Feuille d'exercices n°34

Exercice 1 (*)

En considérant la dérivée n-ième de l'application polynomiale $x \mapsto x^{2n}$, déterminer $\sum_{k=0}^{n} {n \choose k}^2$.

Exercice 2 (*)

Soit E un K-evn de dimension finie. Trouver toutes les applications $f: \mathbb{R} \to \mathcal{E}$ vérifiant

$$\forall (x,y) \in \mathbb{R}^2$$
 $||f(x) - f(y)|| \leqslant k |x - y|^{\alpha}$

avec k > 0 et $\alpha > 1$.

Exercice 3 (*)

Soit $M: \mathbb{R} \to \mathscr{M}_{2n+1}(\mathbb{R})$ de classe \mathscr{C}^1 vérifiant

$$\forall t \in \mathbb{R} \qquad \mathbf{M}(t)^{\top} \mathbf{M}(t) = \mathbf{I}_{2n+1}$$

Montrer que $M'(t) \notin GL_{2n+1}(\mathbb{R})$ pour tout t réel.

Exercice 4 (**)

Soit $f \in \mathscr{C}^1(\mathbb{R}, \mathbb{R})$ telle que $f'(x) \xrightarrow[x \to +\infty]{} \ell$ avec ℓ un réel. Montrer que $\frac{f(x)}{x} \xrightarrow[x \to +\infty]{} \ell$. Chercher un contre-exemple pour la réciproque.

Exercice 5

Trouver toutes les applications $f: \mathbb{R} \to \mathbb{R}$ dérivables telles que

$$\forall (x,y) \in \mathbb{R}^2$$
 $f(x) - f(y) = (x - y)f'\left(\frac{x + y}{2}\right)$

Indication : utiliser la bijection $(x, y) \mapsto \frac{1}{2}(x + y, x - y)$.

Exercice 6 (**)

On se place dans \mathbb{R}^2 muni de la norme euclidienne. Soit $f: t \mapsto (x(t), y(t)) \in \mathscr{C}^1(I, \mathbb{R}^2)$ avec ||f(t)|| = 1 pour tout $t \in I$ et $g: t \mapsto (-y(t), x(t))$. Montrer qu'il existe $\gamma \in \mathscr{C}^0(I, \mathbb{R})$ tel que

$$f' = \gamma g$$
 et $g' = -\gamma f$

Exercice 7 (**)

Soit E un K-evn de dimension finie, $f: \mathbb{R} \to E$ dérivable en zéro et vérifiant

$$\forall x \in \mathbb{R}$$
 $f(2x) = 2f(x)$

Montrer que f est linéaire.

Exercice 8 (**)

1. Soit n entier non nul. Montrer que

$$\forall p \in [0; n-1]$$
 $\sum_{k=0}^{n} {n \choose k} (-1)^k k^p = 0$ et $\sum_{k=0}^{n} {n \choose k} (-1)^k k^n = (-1)^n n!$

Indication : on pourra considérer $\varphi(x) = (1 - e^x)^n$ pour x réel.

2. Soit $f \in \mathscr{C}^n(\mathbb{R}, E)$ avec E un \mathbb{K} -ev de dimension finie. Calculer $\lim_{h \to 0} \frac{1}{h^n} \sum_{k=0}^n \binom{n}{k} (-1)^k f(hk)$.

Exercice 9 (*)

Soit $M \in \mathcal{C}^0([0;1], \mathcal{M}_n(\mathbb{R}))$ avec $M(t) \in \mathcal{O}_n(\mathbb{R})$ pour tout $t \in [0;1]$. Montrer

$$\|\int_0^1 \mathbf{M}(t) \, \mathrm{d}t\|_2 \leqslant \sqrt{n}$$

Exercice 10 (**)

Calculer

$$\lim_{n \to +\infty} \int_{n}^{2n} \sin\left(\frac{1}{t}\right) dt$$

Exercice 11 (**)

Déterminer des majorations pour les expressions suivantes :

1.
$$\left| \sin(x) - x + \frac{x^3}{6} \right|$$
 pour x réel

2.
$$\left| \cos(x) - 1 + \frac{x^2}{2} \right|$$
 pour x réel

1.
$$\left| \sin(x) - x + \frac{x^3}{6} \right|$$
 2. $\left| \cos(x) - 1 + \frac{x^2}{2} \right|$ 3. $\left| \ln(1+x) - x + \frac{x^2}{2} \right|$ pour x réel pour $x \ge 0$

Exercice 12 (**)

Déterminer

$$\lim_{n \to +\infty} \sum_{k=1}^{n} \sin\left(\frac{k + (-1)^k}{n^2}\right)$$