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Feuille d'exercices n°36

Exercice 1 (**)

Soit n entier non nul, x ∈ [ 0 ; 1 ] et f(t) = (xe t + 1− x)n pour tout t réel.

1. Déterminer le développement limité de f en zéro à l'ordre deux.

2. En déduire
n∑

k=0

k
(
n
k

)
xk(1− x)n−k et

n∑
k=0

k2
(
n
k

)
xk(1− x)n−k.

Corrigé : 1. Avec le développement de exp à l'ordre 2, il vient

f(t) =

Å
x

Å
1 + t+

t2

2

ã
+ 1− x+ o(t2)

ãn
=

Å
1 + xt+ x

t2

2
+ o(t2)

ãn
On pose u = xt+ x

t2

2
+ o(t2). On a u → 0 pour t → 0. Avec le développement usuel

(1 + u)n = 1 + nu+
n(n− 1)

2
u2 + o(u2)

On obtient f(t) = 1 + nxt+ (nx+ n(n− 1)x2)
t2

2
+ o(t2)

2. Un développement du binôme donne

∀t ∈ R f(t) =
n∑

k=0

(
n
k

)
xk(1− x)n−ke kt

La fonction f est de classe C ∞ comme composée de telles fonctions et par dérivation

∀(p, t) ∈ N× R f (p)(t) =
n∑

k=0

(
n
k

)
xk(1− x)n−kkpe kt

En particulier f ′(0) =
n∑

k=0

k
(
n
k

)
xk(1− x)n−k f ′′(0) =

n∑
k=0

k2
(
n
k

)
xk(1− x)n−k

D'après le théorème de Taylor-Young, on a

f(t) = f(0) + f ′(0)t+
f ′′(0)

2
t2 + o(t2)

Par unicité du développement limité, on obtient

n∑
k=0

k
(
n
k

)
xk(1− x)n−k = nx et f ′′(0) =

n∑
k=0

k2
(
n
k

)
xk(1− x)n−k = nx+ n(n− 1)x2

Exercice 2 (**)

Déterminer lim
n→+∞

1

n2

∑
1⩽k<ℓ⩽n

f

Å
k

n

ã
f

Å
ℓ

n

ã
avec f ∈ C 0([ 0 ; 1 ] ,R)

Corrigé : Pour n entier non nul, on pose Sn =
1

n

n∑
k=1

f

Å
k

n

ã
. On a

1



S2
n =

1

n2

∑
1⩽k,ℓ⩽n

f

Å
k

n

ã
f

Å
ℓ

n

ã
=

2

n2

∑
1⩽k<ℓ⩽n

f

Å
k

n

ã
f

Å
ℓ

n

ã
+

1

n2

n∑
k=1

f 2

Å
k

n

ã
en séparant les termes diagonaux des autres et par symétrie des sommes hors diagonale. D'après
le théorème de convergence des sommes de Riemann, on a

S2
n −−−→

n→∞

Ç∫ 1

0

f(t) dt

å2

et
1

n

n∑
k=1

f 2

Å
k

n

ã
=

n→+∞
O(1)

On conclut
1

n2

∑
1⩽k<ℓ⩽n

f

Å
k

n

ã
f

Å
ℓ

n

ã
−−−→
n→∞

1

2

Ç∫ 1

0

f(t) dt

å2

Exercice 3 (**)

Calculer lim
x→+∞

∫ 2x

x

sin(t)

t2
dt et lim

x→0+

∫ 2x

x

sin(t)

t2
dt

Corrigé : Par inégalité triangulaire, on obtient

∀x > 0

∣∣∣∣∫ 2x

x

sin(t)

t2
dt

∣∣∣∣ ⩽ ∫ 2x

x

|sin(t)|
t2

dt ⩽
∫ 2x

x

dt

t2
=

1

2x

Par encadrement
∫ 2x

x

sin(t)

t2
dt −−−−→

x→+∞
0

Le procédé précédent ne permet pas de conclure pour x → 0+. On a sin(t) ≃ t pour t proche
de zéro et l'idée consiste donc à contrôler l'écart entre sin(t) et t. D'après l'inégalité de Taylor-
Lagrange et une inégalité de concavité, on a

∀t ∈ R t− t2

2
⩽ sin(t) ⩽ t

Par suite ∀x > 0

∫ 2x

x

Å
1

t
− 1

2

ã
dt ⩽

∫ 2x

x

sin(t)

t2
dt ⩽

∫ 2x

x

dt

t

c'est-à-dire ∀x > 0 ln(2)− x ⩽
∫ 2x

x

sin(t)

t2
dt ⩽ ln(2)

