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I Ensembles dénombrables

1 Définitions, propriétés

’Déﬁnition 1. Un ensemble est dit dénombrable s’il est en bijection avec N. ‘

’Proposition 1. L’ensemble Z est dénombrable. ‘

n/2 si n pair
Démonstration. Pour n entier, on pose ¢(n) = / ) batt O]
—(n+1)/2 sinon
-2 -1 0 1 2 w(n)
3 1 0 2 4 "
’Théoréme 1. Toute partie infinie de N est dénombrable. ‘
Démonstration. Soit A une partie infinie de N. On pose ap = minA et a,,; = minA \
{ag, ..., a,} pour n entier. La suite (a,), est strictement croissante, & valeurs dans N donc non
majorée d’ou a,, — +00. Soit x € A. Il existe N entier tel que x < any; = min AN{ayo, ..., an}

n—oo

Il s’ensuit que = € {ag,...,ax}, dou A = |_| {a,}. On pose enfin ¢ : N — A n +— a, qui est
neN
une bijection de N dans A par construction. O

Théoréme 2. Un ensemble est fini ou dénombrable si et seulement s’il est en bijection avec
une partie de N.

Démonstration. Le sens direct est immédiat par définition d’un ensemble fini et d’un ensemble
dénombrable. Réciproquement, considérons un ensemble A en bijection avec une partie B C N.
Si ’ensemble A est infini, alors B 'est aussi donc B est dénombrable et par conséquent A aussi.
Sinon, ’ensemble A est fini. O

’Déﬁnition 2. Un ensemble est dit au plus dénombrable s’l est fini ou dénombrable.

’Proposition 2. Toute partie d’un ensemble dénombrable est au plus dénombrable.

Démonstration. Soit A un ensemble dénombrable et B une partie de A. On a
BCA~N

d’ott B en bijection avec une partie de N. Le résultat suit. O

2 Produit d’ensembles

’Théoréme 3. L’ensemble N? est dénombrable.
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Démonstration. On vérifie que 'application 7 :
N? — N définie pour (m,n) € N? par

(m+n)(m+n+1)

w(m,n) = +n
2
est une bijection. FIGURE 1 — Parcours de N2 par 7
m
Théoréme 4. Soient E, F des ensembles dénombrables. Alors E X F est dénombrable.
Démonstration. Soient ¢ : E — Net ¢ : F — Net 7: N> = N des bijections. L’application
{E xF — N
(z,y) — m(o(x),v(y))
est une bijection. O

]Corollaire 1. L’ensemble Q est dénombrable.

Démonstration. Tout élément de Q peut s’écrire sous forme d’une unique fraction irréductible
p/q avec (p,q) € Z x N*. Ainsi, notant A = {(p,q) € Z x N* | p A ¢ = 1}, 'application ¢ : A —
Q, (p,q) — p/q réalise une bijection de A sur Q. On a Z et N* dénombrables d’ou Z x N*
dénombrable. L’ensemble A est une partie infinie de Z x N* puisque A contient Z x {1} et
c’est donc un ensemble dénombrable. Ainsi, ’ensemble des rationnels Q est en bijection avec

un ensemble dénombrable ce qui prouve que Q I'est aussi. O
Corollaire 2. Soient Eq, ..., E, des ensembles dénombrables. Alors le produit i x ... x E,, est
dénombrable.

Démonstration. Récurrence immeédiate. O

Théoréme 5. Soit (E;);c1 une famille au plus dénombrable (i.e. 1 au plus dénombrable) d’en-

sembles au plus dénombrables. Alors ['union UE’ est au plus dénombrable.
i€l

| Admis]

’Théoréme 6 (Cantor). L’ensemble R n'est pas dénombrable.

Démonstration. On utilise argument dit de la diagonale de Cantor. Supposons [0;1[ =
{z,,n € N*}. On écrit le développement en base 10 de z,, (non stationnarité a 9 pour garantir
I'unicité)

+o0

_ —k _
Tp= > 0, .10 =0,0p10n2 ... Qpp - -
k=1
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2 sia,,=1 too
On pose Vn > 1 b, = { 1 fin, et x=>0,107"
1 sinon n=1

FIGURE 2 — Modification le long de la diagonale de Cantor
Par unicité du développement en base 10 (avec non stationnarité 4 9), on a = ¢ {x,,n € N*}
car b, # an,, pour tout n entier non nul et pourtant x € [0;1] ce qui est absurde. On en déduit

que [0;1[ n’est pas dénombrable. Enfin, si R était dénombrable, toute partie de R serait au
plus dénombrable ce qui est faux pour [0;1[ d’ou le résultat. O

IT Familles sommables dans [0; +oc]

1 Définitions

Définition 3. On définit la demi-droite réelle achevée notée [0;+o00] ou R, par

R, =[0;+00] = [0;+00 [U {+00}

Définition 4. Dans [0;+00], on étend :

