Feuille d'exercices n°29

Exercice 1 (**)

Soit E un K-ev normé, $a \in E$ et r > 0. Montrer $\overline{B(a,r)} = B_f(a,r)$.

Corrigé : On a $B(a,r) \subset B_f(a,r)$ d'où $\overline{B(a,r)} \subset B_f(a,r)$ par fermeture d'une boule fermée. Soit $x \in B_f(a,r)$. On pose

$$\forall n \in \mathbb{N}^*$$
 $x_n = a + \left(1 - \frac{1}{n}\right)(x - a)$

On a clairement $x_n \xrightarrow[n \to \infty]{} x$ et $||x_n - a|| < ||x - a||$ d'où $||x_n - a|| < r$ pour $n \ge 1$ ce qui prouve que la suite est à valeurs dans B(a, r). Par caractérisation séquentielle de l'adhérence, on a $B_f(a, r) \subset \overline{B(a, r)}$ et on conclut

$$\overline{\mathrm{B}(a,r)} = \mathrm{B}_f(a,r)$$

Exercice 2 (**)

Soit E un \mathbb{K} -evn et $A \subset E$.

1. Montrer

A fermé
$$\iff \partial A \subset A$$

2. Montrer

A ouvert
$$\iff$$
 A $\cap \partial$ A = \varnothing

Corrigé: 1. On a $\partial A = \bar{A} \setminus \mathring{A}$. Si A est fermé, alors $A = \bar{A}$ et le sens direct est immédiat. On a $A \cup \partial A = \bar{A}$. En effet, soit $x \in \bar{A}$. Si $x \in \mathring{A}$, alors $x \in A$ d'où $x \in A \cup \partial A$. Si $x \notin \mathring{A}$, alors $x \in \partial A$ d'où $x \in A \cup \partial A$ ce qui prouve $\bar{A} \subset A \cup \partial A$ et l'autre inclusion est immédiate. Par conséquent, si $\partial A \subset A$, alors $\bar{A} = A \cup \partial A = A$ et on conclut

2. On a

$$E \setminus A$$
 fermé $\iff \partial(E \setminus A) \subset E \setminus A$

Or, on sait que $\partial A = \partial (E \setminus A)$ d'où

$$E \setminus A \text{ ferm\'e} \iff \partial A \cap A = \emptyset$$

Ainsi

A ouvert
$$\iff$$
 $A \cap \partial A = \emptyset$

Exercice 3 (**)

Soit E un K-evn et A, B deux parties non vides de E. On définit $d(A, B) = \inf_{(x,y) \in A \times B} ||x - y||$.

Montrer

$$d(A,B)=d(\bar{A},\bar{B})$$

Corrigé: On a clairement $d(\bar{A}, \bar{B}) \leq d(A, B)$ puisque $A \times B \subset \bar{A} \times \bar{B}$. Soit $(a, b) \in \bar{A} \times \bar{B}$. Par caractérisation séquentielle, il existe $(a_n)_n \in A^{\mathbb{N}}$ et $(b_n)_n \in B^{\mathbb{N}}$ telles que $a_n \xrightarrow[n \to \infty]{} a$ et $b_n \xrightarrow[n \to \infty]{} b$.

Or, on a

$$\forall n \in \mathbb{N} \qquad d(A, B) \leqslant ||a_n - b_n||$$

L'application $E^2 \to E$, $(x,y) \mapsto x-y$ est linéaire avec $||x-y|| \le ||(x,y)||_1$ pour $(x,y) \in E^2$ d'où sa continuité et la norme étant également continue, il vient par passage à la limite $d(A,B) \le ||a-b||$ et comme ceci vaut pour tout $(a,b) \in \bar{A} \times \bar{B}$, par passage à la borne inférieure, on obtient

$$d(A,B) = d(\bar{A},\bar{B})$$

Exercice 4 (***)

Soient A et B deux fermés disjoints de E un K-evn.

- 1. Trouver $f \in \mathscr{C}(\mathcal{E}, \mathbb{R})$ tel que $f_{|_{\mathcal{A}}} = 0$ et $f_{|_{\mathcal{B}}} = 1$.
- 2. En déduire qu'il existe des ouverts U et V disjoints tels que $A \subset U$ et $B \subset V$.

