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Dans ce chapitre, l'ensemble E désigne un K-ev normé de dimension �nie de base B = (ei)1⩽i⩽p

et I un intervalle de R non vide, non réduit à un point. Pour (un)n ∈ EN et f : I → E, on

note un =
p∑

i=1

ui,nei et f =
p∑

i=1

fiei où les (ui,n)n et fi sont respectivement suites et fonctions

coordonnées.

Notations : Soit g : I → R et a ∈ I. On dé�nit f(x) =
x→a

o(g(x)) si

∀ε > 0 ∃V ∈ V (a) | ∀x ∈ V ∥f(x)∥ ⩽ ε |g(x)|
On suppose que la fonction g ne s'annule pas sur I∖{a}. On a f(x) =

x→a
o(g(x)) si et seulement

si f(x) = g(x)ε(x) avec ε(x) −−→
x→a

0E. L'expression o(1) signi�e ici une fonction de limite nulle

dans E en a. Ainsi, la relation f(x) =
x→a

o(g(x)) équivaut à f(x) =
x→a

g(x)o(1).

I Séries vectorielles

1 Dé�nitions, propriétés

Dé�nition 1. Soit (un)n une suite à valeurs dans E. Pour tout n ∈ N, on pose Sn =
n∑

k=0

uk.

On appelle série de terme général un la suite (Sn)n que l'on note
∑

un ou
∑
n⩾0

un. On dit que Sn

est la somme partielle d'indice n (ou d'ordre n) de la série
∑

un.

Remarque : Pour une suite de terme général un dé�nie à partir du rang n0, on dé�nit la série

à partir du même rang et on la note
∑

n⩾n0

un = (Sn)n⩾n0
avec Sn =

n∑
k=n0

uk.

Dé�nition 2. La série
∑

un à valeurs dans E est dite convergente (ou converge) si la suite des
sommes partielles (Sn)n converge. Dans ce cas, la limite de (Sn)n est appelée somme de la série

et notée
+∞∑
n=0

un. La série
∑

un est dite divergente (ou diverge) si la suite (Sn)n est divergente.

Remarques : (1) Pour une suite (un)n⩾n0 à valeurs dans E dé�nie à partir du rang n0 telle que∑
n⩾n0

un converge, la somme de la série est notée
+∞∑
n=n0

un. On adapte de la même manière toutes

les dé�nitions et résultats qui suivent.

(2) On a
∑

un converge ⇐⇒ ∀i ∈ [[ 1 ; p ]]
∑

ui,n converge

et dans ce cas
+∞∑
n=0

un =
p∑

i=1

Å
+∞∑
n=0

ui,n

ã
ei

Vocabulaire : Deux séries à valeurs dans E sont dites de même nature si elles sont toutes
deux convergentes ou toutes deux divergentes. Les séries

∑
un et

∑
n⩾n0

un avec n0 entier sont

clairement de même nature.

Exemple : Soit θ réel. La série
∑ 1

2n
R(θ)n converge avec R(θ) =

Å
cos(θ) − sin(θ)
sin(θ) cos(θ)

ã
et on

trouve
+∞∑
n=0

1

2n
R(θ)n =

2

5− 4 cos(θ)

Å
2− cos(θ) − sin(θ)
sin(θ) 2− cos(θ)

ã
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Dé�nition 3. Soit
∑

un une série à valeurs dans E convergente de somme S. On appelle reste
de la série

∑
un d'ordre n la quantité dé�nie par

Rn = S− Sn =
+∞∑

k=n+1

uk

Proposition 1. Si
∑

un converge, alors la suite (Rn)n est convergente de limite nulle.

Démonstration. Immédiate.

Théorème 1 (Condition Nécessaire de convergence). Si la série
∑

un à valeurs dans E
converge, alors un −−−→

n→∞
0.

Démonstration. On a un = Sn − Sn−1 −−−→
n→∞

S− S = 0.

Vocabulaire : La contraposée donne : si (un)n ne tend pas zéro, alors
∑

un diverge. Une série∑
un dont le terme général un ne tend pas vers zéro sera dite grossièrement divergente.

