Préparation à l'interrogation n°10

Étude asymptotique 1

- 1. Équivalent en 1 de $x^{\alpha} 1$;
- 2. Équivalent en 1 de ln(x);

3.
$$\left(1+\frac{1}{n}\right)^n = e^{n\ln\left(1+\frac{1}{n}\right)} = e^{n\left(\frac{1}{n}-\frac{1}{2n^2}+o\left(\frac{1}{n^2}\right)\right)} = e^{1-\frac{1}{2n}+o\left(\frac{1}{n}\right)} = e^{\left(1-\frac{1}{2n}+o\left(\frac{1}{n}\right)\right)};$$

4. Si $f(x) \underset{x \to a}{\sim} g(x)$ et $f(x) \xrightarrow[x \to a]{} 0$ ou $f(x) \xrightarrow[x \to a]{} +\infty$, alors $\ln(f(x)) \underset{x \to a}{\sim} \ln(g(x))$.

$$g(x) = f(x) + o(f(x)) = f(x)(1 + o(1))$$

puis
$$\ln(g(x)) = \underbrace{\ln(f(x))}_{\to \infty} + \underbrace{\ln(1 + \mathrm{o}(1))}_{\to 0} = \ln(f(x)) + \mathrm{o}(\ln(f(x)))$$

Le résultat suit.

2 Dérivation

Dérivée de
$$f$$
 définie par
$$\forall t>0 \qquad f(t)=t\sin\left(\frac{1}{\sqrt{t}}\right)$$

3 Trigonométrie

1.
$$\cos(p) - \cos(q) = -2\sin\left(\frac{p+q}{2}\right)\sin\left(\frac{p-q}{2}\right)$$
 2. $\sin(t)^2 = \frac{1-\cos(2t)}{2}$

Inégalités de convexité/concavité

- 1. $\forall t \in \left[0; \frac{\pi}{2}\right]$ $\frac{2}{\pi}t \leqslant \sin(t) \leqslant t;$
- 2. $\forall t > -1$ $\ln(1+t) \leq t$;
- 3. $\forall t \in \mathbb{R}$ $1 + t \leqslant e^t$;
- 4. $\forall u \geqslant -1$ $(1+u)^{\alpha} \geqslant 1 + \alpha u$ avec $\alpha \geqslant 1$;
- 5. $\forall u \geqslant 0$ $1 u^{\alpha} \leqslant \alpha (1 u)$ avec $\alpha \geqslant 1$.

5 **Formules**

1. Taylor reste intégral

2.
$$x^n - y^n = (x - y) \sum_{k=0}^{n-1} x^k y^{n-1-k}$$

6 Séries numériques

- 1. Encadrement du reste d'une série par comparaison série/intégrale;
- 2. Critère de d'Alembert;
- 3. Critère des séries alternées;
- 4. Contrôle du reste d'une série alternée.

7 Exercice type

Déterminer
$$\lim_{n\to+\infty} \int_0^n \sqrt{t} \left(1-\frac{t}{n}\right)^n dt$$
.

Corrigé : On définit la suite de fonctions continues par morceaux

$$\forall (n,t) \in \mathbb{N}^* \times \mathbb{R}_+ \qquad f_n(t) = \begin{cases} \sqrt{t} \left(1 - \frac{t}{n} \right)^n & \text{si } t \in [0; n] \\ 0 & \text{si } t > n \end{cases}$$

Soit $t \ge 0$. Pour n > t, on a

$$f_n(t) = \sqrt{t} \left(1 - \frac{t}{n} \right)^n = \sqrt{t} e^{n \ln\left(1 - \frac{t}{n}\right)} = \sqrt{t} e^{n\left(-\frac{t}{n} + o\left(\frac{1}{n}\right)\right)} = \sqrt{t} e^{-t + o(1)} \xrightarrow[n \to \infty]{} \sqrt{t} e^{-t}$$

Et avec l'inégalité de concavité $\ln(1-u) \leqslant -u$ pour u < 1, il vient

$$0 \leqslant f_n(t) = \sqrt{t} e^{n \ln\left(1 - \frac{t}{n}\right)} \leqslant \sqrt{t} e^{-t}$$

Posant $f: \mathbb{R}_+ \to \mathbb{R}, t \mapsto \sqrt{t}e^{-t}$, on a $f \in \mathscr{C}(\mathbb{R}_+, \mathbb{R})$ et $f(t) = o\left(\frac{1}{t^2}\right)$ par croissances comparées d'où l'intégrabilité de f qui est à la fois limite et dominante de la suite $(f_n)_{n\geqslant 1}$. Par convergence dominée, on conclut

$$\int_0^n \sqrt{t} \left(1 - \frac{t}{n} \right)^n dt \xrightarrow[n \to \infty]{} \int_0^{+\infty} \sqrt{t} e^{-t} dt$$

8 Exercice type

Sommabilité de $\left(\frac{1}{(m+n)^3}\right)_{(m,n)\in(\mathbb{N}^*)^2}$ (voir cours).

9 Exercice type

On pose

$$\forall n \in \mathbb{N} \qquad \forall x \in [0;1] \qquad f_n(x) = nx^n(1-x)$$

Étudier le mode de convergence de $(f_n)_n$.

Corrigé : On a $f_n(x) \xrightarrow[n \to \infty]{} 0$ pour tout $x \in [0; 1]$ (croissances comparées sur [0; 1]) puis avec une étude de fonctions (à faire!)

$$\forall n \in \mathbb{N}$$
 $||f_n||_{\infty} = f_n\left(\frac{n}{n+1}\right) = \left(1 - \frac{1}{n+1}\right)^{n+1} \xrightarrow[n \to \infty]{} e^{-1}$

2

Ainsi La suite $(f_n)_n$ converge simplement mais non uniformément vers la fonction nulle.

10 Questions de cours

Familles sommables, suites de fonctions, graphes usuels.