Corrigé: 1. On pose

$$\forall x \in E$$
 $f(x) = \frac{d(x, A)}{d(x, A) + d(x, B)}$

L'application est bien définie car

$$d(x, A) + d(x, B) = 0 \iff x \in \bar{A} = A \text{ et } x \in \bar{B} = B$$

ce qui est impossible puisque A et B sont disjoints. Il s'agit donc d'un quotient de fonctions continues dont le dénominateur ne s'annule pas. On a clairement f(x)=0 pour $x\in A$ et $f(x)=\frac{\mathrm{d}(x,\mathrm{A})}{\mathrm{d}(x,\mathrm{A})}=1$ pour $x\in \mathrm{B}$. On choisit donc

$$\forall x \in E$$
 $f(x) = \frac{d(x, A)}{d(x, A) + d(x, B)}$

2. On pose U = $f^{-1}(] - \infty; \frac{1}{2}[)$ et V = $f^{-1}(] \frac{1}{2}; + \infty[)$. Les ensembles U et V sont ouverts comme images réciproques d'ouverts par une application continue. On a

$$A \subset f^{-1}(\{0\}) \subset f^{-1}(] - \infty; \frac{1}{2}[) = U \text{ et } B \subset f^{-1}(\{1\}) \subset f^{-1}(] \frac{1}{2}; +\infty[) = V$$

et

Ainsi

$$\mathrm{U} \cap \mathrm{V} = f^{-1}\left(\left] - \infty; \frac{1}{2}\left[\cap \right] \frac{1}{2}; + \infty\right[\right) = f^{-1}(\varnothing) = \varnothing$$

Il existe des ouverts disjoints U et V tels que $A \subset U$ et $B \subset V$.

Exercice 5 (**)

Soit E un K-evn et A une partie convexe de E. Montrer que Ā et Å sont convexes.

Corrigé:

Soit $(a,b) \in \mathring{A}^2$. Il existe r > 0 tel que $B(a,r) \subset A$ et $B(b,r) \subset A$ (on choisit le minimum des rayons pour chaque boule). Soit $\lambda \in [0;1]$ et $x \in B(\lambda a + (1-\lambda)b,r)$. On pose $u = x - \lambda a - (1-\lambda)b$. On a donc ||u|| < r. Puis

$$x = \lambda a + (1 - \lambda)b + u = \lambda(a + u) + (1 - \lambda)(b + u)$$

avec

$$a + u \in B(a, r)$$
 et $b + u \in B(b, r)$

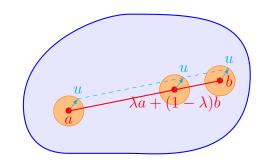


FIGURE 1 – Intérieur d'une partie convexe

On a donc $a+u \in A$ et $b+u \in A$ d'où $x \in A$ par convexité. Ceci prouve que $B(\lambda a+(1-\lambda)b,r) \subset A$. Soit $(a,b) \in \bar{A}^2$ et $\lambda \in [0;1]$. Il existe $(a_n)_n$ et $(b_n)_n$ à valeurs dans A telles que $a_n \xrightarrow[n \to \infty]{} a$ et $b_n \xrightarrow[n \to \infty]{} b$. Par suite

$$\lambda a_n + (1 - \lambda)b_n \xrightarrow[n \to \infty]{} \lambda a + (1 - \lambda)b \in \bar{A}$$

On conclut

Pour A convexe, les parties $\bar{\mathbf{A}}$ et $\mathring{\mathbf{A}}$ sont également convexes.

Exercice 6 (***)

Montrer qu'une forme linéaire est continue si et seulement si son noyau est fermé.

