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I Ensembles dénombrables

1 Dé�nitions, propriétés

Dé�nition 1. Un ensemble est dit dénombrable s'il est en bijection avec N.

Proposition 1. L'ensemble Z est dénombrable.

Démonstration. Pour n entier, on pose φ(n) =

®
n/2 si n pair

−(n+ 1)/2 sinon
.

n

φ(n)
•
-2

3
•
-1

1
•
0

0
•
1

2
•
2

4

Théorème 1. Toute partie in�nie de N est dénombrable.

Démonstration. Soit A une partie in�nie de N. On pose a0 = minA et an+1 = minA ∖
{a0, . . . , an} pour n entier. La suite (an)n est strictement croissante, à valeurs dans N donc non
majorée d'où an −−−→

n→∞
+∞. Soit x ∈ A. Il existe N entier tel que x < aN+1 = minA∖{a0, . . . , aN}

Il s'ensuit que x ∈ {a0, . . . , aN}, d'où A =
⊔
n∈N

{an}. On pose en�n φ : N → A, n 7→ an qui est

une bijection de N dans A par construction.

Théorème 2. Un ensemble est �ni ou dénombrable si et seulement s'il est en bijection avec
une partie de N.

Démonstration. Le sens direct est immédiat par dé�nition d'un ensemble �ni et d'un ensemble
dénombrable. Réciproquement, considérons un ensemble A en bijection avec une partie B ⊂ N.
Si l'ensemble A est in�ni, alors B l'est aussi donc B est dénombrable et par conséquent A aussi.
Sinon, l'ensemble A est �ni.

Dé�nition 2. Un ensemble est dit au plus dénombrable s'il est �ni ou dénombrable.

Proposition 2. Toute partie d'un ensemble dénombrable est au plus dénombrable.

Démonstration. Soit A un ensemble dénombrable et B une partie de A. On a

B ⊂ A ≃ N

d'où B en bijection avec une partie de N. Le résultat suit.

2 Produit d'ensembles

Théorème 3. L'ensemble N2 est dénombrable.
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Démonstration. On véri�e que l'application π :
N2 → N dé�nie pour (m,n) ∈ N2 par

π(m,n) =
(m+ n)(m+ n+ 1)

2
+ n

est une bijection.

m

n

•
0

•2

•5

•9

•14

•
1

•4

•8

•13

•
3

•7

•12

•
6

•11

•
10

Figure 1 � Parcours de N2 par π

Théorème 4. Soient E,F des ensembles dénombrables. Alors E× F est dénombrable.

Démonstration. Soient φ : E → N et ψ : F → N et π : N2 → N des bijections. L'application

Φ:

®
E× F −→ N

(x, y) 7−→ π(φ(x), ψ(y))

est une bijection.

Corollaire 1. L'ensemble Q est dénombrable.

Démonstration. Tout élément de Q peut s'écrire sous forme d'une unique fraction irréductible
p/q avec (p, q) ∈ Z×N∗. Ainsi, notant A = {(p, q) ∈ Z× N∗ | p ∧ q = 1}, l'application φ : A →
Q, (p, q) 7→ p/q réalise une bijection de A sur Q. On a Z et N∗ dénombrables d'où Z × N∗

dénombrable. L'ensemble A est une partie in�nie de Z × N∗ puisque A contient Z × {1} et
c'est donc un ensemble dénombrable. Ainsi, l'ensemble des rationnels Q est en bijection avec
un ensemble dénombrable ce qui prouve que Q l'est aussi.

Corollaire 2. Soient E1, . . . ,En des ensembles dénombrables. Alors le produit E1× . . .×En est
dénombrable.

Démonstration. Récurrence immédiate.

Théorème 5. Soit (Ei)i∈I une famille au plus dénombrable (i.e. I au plus dénombrable) d'en-

sembles au plus dénombrables. Alors l'union
⋃
i∈I

Ei est au plus dénombrable.

[Admis]

Théorème 6 (Cantor). L'ensemble R n'est pas dénombrable.

Démonstration. On utilise l'argument dit de la diagonale de Cantor. Supposons [ 0 ; 1 [ =
{xn, n ∈ N∗}. On écrit le développement en base 10 de xn (non stationnarité à 9 pour garantir
l'unicité)

xn =
+∞∑
k=1

an,k10
−k = 0, an,1an,2 . . . an,n . . .
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On pose ∀n ⩾ 1 bn =

®
2 si an,n = 1

1 sinon
et x =

+∞∑
n=1

bn10
−n

x1 = 0, a1,1a1,2 . . . a1,n . . .

x2 = 0, a2,1a2,2 . . . a2,n . . .

