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MP ISM     Poly à trous      2025-2026 

 

CH EM 4 - LES EQUATIONS DE MAXWELL 
 

 

I. Conservation de la charge 

 

1) Principe de conservation- Bilan de charges :  

 

L’intensité I du courant sortant d’une surface fermée S est reliée à la charge Q contenue 

dans le volume enfermé par la surface S par la relation :      𝐼 = −
𝑑𝑄

𝑑𝑡
    

 

Démo :                  Soit S une surface fermée délimitant un volume V fixe. 

 Soit Q(t) la charge contenue dans V à l’instant t 

 Q(t+dt) = Q(t) + dQ 

 dQ est la charge qui est entrée dans V entre t et t+dt donc la charge 

qui a traversé S dans le sens de −𝑛⃗  entre t et t+dt 

  

 Or par définition de l’intensité à travers S (dans le sens de +𝑛⃗  
donc sortant de S) :  

 

 𝐼 =
𝑐ℎ𝑎𝑟𝑔𝑒 𝑞𝑢𝑖 𝑡𝑟𝑎𝑣𝑎𝑣𝑒𝑟𝑠𝑒 𝑆 𝑑𝑎𝑛𝑠 𝑙𝑒 𝑠𝑒𝑛𝑠 𝑑𝑒+𝑛⃗  𝑝𝑒𝑛𝑑𝑎𝑛𝑡 𝑑𝑡

𝑑𝑡
=
−𝑑𝑄

𝑑𝑡
 

  

 

 

 

 

 

 

 

2) Forme locale : équation locale de conservation de la charge     
 

CE : Établir l’équation locale de conservation de la charge 

 

Démo :  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0)( =



+

t
jdiv


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3) Loi des nœuds 

 

En régime stationnaire 0)( =jdiv


 donc : 

 

 

 

 

Donc 𝑗  est à flux conservatif (  ∯ 𝑗 . 𝑛⃗ 𝑑𝑆
 

𝑆
= 0   ∀𝑆 )  . On en déduit : 

 

a) La loi des nœuds 

 

Démo : 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b) La conservation de l’intensité le long d’un circuit non bifurqué. 

 

 

 

 

 

 

 

II. Les équations de Maxwell 
 

1) Les postulats de l’électromagnétisme 

 

- la loi de force de Lorentz )( BvEqF


+=  

 

- les équations de Maxwell dans le vide : (CE)  

(MT)  𝑑𝑖𝑣(𝐵⃗ ) = 0   (Maxwell-Thomson)  
  

(MG)  𝑑𝑖𝑣(𝐸⃗ ) =
𝜌

𝜀0
   (Maxwell-Gauss)  

 

(MF)  𝑟𝑜𝑡
→  

(𝐸⃗ ) = −
𝜕𝐵⃗ 

𝜕𝑡
  (Maxwell-Faraday) 

 

(MA) 𝑟𝑜𝑡
→  

(𝐵⃗ ) = 𝜇0𝑗 + 𝜀0𝜇0
𝜕𝐸⃗ 

𝜕𝑡
 (Maxwell-Ampère) 

avec uSI9

0

10.9
4

1
=


et 0 = 4.10-7uSI             
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2) L’équation locale de conservation de la charge 0)( =



+

t
jdiv


  

 

CE : Vérifier la cohérence des équations de Maxwell avec l’équation locale de la conservation de la 

charge.  

Montrons que l’équation locale de conservation de la charge est contenue dans les équations de 

Maxwell : 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CE : Citer, utiliser et interpréter les équations de Maxwell sous forme intégrale : 
 

3) L’équation de Maxwell-Thomson ou équation du flux magnétique 0)( =Bdiv


 

Elle permet de montrer que B


 est à flux conservatif : 

 

 

 

 

 

 

 

 

 

 

 

 

 

4) L’équation de Maxwell-Gauss 0/)( =Ediv


 

Elle permet de montrer le théorème de Gauss : 
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5) L’équation de Maxwell-Faraday 
t

B
Erot




−=)(


  

(CE) Associer l’équation de Maxwell-Faraday à la loi de Faraday. 