Par encadrement
∫ 2x

x

sin(t)

t2
dt −−−→

x→0+
ln(2)

Remarque : On peut éviter le recours à l'inégalité de concavité. D'après l'inégalité de Taylor-
Lagrange, on a

∀t ∈ R t− t2

2
⩽ sin(t) ⩽ t+

t2

2

ce qui est un peu moins bon que précédemment mais su�t pour conclure.
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Exercice 4 (***)

Soit f ∈ C 2([ 0 ; 1 ] ,R). Montrer

n

∫ 1

0

f(t) dt−
n−1∑
k=0

f

Å
k

n

ã
−−−→
n→∞

f(1)− f(0)

2

Corrigé : On pose ∀n ∈ N∗ ∆n = n

∫ 1

0

f(t) dt−
n−1∑
k=0

f

Å
k

n

ã
Soit n entier non nul. On a ∆n = n

n−1∑
k=0

∫ k+1
n

k
n

ï
f(t)− f

Å
k

n

ãò
dt

puis, on obtient ∆n = n
n−1∑
k=0

∫ k+1
n

k
n

ï
f(t)− f

Å
k

n

ã
− f ′
Å
k

n

ãÅ
t− k

n

ãò
dt+Un

avec Un = n
n−1∑
k=0

∫ k+1
n

k
n

f ′
Å
k

n

ãÅ
t− k

n

ã
dt

Par convergence des sommes de Riemann avec f ′ continue sur [ 0 ; 1 ], il vient

Un = n
n−1∑
k=0

1

2n2
f ′
Å
k

n

ã
−−−→
n→∞

f(1)− f(0)

2

Et, d'après l'inégalité de Taylor-Lagrange

∀t ∈
ï
k

n
;
k + 1

n

ò ∣∣∣∣f(t)− f

Å
k

n

ã
− f ′
Å
k

n

ãÅ
t− k

n

ã∣∣∣∣ ⩽ ∥f ′′∥∞
1

2

Å
t− k

n

ã2
On en déduit après intégration et sommation

∆n = O
Å
1

n

ã
+Un

On conclut n

∫ 1

0

f(t) dt−
n−1∑
k=0

f

Å
k

n

ã
−−−→
n→∞

f(1)− f(0)

2

Exercice 5 (***)

Soit f ∈ C ([ 0 ; 1 ] ,E) avec E euclidien. Déterminer une condition nécessaire et su�sante pour
avoir

∥
∫ 1

0

f(t) dt∥ =

∫ 1

0

∥f(t)∥ dt

Corrigé : Si f(t) = φ(t)u avec φ ∈ C ([ 0 ; 1 ] ,R+) et u ∈ E normé, l'égalité a clairement lieu et

on a u =

∫ 1

0

f(t) dt∫ 1

0

∥f(t)∥2 dt
si f ̸= 0. Réciproquement, on suppose f ̸= 0 et on pose u comme trouvé

précédemment. Il vient, avec l'inégalité de Cauchy-Schwarz

∥
∫ 1

0

f(t) dt∥ =

Æ
u,

∫ 1

0

f(t) dt

∏
=

∫ 1

0

⟨u, f(t)⟩ dt ⩽
∫ 1

0

∥f(t)∥ dt
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Par suite
∫ 1

0

[∥f(t)∥ − ⟨u, f(t)⟩] dt = 0

et l'intégrande est continue, positive donc identiquement nul d'où l'égalité dans Cauchy-Schwarz
ce qui signi�e que f(t) est positivement colinéaire à u. On conclut

L'égalité a lieu si et seulement si f = φ · u avec u ∈ E normé et φ ∈ C ([ 0 ; 1 ] ,R+).

Exercice 6 (***)

Soit f ∈ C 2([ 0 ; 1 ] ,E) avec E un K-ev de dimension �nie. On suppose

f(0) = f ′(0) = f ′(1) = 0 et ∥f(1)∥ = 1

Montrer ∥f ′′∥∞ ⩾ 4

Corrigé : Par inégalité de Taylor-Lagrange, on a
∥f
Å
1

2

ã
− f(0)− f ′(0)

1

2
∥ ⩽

1

8
∥f ′′∥∞

∥f
Å
1

2

ã
− f(1) + f ′(1)

1

2
∥ ⩽

1

8
∥f ′′∥∞

d'où ∥f
Å
1

2

ã
∥+ ∥f

Å
1

2

ã
− f(1)∥ ⩽

1

4
∥f ′′∥∞

et par inégalité triangulaire

1 = ∥f(1)∥ ⩽ ∥f
Å
1

2

ã
∥+ ∥f

Å
1

2

ã
− f(1)∥ ⩽

1

4
∥f ′′∥∞

Ainsi ∥f ′′∥∞ ⩾ 4

Exercice 7 (****)

On pose ∀n ∈ N∗ Pn =
n∏

k=0

(X− k) et ∀x ∈ ] 0 ; 1 [ fn(x) =
n∑

k=0

1

x− k

1. Montrer que pour tout n entier non nul, le polynôme P′
n admet une unique racine xn sur

] 0 ; 1 [.