. . . = . . .

xn = 0, an,1an,2 . . . an,n . . .
. . . = . . .

Figure 2 � Modi�cation le long de la diagonale de Cantor

Par unicité du développement en base 10 (avec non stationnarité à 9), on a x /∈ {xn, n ∈ N∗}
car bn ̸= an,n pour tout n entier non nul et pourtant x ∈ [ 0 ; 1 [ ce qui est absurde. On en déduit
que [ 0 ; 1 [ n'est pas dénombrable. En�n, si R était dénombrable, toute partie de R serait au
plus dénombrable ce qui est faux pour [ 0 ; 1 [ d'où le résultat.

II Familles sommables dans [0; +∞]

1 Dé�nitions

Dé�nition 3. On dé�nit la demi-droite réelle achevée notée [ 0 ; +∞ ] ou R+ par

R+ = [ 0 ; +∞ ] = [ 0 ; +∞ [ ∪ {+∞}

Dé�nition 4. Dans [ 0 ; +∞ ], on étend :
� la relation d'ordre ⩽ avec x ⩽ +∞ pour tout x ∈ [ 0 ; +∞ ] ;
� les notions de borne supérieure et inférieure qui existent, conformément aux dé�nitions

(plus petit majorant, plus grand minorant), pour toute partie A ⊂ [ 0 ; +∞ ] avec supA =
+∞ si A contient +∞ ou est une partie de R+ non majorée et inf ∅ = +∞, sup∅ = 0 ;

� les opérations d'addition et de multiplication avec

∀x ⩾ 0 x+ +∞ = +∞+ x = +∞ +∞+ +∞ = +∞

∀x ∈ ] 0 ; +∞ [ ∪ {+∞} x× +∞ = +∞× x = +∞ 0× +∞ = +∞× 0 = 0

Dé�nition 5. Soit (ui)i∈I famille à valeurs dans [ 0 ; +∞ ]. On dé�nit dans [ 0 ; +∞ ] la somme
de cette famille notée

∑
i∈I
ui par ∑

i∈I
ui = Sup

F �ni ⊂I

∑
i∈F
ui

Dé�nition 6. Une famille (ui)i∈I de réels positifs est dite sommable si
∑
i∈I
ui < +∞ et non

sommable sinon.

Exemple : Soit q ∈ [ 0 ; 1 [. La famille (qmn)(m,n)∈(N∗)2 est sommable. Soit F partie �nie de

(N∗)2. Il existe N ⩾ 1 tel que F ⊂ [[ 1 ; N ]]2. Par suite
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∑
(m,n)∈F

qmn ⩽
N∑

n=1

N∑
m=1

qmn =
N∑

n=1

qn
1− qnN

1− qn
⩽

1

1− q

N∑
n=1

qn ⩽
q

(1− q)2

Le résultat suit. On verra une rédaction nettement plus e�cace après énonciation du théorème
de Fubini.

Dé�nition 7. On appelle support d'une famille (ui)i∈I de réels positifs l'ensemble noté
supp(ui)i∈I dé�ni par

supp(ui)i∈I = {i ∈ I | ui > 0}

Proposition 3. Soit (ui)i∈I une famille de réels positifs. Si (ui)i∈I est sommable, alors son
support est au plus dénombrable.

Démonstration. On pose ∀n ∈ N∗ Fn =

ß
i ∈ I | ui ⩾

1

n

™
Soit n entier non nul. Pour F partie �nie de Fn, on a∑

i∈I
ui ⩾

∑
i∈F
ui ⩾

1

n
Card F

d'où Card F ⩽ n
∑
i∈I
ui

Si Fn est in�ni, alors on peut choisir F ⊂ Fn tel que Card F soit arbitrairement grand ce qui
est exclu d'après la majoration ci-dessus. On en déduit que Fn est un ensemble �ni et comme

on a supp(ui)i∈I =
⋃
n∈N∗

Fn union dénombrable d'ensembles �nis, on conclut que le support est

au plus dénombrable.

Proposition 4. Soient (ui)i∈I et (vi)i∈I des familles à valeurs dans [ 0 ; +∞ ] et λ ∈ [ 0 ; +∞ ].