Elle permet de montrer la loi de Faraday 𝑒 = −
𝑑Ф𝐵

𝑑𝑡
 donc elle rend compte des phénomènes 

d’induction. C’est admis. 

 

Forme intégrale de l’équation de Maxwell-Faraday : 

∮𝐸⃗ .
 

𝐶

𝑑𝑙⃗⃗  ⃗ = −
𝑑

𝑑𝑡
(∬ 𝐵⃗ . 𝑛⃗ 𝑑𝑆

 

𝑆 𝑠′𝑎𝑝𝑝𝑢𝑦𝑎𝑛𝑡𝑠𝑢𝑟 𝐶

) = −
𝑑Ф𝐵
𝑑𝑡

 

Démo dans le cas d’un circuit fixe dans un champ magnétique qui dépend du temps : 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

En régime variable 𝐸⃗  n’est plus à circulation conservative, donc 𝐸⃗ = −𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (𝑉) n’est plus valable. 

Conséquence : Il y a couplage entre E


et B


 : toute variation temporelle de B


crée E


. 

En régime variable, les sources de E


sont les charges et les variations temporelles de B


. 

 

6) L’équation de Maxwell-Ampère  
t

E
jBrot




+=




000)(   

 

En régime permanent elle permet de montrer le théorème d’Ampère. 

 

En régime variable, le théorème d’Ampère généralisé : 

  

 

 

 

ienlacé  est appelé le vrai courant. 

 

Définition du courant de déplacement :   𝑖𝐷 = ∬𝜀0
𝜕𝐸⃗ 

𝜕𝑡
. 𝑛⃗ 𝑑𝑆 

 

Définition de la densité de courant de déplacement :  

 

 

Démo : 

 

 

 

 

 

 

 

 



+= dSn

t

E
ildB enlacé





000 

t

E
jD




=




0
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Conséquence : Il y a couplage entre E


et B


 : toute variation temporelle de E


 crée B


. 

En régime variable, les sources de B


sont les vrais courants et les variations temporelles de E


 

(courants de déplacement). 

 

7) Couplage des champs électrique et magnétique :  

 

CE : Associer le couplage spatio-temporel entre champ électrique et champ magnétique au 

phénomène de propagation. (à la possibilité de propagation du champ électromagnétique). 

Voir l’établissement de l’équation de propagation à partir des équations de Maxwell aux Ch EM6,7,9. 
 
 

8) Notions sur les milieux 
 

Les équations de Maxwell écrites jusqu’ici ne sont valables que dans le vide.  

 

Dans les milieux linéaires homogènes et isotropes (LHI) elles sont encore valables à condition de 

remplacer 0  par r 0=  et 0  par r 0= .  

 est la permittivité diélectrique du milieu, 0 est la permittivité diélectrique du vide, r est la 

permittivité relative du milieu,  

 est la perméabilité magnétique du milieu, 0 est la perméabilité magnétique du vide, r est la 

perméabilité relative du milieu. 

 

Exemples de milieux LHI : 

- milieux diélectriques : ce sont les milieux dans lesquels       μ = μ0  et εr ≠ 1 

 

Ordres de grandeur :  Air : εr -1 = 6.10-3  

   On dira que l’air a les propriétés électromagnétiques du vide. 

Eau :  en régime permanent  r(eau)=84,  

dans le domaine optique r(eau)= n2 = (1,33)2 

 

 

 

 

 

 

r(BaTiO3)=1760, 

 

- milieux magnétiques : ce sont les milieux dans lesquels ε = ε0   et μr ≠ 1 

 

Ordres de grandeur :  r(acier)100,  

r(fer pur)105 
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9) Changement de référentiel   

 

Le champ électromagnétique dépend du référentiel, montrons le sur un faisceau d’électrons : 

 

Considérons un faisceau homocinétique d’électrons 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

III. Les équations locales de la magnétostatique et de l’électrostatique 
 

1) Les équations de Maxwell en régime stationnaire : 

 

(CE) Établir les lois locales des champs statiques à partir des équations de Maxwell. 

