) / L(f)(t) dt

Démonstration. Soit (a,b) € 12 avec a < b. L’application L est continue comme application
linéaire sur E espace de dimension finie. Par suite, la composée L(f) = L o f est continue par

morceaux sur I. Par continuité de L, il vient
b—anzl b—
7)) = am LS (k7))
n—+00

L</abf(t)dt):L(n;mb_ (

Puis, par linéarité de L et en utlhsant de nouveau le théoréme de convergence des sommes de
Riemann, on obtient pour n entier non nul

(b—anzlf< b;a)) b—anZlL( )<a+kb—a> m/abL(f)(t)dt

n

Le cas a > b est identique. O

3 Intégrale fonction de sa borne supérieure

Théoréme 12. Soit f € €°(LLE) et a € 1. La fonction F : x — / f(t) dt est de classe €' et

c’est l'unique primitive de f qui s’annule en a.

Démonstration. Héritage du théoréme fondamental d’analyse classique. O]

Théoréme 13. Soit f € €°(1,E) et F une primitive de f. On a

W(a,b) € 12 /bf(t) dt = F(b) — F(a)

Démonstration. Conséquence immédiate de ce qui précéde puisque toute primitive est de la
forme x +— C* + / f(t) de. O

Théoréme 14 (Inégalité des accroissements finis). Soit f € €Y(I,E) avec ||f'(t)|| < K
pour tout t € 1. Alors

V(a,b) € |If(b) = f(@)l| <K|b—aq

Démonstration. Soit (a,b) € I? avec a < b. D’aprés ce qui précéde, on a f(b) / f(t

d’ou, par inégalité triangulaire

17(b) |—||/f ) dt]| < /Hf’ [ dt < K(b—a)

Le cas a > b est identique. O
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V  Formules de Taylor

Dans ce qui suit, on a n entier.

1 Formule de Taylor avec reste intégral

Théoréme 15. Soit f € €T (I,E). On a

V(a,b) € I2 f(b):if(]ZF (b—a)* /f"+1 )b — )" dt

k=0

Démonstration. Héritage de Taylor avec reste intégral classique. O

Remarque : Formule globale, résultat pour tout (a,b) € I2.

2 Inégalité de Taylor-Lagrange

Théoréme 16. Soit f € €™ (I,E). Si f("*V est bornée sur 1, alors

n f®)(q n b—al"
Ve e [10) - 32— ayt) < sup e @il
k=0 k! z€el ( + 1)
Démonstration. Par inégalité triangulaire sur Taylor avec reste intégral. O]

Remarque : En pratique, souvent plus utile que Taylor reste-intégral. Sert a controler des
quantités pour des études asymptotiques, pour des dominations (dans des théorémes avec hy-
pothése de domination, etc.).

3 Formule de Taylor-Young

Théoréme 17. Soit f € €"(I,E). On a

2, f(a)
Va €1 flx) = > (x —a)* + o((z — a)™)
Démonstration. Héritage de Taylor-Young classique. O]

Remarque : Formule locale avec un petit o dont le comportement est connu au voisinage de
a.

B. Landelle 13 ISM MP
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