Exemple : Pour θ réel, la série
∑

R(θ)n =
∑

R(nθ) diverge grossièrement puisque

∥R(nθ)∥2 =
√
2 ̸−−−→

n→∞
0

Théorème 2. L'ensemble des séries à valeurs dans E convergentes muni de l'addition et du
produit extérieur par un scalaire est un K-ev comme sev de EN et on a la linéarité de la somme :

1. Soit
∑

un convergente et λ ∈ K, alors
∑

λ · un converge et
+∞∑
n=0

λ · un = λ ·
+∞∑
n=0

un.

2. Soient
∑

un et
∑

vn convergentes, alors
∑

(un + vn) converge et
+∞∑
n=0

(un + vn) =
+∞∑
n=0

un +

+∞∑
n=0

vn.

Démonstration. Immédiat d'après les résultats sur les suites à valeurs dans E.

Dé�nition 4. Une série
∑

vn à valeurs dans E est dite téléscopique s'il existe une suite (un)n
à valeurs dans E telle que vn = un+1 − un pour tout n entier.

Proposition 2. Soit
∑

vn une série téléscopique à valeurs dans E avec vn = un+1 − un. La
série

∑
vn converge si et seulement si la suite (un)n converge et dans ce cas

+∞∑
n=0

vn = lim
n→+∞

un − u0

Démonstration. Pour n entier non nul, on a
n−1∑
k=0

vk =
n−1∑
k=0

[uk+1 − uk] = un − u0 et le résultat

suit.
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2 Convergence absolue

! On rappelle que l'espace E est de dimension �nie.

Dé�nition 5. Une série
∑

un à valeurs dans E est dite absolument convergente (ou converge
absolument) si la série numérique

∑
∥un∥ converge.

Théorème 3. Soit
∑

un une série à valeurs dans E absolument convergente. Alors la série∑
un converge et on a l'inégalité triangulaire généralisée

∥
+∞∑
n=0

un∥ ⩽
+∞∑
n=0

∥un∥

Démonstration. Les normes étant équivalentes, on munit E de ∥ ∥∞,B. On a

∀i ∈ [[ 1 ; p ]] |ui,n| ⩽ ∥un∥∞,B

Par comparaison, on obtient la convergence absolue et donc la convergence des séries numériques∑
ui,n et par suite la convergence de la série

∑
un. D'après l'inégalité triangulaire classique, on

a ∥
n∑

k=0

uk∥ ⩽
n∑

k=0

∥uk∥ pour n entier et par continuité de la norme, le résultat suit faisant tendre

n → +∞.

Remarques : (1) On a utilisé de manière essentielle le fait que l'espace E est de dimension �nie
dans la preuve. La convergence absolue implique la convergence dans un cadre plus général,
celui des espaces de Banach mais ceci dépasse le cadre de ce cours.
(2) L'inégalité généralisée est à redémontrer en cas de besoin.

Exemple : Soit θ réel. La série
∑ 1

2n
R(θ)n converge absolument puisque

∑
∥ 1

2n
R(θ)n∥2 =

∑√
2

2n

et on a ∥
+∞∑
n=0

1

2n
R(θ)n∥2 =

2
√
2√

5− 4 cos θ)
⩽ 2

√
2

Théorème 4. L'ensemble des séries à valeurs dans E absolument convergentes est un K-ev.

Démonstration. Conséquence de l'inégalité triangulaire.

3 Exemples importants

Les résultats qui suivent existent à l'identique en version vectorielle et matricielle.

On rappelle que l'espace E étant de dimension �nie, on a Lc(E) = L (E) et qu'on dé�nit pour
u ∈ L (E) sa norme subordonnée ou norme d'opérateur par

∥u∥op = Sup
∥x∥=1

∥u(x)∥

qui véri�e ∀x ∈ E ∥u(x)∥ ⩽ ∥u∥op∥x∥

et ∀(u, v) ∈ L (E)2 ∥u ◦ v∥op ⩽ ∥u∥op∥v∥op
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Théorème 5. La norme subordonnée est une norme d'algèbre sur L (E), c'est-à-dire c'est une
norme sur L (E) telle que

∀(u, v) ∈ L (E)2 ∥u ◦ v∥op ⩽ ∥u∥op∥v∥op
On a de plus ∥ id ∥op = 1.

