ISM MP, Mathématiques
Année 2025/2026

Feuille d’exercices n°36

Exercice 1 (**)
Soit n entier non nul, x € [0;1] et f(¢) = (ze® + 1 — x)™ pour tout ¢ réel.

1. Déterminer le développement limité de f en zéro a 'ordre deux.
2. En déduire Y k(})a"(1 —a)" et SOK2(})at (1 —a)"h.
k=0 k=0
Corrigé : 1. Avec le développement de exp a ordre 2, il vient

f(t) = <$<1+t+ﬁ)+1—x+o(t2))n: <1+!Et+x§—l—o(t2)>

2

n

t2
On pose u = xt + IE +0(t?). On a u — 0 pour t — 0. Avec le développement usuel

—1
(I+u)"=14nu+ n(nT)uz + o(u?)
t?
On obtient f(t) =1+ nxt + (nx+n(n — 1)z?) 5+ o(t?)

2. Un développement du bindme donne

n

vieR  f(t) =Y (})a"(1 —a)nRekt

k=0

La fonction f est de classe > comme composée de telles fonctions et par dérivation

V(p,t) e Nx R fP(t) = Zn: (L)ah(1 — z)FEpekt
k=0

En particulier  f/(0) = Y k(})a*(1 — x)"* f1(0) = Sk (3)ak (1 —a)F
k=0 k=0
D’aprés le théoréme de Taylor-Young, on a

ft) = f(0) + f(0)t +

Par unicité du développement limité, on obtient

@ﬂ +o(t?)

k(a1 —a)t =na et f1(0) = ékz ()21 = 2)"* = nz +n(n - 1)z?

Exercice 2 (**)

. . 1 l
Déterminer lim — > f ( ) (n) avec fe€€°([0;1],R)
_1

N0 N7 kp<isn
n
Z ( ) On a

Corrigé : Pour n entier non nul, on pose S,, =



=, 2,0 (07 () =5,8.0 ()52 C)

en séparant les termes diagonaux des autres et par symétrie des sommes hors diagonale. D’apreés
le théoréme de convergence des sommes de Riemann, on a

! ? 1o [k
S — ( / f®) dt) et Ll <E> v T O

1 1 1 2
On conclut — f(ﬁ)f(ﬁ) 1 (/ £() dt)
N2 i<k<t<n T n/ n—oo 2\ J,

Exercice 3 (**)

2z _: 20 -
t t
8”22( Var et tim [ S

=0t /. 12

Calculer lim dt

T—r+00 x

Corrigé : Par inégalité triangulaire, on obtient

2x _: 20 | : 2
sin(t) |sin(t)] dt 1
2r -
t
Par encadrement / sin(t) dt > 0
" t2 T—+00

Le procédé précédent ne permet pas de conclure pour z — 0. On a sin(t) ~ t pour ¢t proche
de zéro et I'idée consiste donc a controler I'écart entre sin(t) et ¢. D’aprés l'inégalité de Taylor-
Lagrange et une inégalité de concavité, on a

t2
VieR -2 <sin(t) <t

2x 1 1 2z _: 2x
Par suite Vr >0 / <— — —) dt < / sin(t) dt < / @
oo\t 2 e ot
2% gin(t)
c’est-a-dire Vo >0 In(2) —z < / dt < In(2)
P
2z -
t
Par encadrement / SmQ( ) dt > In(2)
x t x—07F

Remarque : On peut éviter le recours a l'inégalité de concavité. D’aprés l'inégalité de Taylor-
Lagrange, on a
2 t2

VEER  t— o <sin(t) <t

ce qui est un peu moins bon que précédemment mais suffit pour conclure.



Exercice 4 (***)

Soit f € €*([0;1],R). Montrer
' Lk f(1) = f(0)
o5 G T

1 n—1
Corrigé : On pose Vn € N* A, = n/ fyde—=>_f (E>
0 k=0 \T
k+1 k
Soit n entier non nul. On a = nz [f(t) —f <—)] dt
n

puis, on obtient A, = nZ/k+1 [ —f <§> —f (g) <t— S)} dt + U,

nl fw (k k
avec U,=n)>_ 1 (—) (t - —) dt
k=0J & n

n

Par convergence des sommes de Riemann avec f’ continue sur [0;1], il vient

0 =S L (B) o S-S0

=02n? n 2

Et, d’aprés I'inégalité de Taylor-Lagrange

k:‘k:—l—l} f(t)_f<§>_f,<§>(t_ﬁ)‘ 17 1loo5 (t—§)2

we[E
n.on
On en déduit aprés intégration et sommation
1
n
1 n—1 k 1 .
On conclut n/ Fydt— Y f (_) f() — f(0)
0 k=0 n n—00 2

Exercice 5 (**%*)