Corrigé : Soit $\varphi \in \mathcal{L}(E, \mathbb{K})$. Si φ est continue, alors Ker $\varphi = \varphi^{-1}(\{0\})$ est un fermé comme image réciproque d'un fermé par une application continue. Supposons Ker φ fermé. Si Ker $\varphi = E$, alors $\varphi = 0$ et le résultat suit. Supposons φ est discontinue. Pour tout $C \geqslant 0$, il existe $x \in E$ tel que $|\varphi(x)| > C||x||$. On peut donc construire une suite $(x_n)_n$ vérifiant

$$\forall n \in \mathbb{N} \qquad |\varphi(x_n)| > n||x_n||$$

En particulier, on a $\varphi(x_n) \neq 0$ du fait de l'inégalité stricte ci-dessus. On pose

$$\forall n \in \mathbb{N}^* \qquad y_n = \frac{x_n}{\varphi(x_n)}$$

Pour $u \in E$, on pose

$$\forall n \in \mathbb{N}^* \qquad u_n = u - \varphi(u) y_n$$

La suite est à valeurs dans Ker φ et $u_n \xrightarrow[n \to \infty]{} u$. Par fermeture, on obtient $u \in \text{Ker } \varphi$ et ce pour tout $u \in \text{E}$ ce qui prouve la nullité de φ et contredit sa discontinuité. Ainsi

Une forme linéaire est continue si et seulement si son noyau est fermé.

Exercice 7 (***)

Soit $\mathcal{E} = \{(u_n)_n \in \mathbb{K}^{\mathbb{N}} \mid \sum |u_n| \text{ converge}\}$ muni de la norme $\|\cdot\|_1$ définie par $\|u\|_1 = \sum_{n=0}^{+\infty} |u_n|$ pour $u \in \mathcal{E}$ et $\varphi \in \mathscr{L}_c(\mathcal{E}, \mathbb{R})$. Montrer qu'il existe un unique $(y_n)_n \in \mathbb{K}^{\mathbb{N}}$ bornée tel que $\varphi(u) = \sum_{n=0}^{+\infty} u_n y_n$ pour tout $u \in \mathcal{E}$.

Corrigé: On procède par analyse/synthèse.

- Analyse: On suppose l'existence de y. Soit k entier et $\delta_k = (\delta_{k,n})_n$. On a $\varphi(\delta_k) = \sum_{n=0}^{+\infty} \delta_{k,n} y_n = y_k$. La suite $y = (y_n)_n = (\varphi(\delta_n))_n$ est donc déterminée de manière unique sous réserve d'existence.
- Synthèse : On choisit le y précédemment déterminé. L'application φ est linéaire continue donc lipschitzienne en 0, i.e. il existe $C \ge 0$ tel que

$$\forall u \in E \qquad |\varphi(u)| \leqslant C||u||_1$$

Ainsi

$$\forall n \in \mathbb{N}$$
 $|y_n| = |\varphi(\delta_n)| \leqslant C ||\delta_n||_1 = C$

Soit N entier et $u \in E$. La série $\sum u_n y_n$ converge absolument. Par linéarité, on a

$$\varphi\left(\sum_{n=0}^{N} u \delta_n\right) = \sum_{n=0}^{N} \varphi(u \delta_n) = \sum_{n=0}^{N} \varphi(u_n \delta_n) = \sum_{n=0}^{N} u_n \varphi(\delta_n) = \sum_{n=0}^{N} u_n y_n \xrightarrow[N \to +\infty]{} \sum_{n=0}^{+\infty} u_n y_n$$

Enfin, comme le reste d'une série convergente est de limite nulle, il vient

$$\|\sum_{n=0}^{N} u \delta_n - u\|_1 = \|\sum_{n \ge N+1} u \delta_n\|_1 = \sum_{n=N+1}^{+\infty} u_n \xrightarrow[N \to +\infty]{} 0$$

Par continuité, il en résulte

$$\varphi(u) = \sum_{n=0}^{+\infty} u_n y_n$$

On conclut

Il existe un unique
$$(y_n)_n \in \mathbb{K}^{\mathbb{N}}$$
 bornée tel que $\varphi(u) = \sum_{n=0}^{+\infty} u_n y_n$ pour tout $u \in \mathcal{E}$.