On a
∑
i∈I

(λui + vi) = λ
∑
i∈I
ui +

∑
i∈I
vi

2 Lien avec les séries

Soit (un)n suite de réels positifs. Si la série
∑
un diverge, on étend la notation somme en posant

+∞∑
n=0

un = +∞

Théorème 7. Soit (un)n une suite de réels positifs. On a∑
n∈N

un =
+∞∑
n=0

un

Remarque : En particulier, on a

(un)n∈N sommable ⇐⇒
∑
un converge
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3 Théorèmes de comparaison

Proposition 5. Soient (ui)i∈I et (vi)i∈I des familles à valeurs dans [ 0 ; +∞ ] telles que ui ⩽ vi
pour tout i ∈ I. On a ∑

i∈I
ui ⩽

∑
i∈I
vi

Remarque : En particulier, on a

(vi)i∈I sommable =⇒ (ui)i∈I sommable

Exemple : La famille
Å

1

(m2 + n2)2

ã
(m,n)∈(N∗)2

est sommable. On a

∀(m,n) ∈ N∗2 m2 + n2 ⩾ 2mn =⇒ 1

(m2 + n2)2
⩽

1

4m2n2

Pour F partie �nie de (N∗)2, il existe N entier non nul tel que F ⊂ [[ 1 ; N ]]2 puis∑
(m,n)∈[[ 1 ; N ]]2

1

4m2n2
⩽

1

4
ζ(2)2 avec ζ(s) =

+∞∑
n=1

1

ns
∀s > 1

La sommabilité de
Å

1

4m2n2

ã
(m,n)∈(N∗)2

en résulte et par comparaison, celle de
Å

1

(m2 + n2)

ã
(m,n)∈(N∗)2

également. On verra une rédaction plus e�cace après énonciation du théorème de Fubini.

Proposition 6. Soit (ui)i∈I une famille à valeurs dans [ 0 ; +∞ ] et J ⊂ I. On a∑
i∈J
ui ⩽

∑
i∈I
ui

Remarque : En particulier, si (ui)i∈I est sommable, alors (ui)i∈J l'est aussi.

4 Regroupement, réorganisation

Théorème 8 (Théorème de sommation par paquets). Soient (Ik)k∈K un recouvrement
disjoint de I et (ui)i∈I une famille à valeurs dans [ 0 ; +∞ ]. On a∑

i∈I
ui =

∑
k∈K

Ç∑
i∈Ik

ui

å
Exemple : Étude de

∑
(m,n)∈(N∗)2

1

(m+ n)3

On pose

∀p ⩾ 2 Ip =
{
(m,n) ∈ N∗2 | m+ n = p

}
La famille (Ip)p⩾2 est un recouvrement disjoint
de (N∗)2 et on a

∀p ⩾ 2 Ip = {(m, p−m),m ∈ [[ 1 ; p− 1 ]]}

m

n

•
•

•

•
•

•

•
•

•
•

Par sommation par paquets, il vient
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∑
(m,n)∈(N∗)2

1

(m+ n)3
=

+∞∑
p=2

Ç ∑
(m,n)∈Ip

1

(m+ n)3

å
=

+∞∑
p=2

Å
p−1∑
m=1

1

p3

ã
=

+∞∑
p=2

p− 1

p3
⩽

+∞∑
p=2

1

p2
< +∞

Théorème 9. Soit (ui)i∈I une famille à valeurs dans [ 0 ; +∞ ] et σ ∈ S (I) une permutation de
I (bijection de I dans I). On a ∑

i∈I
ui =

∑
i∈I
uσ(i)

Exemples : 1. Soit σ ∈ S (N∗). On a∑
n∈N∗

1

σ(n)
=

∑
n∈N∗

1

n
=

+∞∑
n=1

1

n
= +∞ et

∑
n∈N∗

1

σ(n)2
= . . . < +∞

2. Soit σ ∈ S (N∗). On a∑
n∈N∗

1

nσ(n)
⩽

∑
n∈N∗

1

2

Å
1

n2
+

1

σ(n)2

ã
=

∑
n∈N∗

1

n2
=

+∞∑
n=1

1

n2
< +∞

III Familles sommables de réels ou complexes

Dans ce qui suit, on a K = R ou C.

1 Dé�nitions

Dé�nition 8. La famille de réels ou complexes (ui)i∈I est dite sommable si la famille (|ui|)i∈I
est sommable.

Notation : On note ℓ1(I) l'ensemble des familles sommables de CI.