Démonstration. La séparation et l'inégalité triangulaire découlent d'une des propriétés précé-

dentes. Pour λ ∈ K et u ∈ L (E), on montre ∥λu∥op ⩽ |λ| ∥u∥op puis ∥u∥op ⩽
1

|λ|
∥λu∥op

pour λ ̸= 0. L'inégalité sous-multiplicative a été rappelée précédemment et on a clairement
∥ id ∥op = 1.

Proposition 3 (À savoir refaire). Soit u ∈ L (E) tel que ∥u∥op < 1. La série
∑

un converge
absolument et l'endomorphisme id −u est inversible d'inverse

(id −u)−1 =
+∞∑
n=0

un

Démonstration. Par récurrence immédiate, on a ∥un∥op ⩽ ∥u∥nop et
∑

∥u∥nop converge d'où la
convergence absolue puis, par téléscopage et continuité de la composition (linéaire en dimension
�nie), il vient

(id −u) ◦
n∑

k=0

uk =
n∑

k=0

[
uk − uk+1

]
= id −un+1 −−−→

n→∞
id = (id −u) ◦

+∞∑
n=0

un

Proposition 4. Soit u ∈ L (E). La série
∑un

n!
converge absolument.

Démonstration. On a
∥un∥op
n!

⩽
∥u∥nop
n!

pour n entier. La convergence suit d'après le critère de

d'Alembert d'où la convergence absolue de la série.

Proposition 5 (À savoir refaire). Soit (xn)n ∈ EN véri�ant

∃k ∈ [ 0 ; 1 [ | ∀n ∈ N∗ ∥xn+1 − xn∥ ⩽ k∥xn − xn−1∥

Alors, la suite (xn)n converge.

Démonstration. Par récurrence immédiate, on obtient

∀n ∈ N∗ ∥xn+1 − xn∥ ⩽ kn∥x1 − x0∥
Par comparaison, la série

∑
[xn+1 − xn] converge absolument donc converge et par théorème

sur les séries téléscopiques, la convergence de (xn)n s'en déduit.

Exemple important : Soit f : E → E application contractante, i.e. il existe k ∈ [ 0 ; 1 [ tel que
la fonction f est k-lipschitzienne. La fonction f admet un unique point �xe. On choisit x0 ∈ E
puis on pose xn+1 = f(xn) pour n entier. On a

∀n ∈ N∗ ∥xn+1 − xn∥ = ∥f(xn)− f(xn−1)∥ ⩽ k∥xn − xn−1∥
On en déduit xn −−−→

n→∞
α ∈ E et f(xn) −−−→

n→∞
f(α) par continuité de f . Par unicité de la limite,

on conclut

α = f(α)
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L'unicité découle immédiatement de la contractance de f . On dispose également d'une vitesse
de convergence en observant pour n entier non nul

∥xn − α∥ = ∥f(xn−1)− f(α)∥ ⩽ k∥xn−1 − α∥

d'où ∀n ∈ N ∥xn − α∥ ⩽ kn∥x0 − α∥
Application : Soit E = Mp(K) muni d'une norme subordonnée et (Xn)n ∈ EN dé�nie par
X0 ∈ E et Xn+1 = AXn + B avec (A,B) ∈ E2 et ∥A∥op < 1. Alors la suite (Xn)n converge. On
peut aussi retrouver ce résultat en clonant la démarche d'une suite arithmético-géométrique
numérique.

II Dérivation

1 Dé�nitions

Pour a ∈ I, l'ensemble −a+ I est un intervalle contenant 0 et non réduit à {0}.

Dé�nition 6. Soit f : I → E. La fonction f est dite dérivable en a ∈ I si le taux d'accroisse-

ment (−a + I) ∖ {0} → E, h 7→ f(a+ h)− f(a)

h
admet une limite pour h → 0. On note f ′(a)

cette limite appelée vecteur dérivé ou simplement dérivée de f en a. La fonction f est dérivable
à droite en a si le taux d'accroissement admet une limite pour h → 0+ notée f ′

d(a) et appelée
vecteur dérivé ou simplement dérivé de f en a à droite (respectivement dérivable à gauche en
a si le taux d'accroissement admet une limite pour h → 0− notée f ′

g(a)).