— la relation d’ordre < avec x < +00 pour tout x € [0;+00];

— les notions de borne supérieure et inférieure qui existent, conformément aux définitions
(plus petit majorant, plus grand minorant), pour toute partie A C [0;+00] avec sup A =
+00 st A contient +00 ou est une partie de R, non majorée et inf @ = +o0, sup@ =0;

— les opérations d’addition et de multiplication avec

Ve >0 T+ +00 = +00 + T = +00 +00 + +00 = +00

Vz €]0;+00[U {+00} T X +00 = +00 X T = +00 0x +00=+00Xx0=0

Définition 5. Soit (u;)ier famille a valeurs dans [0;+00]. On définit dans [0;+00] la somme
de cette famille notée » u; par
i€l

du; = Sup > uy

iel F fini ClicF

Définition 6. Une famille (u;);c1 de réels positifs est dite sommable si > u; < +00 et non
i€l
sommable sinon.

Exemple : Soit ¢ € [0;1[. La famille (qm")(m,n)e(N*)z est sommable. Soit F partie finie de
(N*)*. Tl existe N > 1 tel que F C [1; N]2. Par suite
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nN 1 N q

> q" <

(min)EF n=lm=1 = l—q T 1-¢= T (1—g)?

Le résultat suit. On verra une rédaction nettement plus efficace aprés énonciation du théoréme
de Fubini.

Définition 7. On appelle support d’une famille (u;);e1 de réels positifs 'ensemble noté
supp(u;)ier défini par
supp(u;)ier = {t € I | u; > 0}

Proposition 3. Soit (u;)ie1 une famille de réels positifs. Si (u;)ier est sommable, alors son
support est au plus dénombrable.

1
Démonstration. On pose Vn € N* F, = {2 el|u > —}

n
Soit n entier non nul. Pour F partie finie de F,,, on a

1
dou; = > u; > — Card F
n

1€l i€l

d’ou Card F < nd> u;

i€l
Si F,, est infini, alors on peut choisir F C F,, tel que Card F soit arbitrairement grand ce qui
est exclu d’apreés la majoration ci-dessus. On en déduit que F,, est un ensemble fini et comme

on a supp(u;)ier = U F,, union dénombrable d’ensembles finis, on conclut que le support est

neN*
au plus dénombrable. O

Proposition 4. Soient (u;);c1 et (v;)ier des familles & valeurs dans [0;+00] et A € [0;+00].

On a DT (Au +v;) = A u + >

1€l i€l i€l

2 Lien avec les séries

Soit (uy), suite de réels positifs. Si la série > u,, diverge, on étend la notation somme en posant

+00
>y, = +00
n=0

Théoréme 7. Soit (u,), une suite de réels positifs. On a

+00
Zun = Zun
neN n=0

Remarque : En particulier, on a

(Un)nen Sommable <= > u, converge
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3 Théorémes de comparaison

Proposition 5. Soient (u;)ier et (v;)ier des familles & valeurs dans [0;+00] telles que u; < v;
pour tout i € I. On a

doup < oy

i€l 1€l

Remarque : En particulier, on a
(v3)ie1 sommable = (u;);e1 Sommable
1

—_— est sommable. On a

Exemple : La famille (

1 1
<
(m? 4+ n2)2 = 4m?n?

V(m,n) e N m?2+n?>2mn =

Pour F partie finie de (N*)Q, il existe N entier non nul tel que F C [1; N]? puis

L < Loy (s)= S~ Ws>1
2 S avec S =2 S

(m,n)e[1;N]? 4m?*n

La sommabilité de (—) —>
Am2n?J o, nye(rve)? (m? 4+ 12) /(o e (vey?

également. On verra une rédaction plus efficace aprés énonciation du théoréme de Fubini.

en résulte et par comparaison, celle de (

Proposition 6. Soit (u;);c1 une famille 4 valeurs dans [0;+00] et J C 1. On a

Zui < Zuz

1€J i€l

Remarque : En particulier, si (u;);er est sommable, alors (u;);cy U'est aussi.

4 Regroupement, réorganisation

Théoréme 8 (Théoréme de sommation par paquets). Soient (Iy)rex un recouvrement
disjoint de 1 et (u;)ier une famille & valeurs dans [0;+00]. On a

doui =) (Zm)

i€l keK \ i€l

B 1
Exemple : Etude de Y, ———
(maye)z (M +n)?
On pose LES

Vp=2 L= {(mmn)eN?|[m+n=p}

La famille (I,),>2 est un recouvrement disjoint
de (N*)* et on a

Vp=2 L,={(mp—m)me[l;p—1]}

’ ’ s ’
s s s s
s s s s
’ ’ s ’

Par sommation par paquets, il vient
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S (2 ) "B (B -t < S <

(m,n)e(N*)? (m + n)3 p=2 m,n)€l, (m + n)3 p=2 m:1p3 p=2 P

Théoréme 9. Soit (u;)e1 une famille a valeurs dans [0; +o00] et o € (1) une permutation de
I (bijection de 1 dans1). On a

DU = D Ui

i€l i€l
Exemples : 1. Soit ¢ € . (N*). On a
1 1 T ] 1
ne=0(n)  peem asn nen=0(n)?