Remarque : L'espace E est habituellement noté $\ell^1(\mathbb{N})$ et l'espace des suites bornées noté $\ell^{\infty}(\mathbb{N})$. L'ensemble des formes linéaires continues sur $\ell^1(\mathbb{N})$ est appelé dual topologique de $\ell^1(\mathbb{N})$ et noté $\ell^1(\mathbb{N})'$. On a démontré précédemment l'égalité

$$\ell^1(\mathbb{N})' \simeq \ell^\infty(\mathbb{N})$$

Exercice 8 (**)

- 1. Montrer que $GL_n(\mathbb{K})$ est un ouvert dense de $\mathscr{M}_n(\mathbb{K})$.
- 2. Montrer $\forall (A, B) \in \mathscr{M}_n(\mathbb{K}) \qquad \chi_{AB} = \chi_{BA}$
- 3. Montrer $\forall (A, B) \in \mathscr{M}_n(\mathbb{K})$ $\operatorname{Com}(AB) = (\operatorname{Com} A) (\operatorname{Com} B)$

Corrigé: 1. Soit $M \in \mathcal{M}_n(\mathbb{K})$. On a $M - \frac{1}{p}I_n \xrightarrow{p \to +\infty} M$ et comme χ_M admet un nombre fini de racines, on a $\chi_M\left(\frac{1}{p}\right) \neq 0$ pour p suffisamment grand ce qui signifie exactement que $M - \frac{1}{n}I_n \in GL_n(\mathbb{K})$ à partir d'un certain rang. On conclut

L'ensemble
$$GL_n(\mathbb{K})$$
 est dense dans $\mathscr{M}_n(\mathbb{K})$.

2. Soit $(A, B) \in GL_n(\mathbb{K}) \times \mathscr{M}_n(\mathbb{K})$. On a

$$\chi_{AB} = \det(XI_n - AB) = \det(A) \det(XA^{-1} - B)$$
$$= \det(XA^{-1} - B) \det(A) = \det(XI_n - BA) = \chi_{BA}$$

Or l'application $M\mapsto \chi_M$ est continue. En effet, on a

$$\forall \lambda \in \mathbb{K}$$
 $\chi_{\mathrm{M}} = \sum_{\sigma \in \mathrm{S}_n} \varepsilon(\sigma) \prod_{i=1}^n \left(\mathrm{X} \delta_{i,\sigma(i)} - m_{i,\sigma(i)} \right)$

donc les coefficients de χ_{M} sont polynomiaux en les coefficients de M. Par densité de $GL_{n}(\mathbb{K})$ dans $\mathscr{M}_{n}(\mathbb{K})$ et continuité de $A \mapsto \chi_{AB}$ et $A \mapsto \chi_{BA}$ (continuité des applications linéaires en dimension finie et de $M \mapsto \chi_{M}$), on conclut

$$\forall (A, B) \in \mathscr{M}_n(\mathbb{K})^2 \qquad \chi_{AB} = \chi_{BA}$$

3. On a

$$\forall M \in GL_n(\mathbb{K})$$
 $Com M = det(M) (M^\top)^{-1}$

Par suite

$$\forall (A, B) \in GL_n(\mathbb{K})^2$$
 $Com(AB) = Com(A) Com(B)$

Par densité de $GL_n(\mathbb{K})$ dans $\mathscr{M}_n(\mathbb{K})$ qui implique la densité de $GL_n(\mathbb{K})^2$ dans $\mathscr{M}_n(\mathbb{K})^2$ et continuité de $M \mapsto Com(M)$ et du produit matriciel, on conclut

$$\forall (A, B) \in \mathcal{M}_n(\mathbb{K})^2 \qquad \text{Com}(AB) = \text{Com}(A) \text{ Com}(B)$$

Exercice 9 (***)

Pour $n \ge 2$, on pose $\Delta = \{x = (x_1, \dots, x_n) \in \mathbb{R}^n \mid \forall i \ne j \quad x_i \ne x_j\}$ Déterminer $\bar{\Delta}$ et $\mathring{\Delta}$.

Corrigé: Dans $E = \mathbb{R}^n$, on pose $\varphi_{i,j}: E \to \mathbb{R}, x \mapsto x_j - x_i$ pour $i \in [1; n-1]$. On a

$$\Delta = \bigcap_{1 \leqslant i < j \leqslant n} \varphi_i^{-1}(\mathbb{R}^*)$$

On conclut

L'ensemble Δ est un ouvert.