Remarque : Si la famille de réels (ui)i∈I est sommable, alors les familles (u+i )i∈I et (u
−
i )i∈I sont

sommables puisque

∀i ∈ I 0 ⩽ u+i ⩽ |ui| et 0 ⩽ u−i ⩽ |ui|
De même, si la famille de complexes (ui)i∈I est sommable, alors les familles (Re (ui))i∈I et
(Im (ui))i∈I sont sommables puisque

∀i ∈ I 0 ⩽ |Re (ui)| ⩽ |ui| et 0 ⩽ |Im (ui)| ⩽ |ui|

Dé�nition 9. Soit (ui)i∈I une famille de réels sommable. On dé�nit la somme de cette famille

notée
∑
i∈I
ui par ∑

i∈I
ui =

∑
i∈I
u+i −

∑
i∈I
u−i

Dé�nition 10. Soit (ui)i∈I une famille de complexes sommable. On dé�nit la somme de cette

famille notée
∑
i∈I
ui par ∑

i∈I
ui =

∑
i∈I

Re (ui) + i
∑
i∈I

Im (ui)

Remarque : On a donc

Re
Å∑

i∈I
ui

ã
=

∑
i∈I

Re (ui) et Im
Å∑

i∈I
ui

ã
=

∑
i∈I

Im (ui)

Exemple : Soit z ∈ C avec |z| < 1. On a (znm)(n,m)∈(N∗)2 ∈ ℓ1
Ä
(N∗)2

ä
.

B. Landelle 7 ISM MP



2 Propriétés

Proposition 7. Soit (ui)i∈I ∈ KI et λ ∈ K∗. On a

(ui)i∈I ∈ ℓ1(I) ⇐⇒ (λui)i∈I ∈ ℓ1(I)

et dans ce cas
∑
i∈I
λui = λ

∑
i∈I
ui

Théorème 10 (Linéarité du symbole somme). L'ensemble ℓ1(I) un sev de CI et l'applica-

tion (ui)i∈I 7→
∑
i∈I
ui est une forme linéaire.

Proposition 8 (Croissance de la somme). Soient (ui)i∈I et (vi)i∈I des familles réelles som-

mables telles que ui ⩽ vi pour tout i ∈ I. Alors
∑
i∈I
ui ⩽

∑
i∈I
vi.

Théorème 11 (Inégalité triangulaire). Soit (ui)i∈I ∈ ℓ1(I). On a∣∣∣∣∑
i∈I
ui

∣∣∣∣ ⩽ ∑
i∈I

|ui|

3 Regroupement, réorganisation

Théorème 12 (Théorème de sommation par paquets). Soient (Ik)k∈K un recouvrement
disjoint de I et (ui)i∈I ∈ ℓ1(I). Alors, on a :

� pour tout k ∈ K, la famille (ui)i∈Ik est sommable ;

� la famille

Ç∑
i∈Ik

ui

å
k∈K

est sommable ;

� et l'égalité
∑
i∈I
ui =

∑
k∈K

Ç∑
i∈Ik

ui

å
Théorème 13. Soit (ui)i∈I ∈ KI et σ ∈ S (I) une permutation de I. On a

(ui)i∈I ∈ ℓ1(I) ⇐⇒ (uσ(i))i∈I ∈ ℓ1(I)

et dans ce cas
∑
i∈I
ui =

∑
i∈I
uσ(i)

4 Lien avec les séries

Théorème 14. Soit (un)n∈N une famille de réels ou complexes. On a

(un)n∈N ∈ ℓ1(N) ⇐⇒
∑
un converge absolument

et dans ce cas
∑
n∈N

un =
+∞∑
n=0

un

Théorème 15. Soit (un)n∈N une famille de réels ou complexes et σ ∈ S (N). On a∑
un converge absolument ⇐⇒

∑
uσ(n) converge absolument

et dans ce cas
+∞∑
n=0

un =
+∞∑
n=0

uσ(n)
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Remarque : Sans l'hypothèse de convergence absolue, le résultat est faux. Plus précisément,
on dispose du théorème de réarrangement de Riemann : Soit (un)n suite réelle telle que

∑
un

converge et
∑

|un| diverge. Pour tout α ∈ R, il existe σ ∈ S (N) telle que
+∞∑
n=0

uσ(n) = α.

