Feuille d'exercices n°35

Exercice 1 (***)

Étudier la nature de la suite $(\cos \sqrt{n})$.

Indication: considérer la sous-suite (n_k) avec $n_k = \lfloor (k\pi)^2 \rfloor$.

Exercice 2 (**)

Déterminer

$$\lim_{n \to +\infty} \sum_{k=1}^{n} \operatorname{Arctan} \left(\frac{\pi}{n+k} \right)$$

Exercice 3 (***)

Soit
$$I =]0; +\infty[$$
. On pose $\forall x \in I \setminus \{1\}$ $f(x) = \int_{x}^{x^2} \frac{dt}{\ln(t)}$

- 1. Justifier que f est de classe \mathscr{C}^1 sur $I \setminus \{1\}$.
- 2. Montrer que f est prolongeable par continuité en 1. On note g ce prolongement.
- 3. Montrer que g est de classe \mathscr{C}^1 sur I.

Exercice 4 (***)

Soit E un K-evn de dimension finie, $f: \mathbb{R} \to E$ dérivable en zéro telle que f(0) = 0. Montrer que $\sum_{k=1}^{n} f\left(\frac{k}{n^2}\right)$ admet une limite pour $n \to +\infty$ et la déterminer.

Exercice 5 (**)

Soit E un K-evn et $f \in \mathcal{C}^1([a;b], E)$ avec f(a) = 0. Montrer

$$\|\int_a^b f(t) dt\| \le \frac{(b-a)^2}{2} \sup_{t \in [a;b]} \|f'(t)\|$$

Exercice 6 (***)

Soit E un K-evn de dimension finie et $f \in \mathscr{C}^2(\mathbb{R}, E)$. On suppose que f et f'' sont bornées. On note $M_0 = ||f||_{\infty}$ et $M_2 = ||f''||_{\infty}$.

1

1. Soit
$$x \in \mathbb{R}$$
, montrer que $\forall h > 0$ $||f'(x)|| \leq \frac{2M_0}{h} + \frac{hM_2}{2}$.

2. En déduire
$$M_1 = ||f'||_{\infty} \leqslant 2\sqrt{M_0 M_2}$$

3. Peut-on améliorer l'inégalité?

Exercice 7 (***)

Soit E un \mathbb{K} -ev normé de dimension finie et $f \in \mathscr{F}(E,E)$. On suppose qu'il existe $k \in]0;1[$ telle que

$$\forall (x, y) \in E^2$$
 $||f^2(x) - f^2(y)|| \le k||x - y||$

Montrer que f admet un unique point fixe.

Exercice 8 (***)

Déterminer
$$\lim_{n\to +\infty} \sin\left(2\pi n! \mathrm{e}\,\right) \quad \text{puis} \quad \lim_{n\to +\infty} n^2 \sin\left(2\pi n! \mathrm{e}\,\right)$$