Variante : Notant $\varphi = \prod_{1 \leq i < j \leq n} \varphi_{i,j}$ polynomiale donc continue, on peut aussi écrire $\Delta = \varphi^{-1}(\mathbb{R}^*)$. Soit $x = (x_1, \dots, x_n) \in \mathbb{R}^n$. On pose

$$\forall k \geqslant 1$$
 $x^{(k)} = (x_1^{(k)}, \dots, x_n^{(k)}) = x + \frac{1}{k}(1, 2, \dots, n)$

Soit $(i, j) \in [1; n]^2$ avec $i \neq j$. Si $x_i = x_j$, alors pour $k \geqslant 1$, on a

$$x_i^{(k)} - x_j^{(k)} = \frac{i - j}{k} \neq 0$$

Si
$$x_i = x_j$$
, on a

$$x_i^{(k)} - x_j^{(k)} \xrightarrow[k \to +\infty]{} x_i - x_j \neq 0$$

d'où $x_i^{(k)} \neq x_j^{(k)}$ pour k assez grand. Ainsi, la suite $(x^{(k)})_k$ est à valeurs dans Δ à partir d'un certain rang et $x^{(k)} \xrightarrow[k \to +\infty]{} x$. On en déduit $\mathbb{R}^n \subset \bar{\Delta}$ et par conséquent

$$\bar{\Delta} = \mathbb{R}^n$$

Exercice 10 (***)

- 1. Montrer que l'ensemble $\mathcal{D}_n^s(\mathbb{C})$ des matrices diagonalisables de $\mathcal{M}_n(\mathbb{C})$ à valeurs propres simples est dense dans $\mathcal{M}_n(\mathbb{C})$.
- 2. En déduire une nouvelle démonstration du théorème de Cayley-Hamilton.

Corrigé : 1. Soit $M \in \mathcal{M}_n(\mathbb{C})$. On dispose de $P \in GL_n(\mathbb{C})$ telle que $T = P^{-1}MP$ est triangulaire. Définissons la suite de matrices triangulaires $(T_k)_k$ par

$$\forall k \geqslant 1$$
 $T_k = T + \frac{1}{k}\operatorname{diag}(1, \dots, n) = \left(t_{i,j}^{(k)}\right)$

Considérons les i-èmes et j-èmes termes diagonaux de T_k avec $i \neq j$. Si $t_{i,i} = t_{j,j}$, alors

$$t_{i,i}^{(k)} - t_{j,j}^{(k)} = t_{i,i} + \frac{i}{k} - t_{j,j} - \frac{j}{k} = \frac{i-j}{k} \neq 0$$

Si
$$t_{i,i} \neq t_{j,j}$$
, alors $t_{i,i}^{(k)} - t_{j,j}^{(k)} = t_{i,i} + \frac{i}{k} - t_{j,j} - \frac{j}{k} \xrightarrow[k \to +\infty]{} t_{i,i} - t_{j,j} \neq 0$

Ainsi, comme il y a un nombre fini de couples $(i,j) \in [1; n]^2$ avec $i \neq j$, en choisissant k suffisamment grand, on peut garantir que les termes diagonaux de la matrice triangulaire T_k sont deux à deux distincts ce qui, par conséquent, la rend diagonalisable. Il vient par continuité du produit matriciel

$$PT_kP^{-1} \xrightarrow[k \to +\infty]{} PTP^{-1} = M$$

Par conséquent

L'ensemble
$$\mathscr{D}_n^s(\mathbb{C})$$
 est dense dans $\mathscr{M}_n(\mathbb{C})$.