IV Applications

1 Sommes doubles

Théorème 16 (Théorème de Fubini positif). Soit (ai,j)(i,j)∈I×J une famille à valeurs dans
[ 0 ; +∞ ]. On a ∑

(i,j)∈I×J

ai,j =
∑
i∈I

Ç∑
j∈J
ai,j

å
=

∑
j∈J

Å∑
i∈I
ai,j

ã
Exemples : 1. On reprend l'exemple de (qmn)(m,n)∈(N∗)2 . D'après le théorème de Fubini positif,
on a ∑

(m,n)∈(N∗)2
qmn =

+∞∑
m=1

Å
+∞∑
n=1

qmn

ã
=

+∞∑
m=1

qm

1− qm
⩽

+∞∑
m=1

qm

1− q
< +∞

2. Étude de
∑

m,n⩾2

1

nm
. D'après le théorème de Fubini positif, on a

∑
m,n⩾2

1

nm
=

+∞∑
n=2

Å
+∞∑
m=2

1

nm

ã
=

+∞∑
n=2

Ç
1

n2

1

1− 1
n

å
=

+∞∑
n=2

ï
1

n− 1
− 1

n

ò
= 1

puis
∑

m,n⩾2

1

nm
=

+∞∑
m=2

Å
+∞∑
n=2

1

nm

ã
=

+∞∑
m=2

[ζ(m)− 1]

On obtient l'égalité
+∞∑
m=2

[ζ(m)− 1] = 1

Corollaire 3. Soient (ai)i∈I et (bj)j∈J des familles à valeurs dans [ 0 ; +∞ ]. On a∑
(i,j)∈I×J

aibj =

Å∑
i∈I
ai

ãÇ∑
j∈J
bj

å
Exemple : D'après le théorème de Fubini positif, on a∑

(m,n)∈(N∗)2

1

m2n2
=

Å
+∞∑
n=1

1

n2

ã
= ζ(2)2 < +∞

Théorème 17 (Théorème de Fubini). Soit (ai,j)(i,j)∈I×J ∈ ℓ1(I× J). On a∑
(i,j)∈I×J

ai,j =
∑
i∈I

Ç∑
j∈J
ai,j

å
=

∑
j∈J

Å∑
i∈I
ai,j

ã
Remarque : D'après le théorème de Fubini positif, on a∑

(i,j)∈I×J

|ai,j| < +∞ ⇐⇒
∑
i∈I

Ç∑
j∈J

|ai,j|
å
< +∞

ce qui implique (ai,j)j sommable pour tout i ∈ I et

Ç∑
j∈J
ai,j

å
i∈I

sommable, et de même en

échangeant les rôles de i et j.

B. Landelle 9 ISM MP



Corollaire 4. Soit (ai)i∈I ∈ ℓ1(I) et (bj)j∈J ∈ ℓ1(J). Alors, on a (aibj)(i,j)∈I×J ∈ ℓ1(I× J) et∑
(i,j)∈I×J

aibj =

Å∑
i∈I
ai

ãÇ∑
j∈J
bj

å
2 Produit de Cauchy

Dé�nition 11. On appelle produit de Cauchy des séries
∑
un et

∑
vn réelles ou complexes la

série
∑
wn de terme général

∀n ∈ N wn =
n∑

k=0

ukvn−k

Théorème 18. Soient
∑
un et

∑
vn deux séries réelles ou complexes absolument convergentes.

Alors, leur produit de Cauchy
∑
wn est une série absolument convergente et on a

+∞∑
n=0

wn =

Å
+∞∑
n=0

un

ãÅ
+∞∑
n=0

vn

ã
Démonstration. Sans di�culté, la famille (unvm)(n,m)∈N2 est sommable puisque∑

(m,n)∈N2

|unvm| =
Å∑

n∈N
|un|
ãÅ∑

m∈N
|vm|
ã
< +∞

Ainsi
∑

(n,m)∈N2

unvm =

Å
+∞∑
n=0

un

ãÅ
+∞∑
m=0

vm

ã
On pose ∀p ∈ N Ip = {(n,m) ∈ N2 | n+m = p} = {(n, p− n), n ∈ [[ 0 ; p ]]}

La famille (Ip)p∈N est un recouvrement disjoint
de N2.

m

n

•
•

•

•
•

•

•
•

•
•

•
•

•
•

•

•
•

•
•

•
•m
+
n
=
p

Figure 3 � Famille (Ip)p∈N partition de N2

D'après le théorème de sommation par paquets, pour p entier la famille (unvm)(n,m)∈Ip est
sommable (en fait, Ip est un ensemble �ni) avec

∀p ∈ N
∑

(n,m)∈Ip
unvm = wp

puis, la série
∑Ç ∑

(n,m)∈Ip
unvm

å
=

∑
wp converge absolument et on a
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+∞∑
p=0

wp =
∑

(n,m)∈N2

unvm

et le résultat suit.

