Feuille d'exercices n°36

Exercice 1 (**)

Soit n entier non nul, $x \in [0;1]$ et $f(t) = (xe^t + 1 - x)^n$ pour tout t réel.

- 1. Déterminer le développement limité de f en zéro à l'ordre deux.
- 2. En déduire $\sum_{k=0}^{n} k \binom{n}{k} x^k (1-x)^{n-k}$ et $\sum_{k=0}^{n} k^2 \binom{n}{k} x^k (1-x)^{n-k}$.

Indications: 2. Déterminer une nouvelle écriture de f plus adaptée au calcul de f'(0) et f''(0).

Exercice 2 (**)

Déterminer $\lim_{n \to +\infty} \frac{1}{n^2} \sum_{1 \le k \le \ell \le n} f\left(\frac{k}{n}\right) f\left(\frac{\ell}{n}\right) \quad \text{avec} \quad f \in \mathcal{C}^0([0;1], \mathbb{R})$

Indications: Considérer $\left(\frac{1}{n}\sum_{k=1}^{n}f\left(\frac{k}{n}\right)\right)^2$ et dissocier dans la somme double les termes diagonaux des autres.

Exercice 3 (**)

Calculer $\lim_{x \to +\infty} \int_{r}^{2x} \frac{\sin(t)}{t^2} dt \quad \text{et} \quad \lim_{x \to 0^+} \int_{r}^{2x} \frac{\sin(t)}{t^2} dt$

Indications : Utiliser l'inégalité triangulaire pour la limite en $+\infty$ et l'inégalité de Taylor-Lagrange pour la limite en 0^+ .

Exercice 4 (***)

Soit $f \in \mathcal{C}^2([0;1],\mathbb{R})$. Montrer

$$n \int_0^1 f(t) dt - \sum_{k=0}^{n-1} f\left(\frac{k}{n}\right) \xrightarrow[n \to \infty]{} \frac{f(1) - f(0)}{2}$$

Indications: Écrire $n \int_0^1 f(t) dt - \sum_{k=0}^{n-1} f\left(\frac{k}{n}\right)$ sous forme de somme d'intégrales puis faire apparaître un développement de Taylor à l'ordre 1.

Exercice 5 (***)

Soit $f \in \mathscr{C}([0;1], E)$ avec E euclidien. Déterminer une condition nécessaire et suffisante pour avoir

$$\|\int_0^1 f(t) \, \mathrm{d}t\| = \int_0^1 \|f(t)\| \, \mathrm{d}t$$

Indications: Procéder par analogie avec le cas d'égalité dans l'inégalité triangulaire dans C.

Exercice 6 (***)

Soit $f \in \mathcal{C}^2([0;1], E)$ avec E un K-ev de dimension finie. On suppose

$$f(0) = f'(0) = f'(1) = 0$$
 et $||f(1)|| = 1$

Montrer

$$||f''||_{\infty} \geqslant 4$$

Indications : Utiliser l'inégalité de Taylor-Lagrange sur $\left[0;\frac{1}{2}\right]$ et $\left[\frac{1}{2};1\right]$.

Exercice 7 (****)

On pose $\forall n \in \mathbb{N}^*$ $P_n = \prod_{k=0}^n (X - k)$ et $\forall x \in] 0; 1 [$ $f_n(x) = \sum_{k=0}^n \frac{1}{x - k}$

- 1. Montrer que pour tout n entier non nul, le polynôme P'_n admet une unique racine x_n sur]0;1[.
- 2. Pour n entier non nul, préciser la valeur de $f_n(x_n)$.

3. Établir
$$\forall n \in \mathbb{N}^* \qquad \sum_{k=1}^n \frac{1}{k} \leqslant \frac{1}{x_n} \leqslant \frac{1}{1-x_n} + \sum_{k=1}^{n-1} \frac{1}{k}$$

4. En déduire un équivalent simple de x_n pour $n \to +\infty$.

5. Établi
r
$$\forall u \in \left[\,0\,; \frac{1}{2}\,\right] \qquad |\ln(1-u) + u| \leqslant 2u^2$$

6. En déduire un équivalent simple de $|P_n(x_n)|$ pour $n \to +\infty$.

Indications: 2. Écrire la décomposition en éléments simples de $\frac{P'_n}{P_n}$.

- 3. Isoler le premier terme de la somme $f_n(x_n)$ et utiliser le fait que $x_n \in]0;1[$.
- 5. Écrire l'inégalité de Taylor-Lagrange.
- 6. Factoriser $x_n n!$ dans l'écriture de $|P_n(x_n)|$ puis considérer le logarithme du produit restant et utiliser l'inégalité établie à la question précédente.