2. L'application $M \mapsto \chi_M(M) = \sum_{k=0}^n a_k(M) M^k$ est continue. En effet, les puissances $M \mapsto M^k$ sont continues (à coefficients polynomiaux en les coefficients de M) et les coefficients $M \mapsto a_k(M)$ sont polynomiaux en les coefficients de M puisque

$$\chi_{\mathrm{M}} = \sum_{\sigma \in S_n} \varepsilon(\sigma) \prod_{i=1}^n \left(X \delta_{i,\sigma(i)} - m_{i,\sigma(i)} \right)$$

Considérons $M \in \mathscr{D}_n^s(\mathbb{C})$ et $u \in \mathscr{L}(\mathbb{C}^n)$ canoniquement associé. Soit $\mathscr{B} = (\varepsilon_i)_{i \in [\![1]; n[\![]\!]}$ une base de diagonalisation de u et $\mathrm{Sp}(u) = \{\lambda_i, i \in [1; n]\}$. On a

$$\forall i \in [1; n] \qquad \chi_u(u)(\varepsilon_i) = \left[\bigcap_{k \in [1; n] \setminus \{i\}} (u - \lambda_k \operatorname{id}) \right] \circ (u - \lambda_i \operatorname{id})(\varepsilon_i) = 0$$

Ainsi, l'endomorphisme $\chi_u(u)$ s'annule sur une base d'où

$$\forall \mathbf{M} \in \mathcal{D}_n^s(\mathbb{C}) \qquad \chi_{\mathbf{M}}(\mathbf{M}) = 0$$

La fonction nulle et la fonction continue $M \mapsto \chi_M(M)$ coïncident sur l'ensemble dense $\mathscr{D}_n^s(\mathbb{C})$ d'où

$$\forall M \in \mathscr{M}_n(\mathbb{C}) \qquad \chi_M(M) = 0$$

Exercice 11 (***)

Soit E un K-evn.

1. Montrer que pour U, V ouverts, on a

$$\bar{\mathbf{U}} = \bar{\mathbf{V}} = \mathbf{E} \implies \overline{\mathbf{U} \cap \mathbf{V}} = \mathbf{E}$$

2. En déduire que pour F, G fermés, on a

$$\mathring{F} = \mathring{G} = \varnothing \implies (F \cup G)^{\circ} = \varnothing$$

Corrigé: 1. Soit $x \in E$ et r > 0. On a $B(x,r) \cap U \neq \emptyset$. Soit $y \in B(x,r) \cap U$. On a $B(x,r) \cap U$ ouvert comme intersection finie d'ouverts. Par suite, il existe $\varepsilon > 0$ tel que $B(y, \varepsilon) \subset B(x, r) \cap U$. Comme V = E, on a $B(y, \varepsilon) \cap V \neq \emptyset$ et comme $B(y, \varepsilon) \subset U$, il s'ensuit

$$B(y,\varepsilon) \cap (U \cap V) \neq \emptyset$$
 et $B(y,\varepsilon) \cap (U \cap V) \subset B(x,r) \cap (U \cap V)$

Ainsi

$$\forall r > 0$$
 $B(x,r) \cap (U \cap V) \neq \emptyset$

On conclut

$$\forall r > 0$$
 $B(x,r) \cap (U \cap V) \neq \emptyset$ $\overline{U} = \overline{V} = E \implies \overline{U \cap V} = E$

2. En considérant $U = E \setminus F$, $V = E \setminus G$ et après passage au complémentaire, on obtient

$$\mathring{F} = \mathring{G} = \varnothing \implies (F \cup G)^{\circ} = \varnothing$$

Exercice 12 (***)

Soit E un evn et A \subset E. Un point $x \in$ A est dit isolé s'il existe $\varepsilon > 0$ tel que B $(x, \varepsilon) \cap A \setminus \{x\} = \emptyset$. $\mathscr{S} = \{ \mathbf{M} \in \mathscr{M}_n(\mathbb{R}) \mid \mathbf{M}^2 = \mathbf{I}_n \}$ On note

- 1. Montrer que I_n est un point isolé de \mathscr{S} .
- 2. Déterminer tous les points isolés de \mathscr{S} .

Corrigé : 1. On munit $\mathcal{M}_n(\mathbb{R})$ de la norme subordonnée. Soit $A \in \mathscr{S}$ avec $A \neq I_n$. Il existe $X \in \mathcal{M}_{n,1}(\mathbb{R})$ normé tel que AX = -X. Il en résulte que $||A - I_n|| \ge 2$. On conclut

Le point
$$I_n$$
 est isolé dans \mathscr{S} .