Proposition 6. Soit f : I → E et a ∈ I. On a

f dérivable en a ⇐⇒ f dérivable à droite et à gauche en a et f ′
d(a) = f ′

g(a)

Démonstration. Immédiate.

Proposition 7. Soit f : I → E. On a

f continue ⇐⇒ ∀i ∈ [[ 1 ; p ]] fi continue

puis avec a ∈ I f dérivable en a ⇐⇒ ∀i ∈ [[ 1 ; p ]] fi dérivable en a

et dans ce cas f ′(a) =
p∑

i=1

f ′
i(a)ei

Démonstration. Immédiate par propriétés sur les limites.

Proposition 8. Soit (εj)1⩽j⩽q ∈ Eq et (gj)1⩽j⩽q des fonctions de I dans K. On note g =
q∑

j=1

gjεj.

Si les gj sont continues, alors g l'est aussi. Si les gj sont dérivables en a ∈ I, alors g l'est aussi

et g′(a) =
q∑

j=1

g′j(a)εj.

Démonstration. La continuité des gj entraine celle de g par opération sur les limites. Puis, soit
h ∈ (−a+ I)∖ {0}, si les gj sont dérivables en a, il vient

g(a+ h)− g(a)

h
=

q∑
j=1

gj(a+ h)− gj(a)

h
εj −−→

h→0

q∑
j=1

g′j(a)εj

d'où le résultat.
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Notation : On note D(I,E) l'ensemble des fonctions dérivables sur I à valeurs dans E.

Exemples : 1. Pour x : I → Kn, t 7→ (x1(t), . . . , xn(t)), on a x dérivable si et seulement les xi

sont dérivables et dans ce cas x′(t) = (x′
1(t), . . . , x

′
n(t)) pour tout t ∈ I.

2. Pour A : I → Mn(K), t 7→
(
ai,j(t)

)
, on a A dérivable si et seulement si les ai,j sont dérivables

et dans ce cas A′(t) =
(
a′i,j(t)

)
pour t ∈ I.

Théorème 6. Soit f : I → E et a ∈ I. La fonction f est dérivable en a si et seulement s'il
existe A ∈ E tel que

f(x) =
x→a

f(a) + (x− a)A + o(x− a)

et dans ce cas, on a A = f ′(a).

Démonstration. Immédiate.

Corollaire 1. Soit f : I → E et a ∈ I. Si f est dérivable en a, alors elle est continue en a.

Démonstration. Immédiate.

2 Propriétés

Proposition 9. L'ensemble D(I,E) est un K-ev et l'application D(I,E) → F (I,E), f 7→ f ′ est
linéaire.

Démonstration. Conséquence immédiate de la proposition 7.

Proposition 10. Soit f : I → E dérivable en a ∈ I, F un K-ev normé et L ∈ L (E,F). La
fonction L(f) : I → F, x 7→ L(f(x)) est dérivable en a avec L(f)′(a) = L(f ′)(a).

Démonstration. Soit h ∈ (−a + I)∖ {0}. Par dérivabilité de f en a et continuité de L en tant
qu'application linéaire sur un espace de dimension �nie, il vient

L(f)(a+ h)− L(f)(a)

h
= L
Ä
f(a+h)−f(a)

h

ä
−−→
h→0

L(f ′)(a)

Exemple : Soit A : I → Mn(K) dérivable, alors t 7→ Tr (A(t)) est dérivable avec

d

dt
Tr (A(t)) = Tr (A′(t))

Proposition 11. Soit E,F,G des K-ev normés avec E et F de dimensions �nies, f : I → E,
g : I → F dérivables en a ∈ I et B : E × F → G bilinéaire. La fonction B(f, g) : I → G, x 7→
B(f(x), g(x)) est dérivable en a avec

B(f, g)′(a) = B(f ′, g)(a) + B(f, g′)(a)

Démonstration. Soit h ∈ (−a+ I)∖ {0}. Par bilinéarité de B, il vient

τ(h) =
B(f, g)(a+ h)− B(f, g)(a)

h
= B
Ä
f(a+h)−f(a)

h
, g(a+ h)

ä
+ B
Ä
f(a), g(a+h)−g(a)

h

ä
Par dérivabilité (et donc continuité) de f et g en a et continuité de B en tant qu'application
bilinéaire sur des espaces de dimension �nie, on obtient

τ(h) −−→
h→0

B(f ′, g)(a) + B(f, g′)(a)
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Proposition 12. Soit E euclidien et f, g : I → E dérivables en a ∈ I. La fonction ⟨f, g⟩ : I →
F, x 7→ ⟨f(x), g(x)⟩ est dérivable en a avec

⟨f, g⟩′ (a) = ⟨f ′, g⟩ (a) + ⟨f, g′⟩ (a)

Démonstration. Conséquence immédiate du résultat précédent.