Soit f € €([0;1],E) avec E euclidien. Déterminer une condition nécessaire et suffisante pour

avoir
1 1
I saral = [ s
Corrigé : Si f o(t)u avec p € €([0;1],R;) et u € E normé, I'égalité a clairement lieu et
/ f ) dt
onau= si f # 0. Réciproquement, on suppose f # 0 et on pose u comme trouvé

/ 1F()]2 dt

0
précédemment. Il vient, avec I'inégalité de Cauchy-Schwarz

I stoyaal = < IRG dt> = [ty ar< [ ar



Par suite / £ = (u. f()] dt =0

et I'intégrande est continue, positive donc identiquement nul d’ou 1’égalité dans Cauchy-Schwarz
ce qui signifie que f(t) est positivement colinéaire a u. On conclut

[égalité a lieu si et seulement si f = ¢ - u avec u € E normé et o € €([0;1],R,).

Exercice 6 (***)
Soit f € €2([0;1],E) avec E un K-ev de dimension finie. On suppose
fO)=f(0)=f(1)=0 et [f(D)]=1

Montrer 1" |ee = 4
Corrigé : Par inégalité de Taylor-Lagrange, on a
1 Lo L 1
- _ _ - < = 2
If (2> F(0) = FO)51I < gl Nl
17 (5) — s+ gl < 51
2 2" T8 ¥
1 1 1
7 - - _ 1 g - " o
doi 17 () 1+17(5) i< 1)

et par inégalité triangulaire

L=l <7 (5) 117 (5) - 7 < 317

Ainsi 1" |0 = 4

Exercice 7 (****)

n n 1
On pose VneN*  P,=]J[X-k) et Vxe]0;1] folz) =32
k=0 =% —k

1. Montrer que pour tout n entier non nul, le polynéme P/, admet une unique racine x,, sur
1051

2. Pour n entier non nul, préciser la valeur de f,(z,).

. n o] 1 1 n-
3. Etablir Vn € N* > +

11
k:lE D T = 1- Tn k:lE

4. En déduire un équivalent simple de x,, pour n — +00.
) 1
5. Etablir Yu € {0 ; 5} In(1 — u) + u| < 2u?

6. En déduire un équivalent simple de |P,,(x,)| pour n — +o0.

Corrigé : 1. Soit n entier non nul. Pour k € [0; n — 1], d’aprés le théoréme de Rolle appliqué
a x — P,(x) fonction de classe €' (polynomiale), il existe oy € | k;k + 1] tel que P/ (ay) = 0.
Ainsiiona0<ayp<1l<ay <...<a,1 <ndonc P/ de degré n admet n racines distinctes ce
qui prouve que P’ est scindé a racines simples et notant u,, = ap, on conclut



Pour n € N*, le polynome P/ admet une unique racine z,, € |0;1].

2. Soit n entier non nul. Comme P,, est scindé & racines simples, on dispose de la décomposition
en éléments simples

P, ,CZ:OX iy
P’ (x,
Ainsi VneN'  fo(z,) = Pzgn; =0
3. Soit n entier non nul. On a
1 noo 1 noo 1
n(Tp) =0 < — — =0 ¢+ —=
Comme on a u, € |0;1[, on en déduit
1 1 1
vk 1; - < t Vke|2; <
cliinl  psgzg, o VRelZinl s
n o1 1 1 n—l]
D’ou Vn € N* - < — < -
ot " kz::lk; xn\l—xn+;§1k
4. Par comparaison série/intégrale, on montre > — ~ In(n) dou > - —— +00 et par
k=1 n—-+0oo k=1 n—oo
comparaison, il s’ensuit que — —— +oo d’out z,, —— 0. Par conséquent, en observant que
xn n—o0 n—oo
1
= o(Inn), on obtient
11—z,
1
— =Inn+ o(ln(n))
Ty
1
D’ou Ty o~
n—-+0o ln(n)

5. D’aprés 'inégalité de Taylor-Lagrange, on a
1 y lu — 0
p
ref0:1] (1 —1t)? 2

1
VUE{OG} In(1 —u) +u| <

Ainsi Yu € [0; } In(1 — u) + u| < 2u?

DN | —

pour n assez grand puis
n—oo

1
6. Comme z,, —— 0, on a x,, € [0;—

[\

Po(2n)| =z ﬁ (k = 2) = zn! ﬁ <1 a %>

k=1 k=1
) Tp x2 Tn Tp x?
Aprés sommation, on obtient
—an——2a:iZ—2 In ] (1——) —:L‘nz +220 )
= =1k k=1 "tk



1 n
Avec Y- — ~ In(n) et > — = O(1), il vient par encadrement,

n

lnH(l—ﬁ>—>—1

Pl k N—00
n!
On conclut P (@) n—stoo ¢ In(n)