Variante: Supposons que I_n ne soit pas isolé dans \mathscr{S} . Alors, on peut trouver une suite $(A_k)_k \in (\mathscr{S} \setminus \{I_n\})^{\mathbb{N}}$ telle que $A_k \xrightarrow[k \to +\infty]{} I_n$. Pour k entier, la matrice A_k est une matrice de symétrie différente de I_n d'où l'existence de $X_k \in \mathscr{M}_{n,1}(\mathbb{R})$ tel que $A_k X_k = -X_k$. On munit $\mathscr{M}_{n,1}(\mathbb{R})$ et on norme les colonnes X_k . Ainsi, on a une suite à valeurs dans un compact. Quitte à extraire, on peut la supposer convergente avec $X_k \xrightarrow[k \to +\infty]{} X$. Ainsi, on a $A_k X_k = -X_k$ pour tout k entier et par continuité du produit matriciel, il vient

$$A_k X_k \xrightarrow[k \to +\infty]{} I_n X = -X \text{ avec } X \neq 0$$

ce qui est absurde.

2. De la même manière, on montre que $-I_n$ est isolé dans \mathscr{S} . Considérons désormais A point isolé de \mathscr{S} et supposons $A \neq \pm I_n$. Ainsi, il existe $P \in GL_n(\mathbb{R})$ telle que $P^{-1}AP = \operatorname{diag}(I_r, -I_s)$. Pour k entier non nul, on pose

$$A_k = P \operatorname{diag}(I_{r-1}, \begin{pmatrix} 1 & 1/k \\ 0 & -1 \end{pmatrix}, -I_{s-1})P^{-1}$$

On vérifie sans difficulté que $A_k \in \mathscr{S}$ et par continuité du produit matriciel, on a $A_k \xrightarrow[k \to +\infty]{} A$ ce qui contredit le caractère isolé de A. On conclut

Les points isolés de
$$\mathscr S$$
 sont $\pm I_n$.

Exercice 13 (***)

Soit n entier non nul et $p \in [0; n]$. On note R_p l'ensemble des matrices de $\mathcal{M}_n(\mathbb{K})$ de rang $\geq p$. Montrer que R_p est un ouvert de $\mathcal{M}_n(\mathbb{K})$.

Corrigé : Soit $A \in R_p$. Il existe une matrice de $GL_p(\mathbb{R})$ extraite de A. Notons $I \times J$ les plages d'indices de cette extraction et on pose

$$\Phi \colon \begin{cases} \mathscr{M}_n(\mathbb{R}) & \longrightarrow \mathbb{R} \\ \mathbf{M} = \left(m_{i,j}\right)_{1 \leqslant i,j \leqslant n} & \longmapsto \det\left(m_{i,j}\right)_{(i,j) \in \mathbf{I} \times \mathbf{J}} \end{cases}$$

L'ensemble $U = \Phi^{-1}(\mathbb{K}^*)$ est un ouvert comme image réciproque d'un ouvert par une application continue car polynomiale. On a clairement $A \in U$ et $U \subset R_p$ puisque pour une matrice de U, l'extraction sur les indices $I \times J$ fournit une matrice de $GL_p(\mathbb{K})$. Ainsi, l'ensemble U est un voisinage ouvert de A inclus dans R_p ce qui prouve que

L'ensemble
$$R_p$$
 est un ouvert de $M_n(\mathbb{K})$.

Remarque: On note $\Lambda_p = \{(I, J) \subset [1; n]^2 \mid \text{Card } I = \text{Card } J = p\}$ et pour $(I, J) \in \Lambda_p$, on pose $M_{I,J} = (m_{i,j})_{(i,j)\in I\times J}$ et $\varphi_{I,J} : \mathscr{M}_n(\mathbb{K}) \to \mathbb{K}, M \mapsto \det(M_{I,J})$. On observe alors

$$R_{p} = \bigcup_{(I,J)\in\Lambda_{p}} \varphi_{I,J}^{-1}\left(\mathbb{K}^{*}\right)$$

ce qui prouve également l'ouverture de R_n .