Proposition 13. Soit E1,. . . Ep, et F des K-ev normés avec les Ei de dimensions �nies, fi :

I → Ei dérivable en a ∈ I pour tout i ∈ [[ 1 ; p ]] et M :
p∏

i=1

Ei → F application p-linéaire. La

fonction M(f1, . . . , fp) : I → F, x 7→ M(f1(x), . . . , fp(x)) est dérivable en a avec

M(f1, . . . , fp)
′(a) = M(f ′

1, f2, . . . , fp)(a) + M(f1, f
′
2, . . . , fp)(a) + . . .+M(f1, . . . , f

′
p)(a)

Démonstration. On procède par récurrence sur p. L'initialisation pour p = 1 est la proposition
10. Considérons la con�guration pour p+ 1 avec p entier non nul et supposons le résultat vrai
au rang p. On pose

∀h ∈ (−a+ I)∖ {0} τ(h) =
1

h
[M(f1, . . . , fp+1)(a+ h)−M(f1, . . . , fp+1)(a)]

On a pour h ∈ (−a+ I)∖ {0}

τ(h) = M
Ä
f1(a+ h), . . . , fp(a+ h), fp+1(a+h)−fp+1(a)

h

ä
+
1

h
[M(f1, . . . , fp, fp+1(a))(a+ h)−M(f1, . . . , fp+1(a))(a)]

Par continuité des fi et de M en tant qu'application p-linéaire sur des espaces de dimension
�nie, il vient

τ(h) −−→
h→0

M(f1(a), . . . , fp(a), f
′
p+1(a)) + M(f1, . . . , fp, fp+1(a))

′(a)

l'hérédité suit ce qui clôt la récurrence.

Application : Calcul de
Å

p∏
i=1

fi

ã′
avec les fi : I → K dérivables.

Proposition 14. Soient φ : J → I dérivable en α ∈ J un intervalle de R non vide, non réduit
à un point et f : I → E dérivable en a = φ(α). La fonction f ◦ φ est dérivable en α avec

(f ◦ φ)′(α) = (φ′ · f ′ ◦ φ) (α)

Démonstration. On a f ◦ φ =
p∑

i=1

(fi ◦ φ) ei et le résultat suit d'après la proposition 7.

! Avertissement : Le théorème de Rolle et son corollaire le théorème des accroissements
�nis sont faux dans un R-ev E de dimension p ⩾ 2. Par exemple, on considère f : t 7→
cos(t)ε1 + sin(t)ε2 avec (ε1, ε2) une famille libre d'un R-ev E. On a f(0) = f(2π) mais f ′ ne
s'annule pas sur ] 0 ; 2π [.
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III Dérivations successives

1 Dé�nitions

Soit n entier. Pour f : I → E qui est n fois dérivable, on dé�nit f (n) par f (0) = f et f (k+1) = f (k)′

pour k + 1 ⩽ n.

Dé�nition 7. Une fonction f : I → E est dite de classe C n si f est n fois dérivable et si
f (n) est continue et est dite de classe C ∞ si elle est de classe C n pour tout n entier. On note

C n(I,E) l'ensemble des fonctions de classe C n de I dans E et on a C ∞(I,E) =
⋂
n∈N

C n(I,E).

Dans ce qui suit, on a n ∈ N ∪ {∞}, sauf mention contraire.

Proposition 15. Soit f : I → E. On a

f ∈ C n(I,E) ⇐⇒ ∀i ∈ [[ 1 ; p ]] fi ∈ C n(I,E)

Dans ce cas, pour k entier avec k ⩽ n f (k) =
p∑

i=1

f
(k)
i ei

Démonstration. Par récurrence avec la proposition 7.

