CH EM 5 - L'ENERGIE ELECTROMAGNETIQUE

I. <u>Densité d'énergie électromagnétique</u> u

1) Définition:

L'énergie électromagnétique est répartie dans tout l'espace où règne le champ électromagnétique.

On définit une densité volumique d'énergie électromagnétique u(M,t) en J.m-3 :

En un point M un élément de volume dy renferme l'énergie dU = u(M,t)dv

2) Rappel de l'expression dans un condensateur : u_e =

Calcul dans un solénoïde infini:

3) Expression générale (admise) :

$$u = \varepsilon_0 \frac{E^2}{2} + \frac{B^2}{2\mu_0}$$

II. Vecteur de Poynting \vec{R}

1) Définition:

Les transferts d'énergie à travers une surface sont représentés par le flux du vecteur de Poynting \vec{R} :

La puissance (ou le débit d'énergie) qui traverse S à l'instant t est $P = \iint_S \vec{R} \cdot \vec{n} dS$

CE : Utiliser le flux du vecteur de Poynting à travers une surface orientée pour évaluer la puissance rayonnée.

Analogie avec l'intensité du courant (ou le débit de charges) qui est le flux de \vec{j} : i =

- 2) **Expression** (admise) : $\vec{R} = \frac{\vec{E} \wedge \vec{B}}{\mu_0}$
- 3) Ordres de grandeur :

CE : Citer des ordres de grandeur de flux énergétiques moyens (flux solaire, laser, ...)

• Flux thermique surfacique solaire reçu par la Terre :

Au sommet de l'atmosphère Ps_m =

A la surface de la Terre P'_{Sm} =

Section du faisceau laser S~

III. Puissance volumique cédée par le champ à la matière p

CE : Établir et utiliser l'expression de la puissance volumique cédée par le champ électromagnétique aux porteurs de charge.

1) Cas général :
$$p = \vec{j} \cdot \vec{E}$$

C'est une puissance volumique en W.m⁻³

La puissance cédée à un volume macroscopique V est : $P = \iiint_V \vec{j} \cdot \vec{E} dv$

Dem pour un seul type de porteurs de charges mobiles de densité volumique de charges ρ_m de vitesse d'ensemble des charges $\overrightarrow{v_e}$:

Cas de plusieurs types de porteurs p

$$p = \vec{j}.\vec{E}$$
 avec $\vec{j} = \sum_{i} \rho_{m,i} \vec{v}_{e,i}$

Cette puissance peut créer un échauffement du matériau (par exemple dans un four à micro-ondes), on parle alors d'effet Joule, mais elle peut aussi être convertie en énergie cinétique d'ensemble de particules chargées (par exemple dans un accélérateur de particules).

2) Cas particulier d'un conducteur ohmique

a) Loi d'Ohm locale

La loi d'Ohm locale est la loi phénoménologique:

<u>Conditions d'application</u>: milieu isotrope, homogène, champ électrique pas trop intense (sinon phénomènes non linéaires), limite en fréquence dans les métaux $f < 10^{14}$ Hz (pour les fréquences supérieures, les électrons n'arrivent plus à suivre les variations du champ électrique)

<u>Unité</u> de la conductivité γ :

Unité de la résistivité $\rho = 1/\gamma$:

Ordres de grandeur:

 $\gamma(Cu) =$

$$\gamma(\text{Verre}) \approx$$

Loi d'Ohm macroscopique U=RI

<u>Calculs de résistances</u> : à savoir faire, CE (voir Ch EM2)

Résistance d'un cylindre de hauteur l et de section S : $R = \frac{l}{\gamma S} = \rho \frac{l}{S}$ à connaître !

b) Loi de Joule locale

Puissance volumique cédée par le champ à un conducteur ohmique

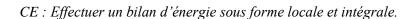
 $p = \vec{j}.\vec{E} = \gamma E^2$

Il y a échauffement du condu<u>cteur, c'est</u> l'effet Joule.

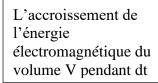
Loi de Joule macroscopique $P = RI^2$

CE : Analyser les aspects énergétiques dans le cas particulier d'un milieu ohmique.

IV. <u>Equation de conservation de l'énergie électromagnétique :</u> <u>Equation (ou théorème) de Poynting</u>



Bilan d'énergie électromagnétique pour un volume V pendant dt :



L'énergie qui entre dans V à travers S pendant dt L'énergie cédée par le champ électromagnétique aux charges contenues dans V pendant dt

Equation intégrale de Poynting :
$$+ \frac{dU}{dt} = - \oiint_S \overrightarrow{R} \cdot \overrightarrow{n_{ext}} dS - \iiint_V \overrightarrow{J} \cdot \overrightarrow{E} dV$$

Puissance = Puissance - Puissance

Savoir passer de l'équation intégrale à l'équation locale :

Equation locale de Poynting: $\frac{\partial u}{\partial t} = - \operatorname{div}(\vec{R}) - \vec{J}.\vec{E}$

CE : Interpréter chaque terme de l'équation locale de Poynting, l'équation locale de Poynting étant fournie.

V. <u>Exemple</u> : Bilan énergétique d'un fil conducteur

Tous les vecteurs sont exprimés dans la base cylindrique $(\vec{e}_r,\vec{e}_\theta,\vec{e}_z)$. Soit un fil conducteur d'axe (zz'), de conductivité γ , de rayon a, de longueur l avec 1>> a, parcouru par un courant I permanent. On considère $\vec{J}=J.\vec{e}_z$ uniforme.

- 1) Exprimer le champ électrique et le champ magnétique dans le fil.
- a) Exprimer la puissance dissipée par effet Joule dans le fil.
 b) Exprimer la puissance électromagnétique entrant dans le fil à travers sa surface latérale. Comparer les deux puissances.
- 3) Vérifier le théorème de Poynting.