2. Pour n entier non nul, préciser la valeur de fn(xn).

3. Établir ∀n ∈ N∗
n∑

k=1

1

k
⩽

1

xn

⩽
1

1− xn

+
n−1∑
k=1

1

k

4. En déduire un équivalent simple de xn pour n → +∞.

5. Établir ∀u ∈
ï
0 ;

1

2

ò
|ln(1− u) + u| ⩽ 2u2

6. En déduire un équivalent simple de |Pn(xn)| pour n → +∞.

Corrigé : 1. Soit n entier non nul. Pour k ∈ [[ 0 ; n− 1 ]], d'après le théorème de Rolle appliqué
à x 7→ Pn(x) fonction de classe C 1 (polynomiale), il existe αk ∈ ] k ; k + 1 [ tel que P′

n(αk) = 0.
Ainsi, on a 0 < α0 < 1 < α1 < . . . < αn−1 < n donc P′

n de degré n admet n racines distinctes ce
qui prouve que P′

n est scindé à racines simples et notant un = α0, on conclut
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Pour n ∈ N∗, le polynôme P′
n admet une unique racine xn ∈ ] 0 ; 1 [.

2. Soit n entier non nul. Comme Pn est scindé à racines simples, on dispose de la décomposition
en éléments simples

P′
n

Pn

=
n∑

k=0

1

X− k

Ainsi ∀n ∈ N∗ fn(xn) =
P′
n(xn)

Pn(xn)
= 0

3. Soit n entier non nul. On a

fn(xn) = 0 ⇐⇒ 1

xn

−
n∑

k=1

1

k − xn

= 0 ⇐⇒ 1

xn

=
n∑

k=1

1

k − xn

Comme on a un ∈ ] 0 ; 1 [, on en déduit

∀k ∈ [[ 1 ; n ]]
1

k
⩽

1

k − xn

et ∀k ∈ [[ 2 ; n ]]
1

k − xn

⩽
1

k − 1

D'où ∀n ∈ N∗
n∑

k=1

1

k
⩽

1

xn

⩽
1

1− xn

+
n−1∑
k=1

1

k

4. Par comparaison série/intégrale, on montre
n∑

k=1

1

k
∼

n→+∞
ln(n) d'où

n∑
k=1

1

k
−−−→
n→∞

+∞ et par

comparaison, il s'ensuit que
1

xn

−−−→
n→∞

+∞ d'où xn −−−→
n→∞

0. Par conséquent, en observant que

1

1− xn

= o(lnn), on obtient

1

xn

= lnn+ o(ln(n))

D'où xn ∼
n→+∞

1

ln(n)

5. D'après l'inégalité de Taylor-Lagrange, on a

∀u ∈
ï
0 ;

1

2

ò
|ln(1− u) + u| ⩽ Sup

t∈[ 0 ; 12 ]

1

(1− t)2
× |u− 0|2

2

Ainsi ∀u ∈
ï
0 ;

1

2

ò
|ln(1− u) + u| ⩽ 2u2

6. Comme xn −−−→
n→∞

0, on a xn ∈
ï
0 ;

1

2

ò
pour n assez grand puis

|Pn(xn)| = xn

n∏
k=1

(k − xn) = xnn!
n∏

k=1

(
1− xn

k

)
Puis ∀k ∈ [[ 1 ; n ]] − xn

k
− 2

x2
n

k2
⩽ ln

(
1− xn

k2

)
⩽ −xn

k
+ 2

x2
n

k2

Après sommation, on obtient

−xn

n∑
k=1

1

k
− 2x2

n

n∑
k=1

1

k2
⩽ ln

n∏
k=1

(
1− xn

k

)
⩽ −xn

n∑
k=1

1

k
+ 2x2

n

n∑
k=1

1

k2
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Avec
n∑

k=1

1

k
∼

n→+∞
ln(n) et

n∑
k=1

1

k2
= O(1), il vient par encadrement

ln
n∏

k=1

(
1− xn

k

)
−−−→
n→∞

−1

On conclut |Pn(xn)| ∼
n→+∞

n!

e ln(n)
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