Exercice 14 (***)

Soit E un K-evn et $(x_n)_n \in E^{\mathbb{N}}$. Montrer que l'ensemble des valeurs d'adhérence de $(x_n)_n$ est

$$\Lambda = \bigcap_{n \in \mathbb{N}} \overline{X_n} \quad \text{avec} \quad X_n = \{x_k, k \geqslant n\}$$

 $\forall n \in \mathbb{N} \qquad \mathrm{d}(\ell, \mathbf{X}_n) = 0$ Corrigé : Soit $\ell \in \Lambda$. On a

d'où

 $\forall n \in \mathbb{N} \qquad \forall \varepsilon > 0 \qquad \exists k \geqslant n \quad | \quad ||x_k - \ell|| \leqslant \varepsilon$ $\forall n \in \mathbb{N}^* \qquad \exists p(n) \geqslant n \quad | \quad ||x_{p(n)} - \ell|| \leqslant \frac{1}{n+1}$ puis

On pose $\varphi(0)=p(0)$ puis $\varphi(n+1)=\min\{p(\ell),\ell>\varphi(n)\}$ pour n entier. L'application φ ainsi construite est une injection strictement croissante qui vérifie $||x_{\varphi(n)} - \ell|| \leqslant \frac{1}{n}$ pour n entier non nul ce qui prouve que ℓ est valeur d'adhérence de $(u_n)_n$. Réciproquement, si ℓ est valeur d'adhérence de $(u_n)_n$, il existe une extractrice φ telle que $x_{\varphi(n)} \xrightarrow[n \to \infty]{} \ell$. Pour n entier, comme $\varphi(n) \geqslant n$, on a $(x_{\varphi(k)})_{k \geqslant n}$ à valeurs dans X_n d'où $\ell \in \overline{X_n}$ et on conclut

L'ensemble des valeurs d'adhérence de la suite $(x_n)_n$ est Λ .

Exercice 15 (***)

Soient E, F deux K-evn et $f: E \to F$. Montrer:

$$f \text{ continue } \iff \forall \mathbf{B} \subset \mathbf{F} \qquad \overline{f^{-1}(\mathbf{B})} \subset f^{-1}\left(\bar{\mathbf{B}}\right)$$

Peut-on remplacer l'inclusion par une égalité?

Corrigé: Supposons f continue. Soit $B \subset F$. Par théorème, l'adhérence \bar{B} est fermée et son image réciproque par f est donc également un fermé. On a clairement $f^{-1}(B) \subset f^{-1}(\bar{B})$ et par conséquent $\overline{f^{-1}(B)} \subset f^{-1}(\overline{B})$. Réciproquement, soit $(x_n)_n \in E^{\mathbb{N}}$ avec $x_n \xrightarrow[n \to \infty]{} x$. Supposons que f n'est pas continue en x. Il existe donc une extractrice φ telle que $||f(x_{\varphi(n)}) - f(x)|| \geqslant \varepsilon$ avec $\varepsilon > 0$. Posons B = $\{f(x_{\varphi(n)}), n \in \mathbb{N}\}$. On a

$$\forall n \in \mathbb{N} \qquad x_{\varphi(n)} \in f^{-1}(\mathbf{B}) \quad \text{et} \quad x_{\varphi(n)} \xrightarrow[n \to \infty]{} x$$

Par caractérisation séquentielle, il s'ensuit

$$x \in \overline{f^{-1}(\mathbf{B})} \subset f^{-1}(\bar{\mathbf{B}})$$

Autrement dit, il existe ψ extractrice telle que

$$f(x_{\varphi \circ \psi(n)}) \xrightarrow[n \to \infty]{} f(x)$$

ce qui contredit le choix de φ . On conclut

$$f \text{ continue } \iff \forall \mathbf{B} \subset \mathbf{F} \qquad \overline{f^{-1}(\mathbf{B})} \subset f^{-1}\left(\bar{\mathbf{B}}\right)$$

Considérons $f: x \mapsto x^+ = \max(x,0)$ qui est continue sur \mathbb{R} . On a

$$f^{-1}(]0; +\infty[) =]0; +\infty[$$
 et $f^{-1}([0; +\infty[) = \mathbb{R}$

On ne peut donc pas remplacer l'inclusion par une égalité.