Il y a découplage des champs électrique et magnétique en régime stationnaire. On peut calculer 

séparément 𝐸⃗  créé par les charges et 𝐵⃗  créé par les courants 

 

Equations locales de l’électrostatique : 

(MF) 0)( =Erot


   𝐸⃗  est à circulation conservative  

et définition du potentiel V par 𝐸⃗ = −𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (𝑉) qui n’est valable 

qu’en électrostatique (pas en régime variable) 
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(MG) 0/)( =Ediv


   le théorème de Gauss 

 

Equations locales de la magnétostatique : 

(MT) 0)( =Bdiv


  𝐵⃗  est à flux conservatif  

(MA) jBrot


0)( =    le théorème d’Ampère 

 

2) Equations de Poisson et de Laplace de l’électrostatique 
 

Définition de V ( à une constante près ):  )(/0)( VgradEVErot −==


 

 

Puis 0/)( =Ediv


 donne l’équation de Poisson :  
0


−=V  

Démo :  

 

 

 

 

 

 

 

 

Dans une région vide de charges, cette équation devient l’équation de Laplace : 0=V  
 

(CE) Établir les équations de Poisson et de Laplace de l’électrostatique. 

(CE) Exprimer par analogie les équations de Poisson et de Laplace dans le cas de la gravitation. 
 

interaction électrostatique interaction gravitationnelle 

Champ électrostatique 
 

Potentiel électrostatique 
 

Charge volumique 
 

Constante 
 

Equation de Poisson électrostatique 

 

Champ gravitationnel 
 

Potentiel gravitationnel 
 

Masse volumique 
 

Constante 
 

Equation de Poisson gravitationnelle 

 

   

Exemple pour une masse ponctuelle mO placée en O, elle crée sur la masse mM en M : 

 

 

 

 

 

 

 

 

 

 

IV. Les différents types de régimes 
 

1) Régimes stationnaires ou permanents (indépendants du temps) 

 

a) La loi des nœuds 
 

L’équation locale de conservation de la charge en régime permanent 0)( =jdiv


permet de montrer : 

- que l’intensité du courant a même valeur en tout point d’un circuit non bifurqué 

- et la loi des nœuds.   
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b) Les lois de l’électrostatique et de la magnétostatique 

 

On peut alors calculer séparément les champs électriques créés par les charges et les champs 

magnétiques créés par les courants. 

 

2) Approximation des régimes quasi-stationnaires (ou quasi-permanents) : l’ARQS 

 

C’est l’étude des régimes lentement variables. 

 

a) Les lois de Kirchhoff restent valables : la loi des nœuds et des mailles mais aussi toutes les 

lois de l’électrocinétique (capacités, bobines...) 

 

b)  Les équations de Maxwell dans l’ARQS magnétique 

On néglige le courant de déplacement
t

E
jD




=




0  donc le terme 
t

E






00 dans l’équation de 

Maxwell-Ampère. Elle devient donc : (MA)   

 

 

Mais l’équation de Maxwell-Faraday est inchangée. 

 

Donc on tient compte des phénomènes d’induction mais on néglige la propagation du champ 

électromagnétique. 

 

c) Domaine de validité de l’ARQS 

 

On néglige le temps de propagation t = 𝒍/c devant la période T du signal électrique 

ou la longueur 𝑙 du circuit devant la longueur d’onde =c.T du signal 

avec c la vitesse de propagation des ondes électromagnétiques (c=3.108 m.s-1 dans le vide). 

 
 

AN : Quand on fait de l’électrocinétique au laboratoire  fmax =  

 

On peut donc appliquer l’ARQS si 𝑙 ≪ 

 

 

 

 

 

 

 

On est dans le domaine de l’ARQS quand on fait de l’électrocinétique au laboratoire. 

 

3) Régimes rapidement variables 

 

Il faut tenir compte des phénomènes de propagation (on introduit alors des potentiels retardés au 

ChEM9 Rayonnement dipolaire électrique). 

 

C’est le domaine des ondes électromagnétiques : ondes radio, radar, ondes lumineuses … 

 

Ordres de grandeur : document « Spectre des ondes électromagnétiques ». 

 

Visible : ]8.0,4.0[ mm     

 

radio FM : autour de  f = 100MHz 

GBF Oscillo 

𝑙 