Théorème 7. L'espace C n(I,E) est un K-ev et pour n entier, l'application C n(I,E) →
C 0(I,E), f 7→ f (n) est linéaire.

Démonstration. Conséquence de la proposition 15 avec la linéarité de la dérivation d'ordre n
pour des fonctions numériques (appliquée aux fonctions coordonnées).

2 Propriétés

Soit n entier.

Proposition 16. Soient f ∈ C n(I,E), F un K-ev normé et L ∈ L (E,F). On a L(f) ∈ C n(I,F)
et L(f)(n) = L(f (n)).

Démonstration. Par récurrence avec la proposition 10 et la continuité de L(f (n)) comme com-
posée d'applications continues.

Proposition 17. Soient E, F, G des K-ev normés avec E et F de dimensions �nies, f ∈
C n(I,E), g ∈ C n(I,F) et B : E × F → G bilinéaire. La fonction B(f, g) : I → G, x 7→
B(f(x), g(x)) est de classe C n et pour n entier

B(f, g)(n) =
n∑

k=0

(
n
k

)
B(f (k), g(n−k))

Démonstration. Par récurrence avec la proposition 11 (preuve identique à celle de la formule
de Leibniz) et continuité de B(f, g)(n) comme combinaison de composées de fonctions continues
(B ◦ (f (k), g(n−k)) avec k ∈ [[ 0 ; n ]]).

Proposition 18. Soient f ∈ C n(I,E) et g ∈ C n(I,K). La fonction gf est de classe C n et pour
n entier

(gf)(n) =
n∑

k=0

(
n
k

)
g(k)f (n−k)

Démonstration. Application immédiate de ce qui précède.
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IV Intégration sur un segment

La plupart des résultats énoncés ci-après s'obtiennent par héritage de l'intégrale � classique �
(dans R ou C) sur un segment. Dans ce qui suit, on note a et b des réels véri�ant a ⩽ b, sauf
mention contraire.

1 Dé�nitions

Dé�nition 8. Soit f ∈ F ([ a ; b ] ,E). On dit que f est continue par morceaux sur [ a ; b ] s'il
existe une subdivision σ = (ai)i∈[[ 0 ;n ]] de [ a ; b ], i.e. a = a0 < a1 < . . . < an = b telle que pour
tout i ∈ [[ 0 ; n− 1 ]], f est continue sur ] ai ; ai+1 [ et f admet des limites en a+i et a−i+1.

Notations : On note Cpm([ a ; b ] ,E) l'ensemble des fonctions continues par morceaux sur [ a ; b ].

Vocabulaire : Pour f ∈ Cpm([ a ; b ] ,E), une subdivision σ véri�ant la propriété décrite dans
la dé�nition 8 est dite adaptée à f . Il n'y pas unicité d'une telle subdivision : si σ est adaptée
à f et σ une sous-suite de σ′ subdivision de [ a ; b ] (on dit que σ′ est plus �ne que σ), alors la
subdivision σ′ est adaptée à f .

Dé�nition 9. Soit f ∈ F (I,E). On dit que f est continue par morceaux sur I si, pour tout
[ a ; b ] ⊂ I, on a f

[ a ;b ]
∈ Cpm([ a ; b ] ,E).

Notations : On note Cpm(I,E) l'ensemble des fonctions continues par morceaux sur I.

Proposition 19. Soit f ∈ F (I,E) .On a

f ∈ Cpm(I,E) ⇐⇒ ∀i ∈ [[ 1 ; p ]] fi ∈ Cpm(I,K)

Démonstration. Soit [ a ; b ] ⊂ I. Le sens direct est immédiat puisqu'une subdivision adaptée à
f

[ a ;b ]
est adaptée aux fonctions coordonnées. Réciproquement, on considère σ une subdivision

de [ a ; b ] telle que σi subdivision adaptée à fi
[ a ;b ]

est sous-suite de σ pour tout i ∈ [[ 1 ; p ]].

C'est une subdivision adaptée à toutes les restrictions des fonctions coordonnées sur [ a ; b ] et
donc à f

[ a ;b ]
.