Remarque : Sans l'hypothèse de convergence absolue, le résultat est faux en général. Consi-

dérons un = vn =
(−1)n√

n
pour n entier non nul et u0 = v0 = 0. On a

∀n ∈ N wn = (−1)n
n−1∑
k=1

1√
k(n− k)

Or, on a k(n− k) ⩽ (n− 1)2 pour tout k ∈ [[ 1 ; n− 1 ]] d'où la divergence grossière de la série∑
wn. En fait, les hypothèses du théorème précédent peuvent être un peu a�aiblies (théorème

de Mertens, hors programme).

Exemple : Soit (a, b) ∈ C2 avec |a| < 1, |b| < 1 et a ̸= b. Les séries
∑
an et

∑
bn convergent

absolument d'où, d'après le théorème du produit de Cauchy
+∞∑
n=0

n∑
k=0

akbn−k =

Å
+∞∑
n=0

an
ãÅ

+∞∑
n=0

bn
ã

et avec un recours à l'identité de Bernoulli, on obtient
+∞∑
n=0

an+1 − bn+1

a− b
=

1

(1− a)(1− b)

On peut aussi établir ce résultat naïvement, sans recours au produit de Cauchy.

B. Landelle 11 ISM MP



Annexes

Produit d'ensembles

Théorème 3. L'ensemble N2 est dénombrable.

Démonstration. Soit π : N2 → N dé�nie pour
(m,n) ∈ N2 par

π(m,n) =
(m+ n)(m+ n+ 1)

2
+ n

Montrons que π est une bijection.

m

n

•
0

•2

•5

•9

•14

•
1

•4

•8

•13

•
3

•7

•12

•
6

•11

•
10

Figure 4 � Parcours de N2 par π

On suit la trame suivante :

1. Justi�er que π est dé�nie de N2 sur N.
2. Montrer

∀(m,n) ∈ N2 π(m,n+ 1) = π(m+ 1, n) + 1 et π(n+ 1, 0) = π(0, n) + 1

En déduire que π est surjective.

3. Montrer

∀(m,n,m′, n′) ∈ N4 m′ + n′ ⩾ m+ n+ 1 =⇒ π(m′, n′) > π(m,n)

En déduire l'injectivité de π.

Étapes : 1. Les entiers m + n et m + n + 1 sont consécutifs donc l'un d'eux est pair et par
conséquent

L'application π est bien dé�nie de N2 sur N.

Variante : On peut observer que

∀(m,n) ∈ N2 π(m,n) = n+
m+n∑
k=1

k ∈ N

2. On a π(0, 0) = 0 d'où 0 ∈ Im π. On véri�e sans peine les relations demandées. Puis, pour
(m,n) ∈ N2, on observe

π(m,n) + 1 =

®
π(n+ 1, 0) si m = 0

π(m− 1, n+ 1) sinon

d'où π(m,n) + 1 ∈ Im π. Ainsi, l'ensemble Im π et une partie de N contenant 0 et qui véri�e
le principe de récurrence et on conclut

Im π = N

3. Soient (m,n) et (m′, n′) dans N2 avec (m,n) ̸= (m′, n′). Si m′ + n′ ⩾ m+ n+ 1, il vient
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π(m′, n′) =
(m′ + n′)(m′ + n′ + 1)

2
+ n′ ⩾

(m+ n+ 1)(m+ n+ 2)

2
+ n′

⩾
(m+ n)(m+ n+ 1)

2
+ n+m+ 1 + n′ > π(m,n)

c'est-à-dire m′ + n′ > m+ n =⇒ π(m′, n′) > π(m,n)

Par symétrie des rôles, on en déduit

m+ n ̸= m′ + n′ =⇒ π(m,n) ̸= π(m′, n′)

Supposons (m,n) ̸= (m′, n′). Si m+n = m′+n′, alors n ̸= n′ d'où π(m,n) ̸= π(m′, n′) et sinon
on a également π(m′, n′) ̸= π(m,n) d'après l'implication précédente. Dans tous les cas, on a
donc

(m,n) ̸= (m′, n′) =⇒ π(m,n) ̸= π(m′, n′)

Ainsi L'application π est une injection de N2 sur N.

Variante : Pour montrer l'inégalité demandée, on peut aussi écrire

π(m′, n′) = n′ +
m′+n′∑
k=1

k ⩾ n′ +
m+n+1∑
k=1

k = m+ 1 + n′ + n+
m+n∑
k=1

k = m+ 1 + n′ + π(m,n)

Ainsi, l'application π est surjective et injective et réalise donc une bijection de N2 dans N.
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