Dé�nition 10. Pour f ∈ Cpm([ a ; b ] ,E), on dé�nit l'intégrale de f sur [ a ; b ] noté

∫ b

a

f(t) dt

par ∫ b

a

f(t) dt =
p∑

i=1

∫ b

a

fi(t) dt ei

Notations : On note aussi

∫
[ a ;b ]

f(t) dt ou

∫ b

a

f pour l'intégrale de f sur [ a ; b ]. Pour f ∈

Cpm(I,E) et (a, b) ∈ I2, on conserve la convention usuelle

∫ b

a

f(t) dt = −
∫ a

b

f(t) dt si b ⩽ a.

Proposition 20. Soit f ∈ Cpm([ a ; b ] ,E). L'intégrale

∫ b

a

f(t) dt ne dépend pas du choix d'une

base de E.
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Démonstration. Soit B = (ei)i∈[[ 1 ; p ]] et ‹B = (ẽi)i∈[[ 1 ; p ]] des bases de E. On note P = matB ‹B
matrice de passage de B à ‹B avec P =

(
pi,j

)
1⩽i,j⩽p

∈ Mp(K) et X(t) = matBf(t) et fiX(t) =
mat ‹Bf(t) pour t ∈ [ a ; b ]. On a X(t) = PX̃(t) pour t ∈ [ a ; b ] par changement de base. Puis, il
vient

p∑
j=1

∫ b

a

‹fj(t) dt‹ej = p∑
j=1

∫ b

a

‹fj(t) dt p∑
i=1

pi,jei =
p∑

i=1

∫ b

a

Ç
p∑

j=1

pi,j‹fj(t) dtå ei =
p∑

i=1

∫ b

a

fi(t) dtei

ce qui prouve le résultat attendu.

2 Propriétés

Proposition 21 (Linéarité). L'application Cpm([ a ; b ] ,E) → E, f 7→
∫ b

a

f(t) dt est une ap-

plication linéaire.

Démonstration. Héritage de la linéarité de l'intégrale classique sur un segment.

Proposition 22 (Chasles). Soit f ∈ Cpm(I,E). On a

∀(a, b, c) ∈ I3
∫ b

a

f(t) dt =

∫ c

a

f(t) dt+

∫ b

c

f(t) dt

Démonstration. Héritage de la relation de Chasles de l'intégrale classique sur un segment.

Théorème 8 (Sommes de Riemann). Soit f ∈ Cpm([ a ; b ] ,E). On a

b− a

n

n−1∑
k=0

f

Å
a+ k

b− a

n

ã
−−−→
n→∞

∫ b

a

f(t) dt et
b− a

n

n∑
k=1

f

Å
a+ k

b− a

n

ã
−−−→
n→∞

∫ b

a

f(t) dt

Démonstration. Immédiate par convergence des sommes de Riemann des fonctions coordonnées.

Théorème 9 (Inégalité triangulaire). Soit f ∈ Cpm([ a ; b ] ,E). On a

∥
∫ b

a

f(t) dt∥ ⩽
∫ b

a

∥f(t)∥ dt

Démonstration. Soit n entier non nul. Par inégalité triangulaire classique, on a

∥b− a

n

n−1∑
k=0

f

Å
a+ k

b− a

n

ã
∥ ⩽

b− a

n

n−1∑
k=0

∥f
Å
a+ k

b− a

n

ã
∥

Faisant tendre n → +∞, utilisant la continuité de la norme et la continuité par morceaux de la
composée ∥ · ∥ ◦ f , le résultat suit.

Théorème 10 (Changement de variables). Soit f ∈ C 0(I,E) et φ ∈ C 1(J, I) avec J inter-
valle de R non vide, non réduit à un point. On a

∀(α, β) ∈ J2
∫ φ(β)

φ(α)

f(t) dt =

∫ β

α

f ◦ φ(u)φ′(u) du

Démonstration. Héritage du théorème de changement de variables classique.
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Théorème 11 (Intégration par parties). Soit u ∈ C 1(I,K) et v ∈ C 1(I,E). On a

∀(a, b) ∈ I2
∫ b

a

u′(t)v(t) dt = [u(t)v(t)]ba −
∫ b

a

u(t)v′(t) dt

Démonstration. Héritage de l'intégration par parties classique.

Proposition 23. Soit f ∈ Cpm(I,E) et L ∈ L (E,F) avec F un K-ev normé. On a L(f) ∈
Cpm(I, Im L) et

∀(a, b) ∈ I2 L

Ç∫ b

a

f(t) dt

å
=

∫ b

a

L(f)(t) dt

Démonstration. Soit (a, b) ∈ I2 avec a ⩽ b. L'application L est continue comme application
linéaire sur E espace de dimension �nie. Par suite, la composée L(f) = L ◦ f est continue par
morceaux sur I. Par continuité de L, il vient

L

Ç∫ b

a

f(t) dt

å
= L

Å
lim

n→+∞

b− a

n

n−1∑
k=0

f

Å
a+ k

b− a

n

ãã
= lim

n→+∞
L

Å
b− a

n

n−1∑
k=0

f

Å
a+ k

b− a

n

ãã
Puis, par linéarité de L et en utilisant de nouveau le théorème de convergence des sommes de
Riemann, on obtient pour n entier non nul

L

Å
b− a

n

n−1∑
k=0

f

Å
a+ k

b− a

n

ãã
=

b− a

n

n−1∑
k=0

L(f)

Å
a+ k

b− a

n

ã
−−−→
n→∞

∫ b

a

L(f)(t) dt

Le cas a ⩾ b est identique.

3 Intégrale fonction de sa borne supérieure

Théorème 12. Soit f ∈ C 0(I,E) et a ∈ I. La fonction F : x 7→
∫ x

a

f(t) dt est de classe C 1 et

c'est l'unique primitive de f qui s'annule en a.

Démonstration. Héritage du théorème fondamental d'analyse classique.

Théorème 13. Soit f ∈ C 0(I,E) et F une primitive de f . On a

∀(a, b) ∈ I2
∫ b

a

f(t) dt = F(b)− F(a)

Démonstration. Conséquence immédiate de ce qui précède puisque toute primitive est de la

forme x 7→ Cte +

∫ x

a

f(t) dt.

Théorème 14 (Inégalité des accroissements �nis). Soit f ∈ C 1(I,E) avec ∥f ′(t)∥ ⩽ K
pour tout t ∈ I. Alors

∀(a, b) ∈ I2 ∥f(b)− f(a)∥ ⩽ K |b− a|

Démonstration. Soit (a, b) ∈ I2 avec a ⩽ b. D'après ce qui précède, on a f(b)−f(a) =

∫ b

a

f ′(t)dt

d'où, par inégalité triangulaire

∥f(b)− f(a)∥ = ∥
∫ b

a

f ′(t) dt∥ ⩽
∫ b

a

∥f ′(t)∥ dt ⩽ K(b− a)

Le cas a ⩾ b est identique.

B. Landelle 12 ISM MP



V Formules de Taylor

Dans ce qui suit, on a n entier.

1 Formule de Taylor avec reste intégral

Théorème 15. Soit f ∈ C n+1(I,E). On a

∀(a, b) ∈ I2 f(b) =
n∑

k=0

f (k)(a)

k!
(b− a)k +

1

n!

∫ b

a

f (n+1)(t)(b− t)n dt

Démonstration. Héritage de Taylor avec reste intégral classique.

Remarque : Formule globale, résultat pour tout (a, b) ∈ I2.

2 Inégalité de Taylor-Lagrange

Théorème 16. Soit f ∈ C n+1(I,E). Si f (n+1) est bornée sur I, alors

∀(a, b) ∈ I2 ∥f(b)−
n∑

k=0

f (k)(a)

k!
(b− a)k∥ ⩽ Sup

x∈I
∥f (n+1)(x)∥|b− a|n+1

(n+ 1)!

Démonstration. Par inégalité triangulaire sur Taylor avec reste intégral.

Remarque : En pratique, souvent plus utile que Taylor reste-intégral. Sert à contrôler des
quantités pour des études asymptotiques, pour des dominations (dans des théorèmes avec hy-
pothèse de domination, etc.).

3 Formule de Taylor-Young

Théorème 17. Soit f ∈ C n(I,E). On a

∀a ∈ I f(x) =
x→a

n∑
k=0

f (k)(a)

k!
(x− a)k + o((x− a)n)

Démonstration. Héritage de Taylor-Young classique.

Remarque : Formule locale avec un petit o dont le comportement est connu au voisinage de
a.
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