2. Soit 0 € . (N*). On a
1 1/1 1 1 =1
< — —_— = —_— = —_—
> =< 25wt 7o) ORI

2 2
nen=no(n) = e n )

III Familles sommables de réels ou complexes

Dans ce qui suit, on a K =R ou C.

1 Définitions

Définition 8. La famille de réels ou complexes (u;);e1 est dite sommable si la famille (|u;|)
est sommable.

1€1

Notation : On note ¢!(I) 'ensemble des familles sommables de C'.

Remarque : Si la famille de réels (u;);cr est sommable, alors les familles (u; );er et (u; )ier sont
sommables puisque

Viel 0<u <|u et 0<u <l

De méme, si la famille de complexes (u;);c1 est sommable, alors les familles (Re (u;)),; et
(Im () ), sont sommables puisque

Viel 0 < |Re(uw)] < |ui] et 0< |Im ()| < |uy]

Définition 9. Soit (u;);e1 une famille de réels sommable. On définit la somme de cette famille
notée > u; par
i€l

S = Yuf — Yu

1€l 1€l 1€l

Définition 10. Soit (u;);e1 une famille de complexes sommable. On définit la somme de cette
famille notée > u; par
i€l

Sou; = > Re(u) + 1Y Im (uy;)

i€l i€l i€l

Remarque : On a donc

Re <ZU2> => Re(u;) et Im (Zuz> = > Im(u;)

i€l i€l i€l i€l

Exemple : Soit z € C avec [z| < 1. On a (2"™), cm? € o <(N*)2>
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2 Propriétés

Proposition 7. Soit (u;);c; € K et A € K*. On a
()i € (1) <= (M) € £1(T)

et dans ce cas SAu; = A

i€l 1€l

Théoréme 10 (Linéarité du symbole somme). L’ensemble (*(I) un sev de C' et Iapplica-

tion (u;)ier — Y u; est une forme linéaire.
i€l

Proposition 8 (Croissance de la somme). Soient (u;);e1 et (v;)icr des familles réelles som-

mables telles que u; < v; pour tout i € 1. Alors > u; < > v;.
i€l i€l

Théoréme 11 (Inégalité triangulaire). Soit (u;)ic; € 1(I). On a

doui| < |ugl

1€l 1€l

3 Regroupement, réorganisation

Théoréme 12 (Théoréme de sommation par paquets). Soient (Ix)rex un recouvrement
disjoint de 1 et (u;)icr € 0*(1). Alors, on a :
— pour tout k € K, la famille (u;);e1, est sommable ;

— la famille | > u; est sommable ;
€y / kek
— et ’égalité Sui= > D
i€l keK \i€ly

Théoréme 13. Soit (u;)icr € K' et 0 € (1) une permutation de 1. On a
(u;)ie1 € 01(I) = (Uo(s))ict € 1)

et dans ce cas > u; = Zua(i)
i€l i€l

4 Lien avec les séries

Théoréme 14. Soit (u,)nen une famille de réels ou complexes. On a

(tun)nen € LH(N) <= > u,, converge absolument

+00
et dans ce cas Sty = > uy
neN n=0

Théoréme 15. Soit (u,)nen une famille de réels ou complezes et o € ./ (N). On a

> u, converge absolument <= Zug(n) converge absolument

+00 +00
et dans ce cas Yo Up = D Ug(n)
n=0 n=0
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Remarque : Sans ’hypothése de convergence absolue, le résultat est faux. Plus précisément,
on dispose du théoréme de réarrangement de Riemann : Soit (u,), suite réelle telle que > u,

— +00
converge et |u,| diverge. Pour tout a € R, il existe 0 € .7(N) telle que ) ugm) = a.
n=0

IV Applications

1 Sommes doubles

Théoréme 16 (Théoréme de Fubini positif). Soit (a; ;) jycixs une famille & valeurs dans
[0;+00]. On a

(4,7)€IxJ i€l \j€J j€J Niel

> Gy =) (Z%j) = (Zai,j)

Exemples : 1. On reprend 'exemple de (qm”)(m’n)e(N*)z. D’aprés le théoréme de Fubini positif,
on a

> q" f(Eqm”)zf qmm +Zojo£<+oo

(m, n)e(N*) m=1 m=11—¢ m=11—
2. Etude de > —. D’aprés le théoréme de Fubini positif, on a
m n>2n
+00 too ] +00 1 1 +00 1 1
_ = — _ = —_ — = 1
mzn;Qnm Z <mZ:2n ) ;::2 <n21—%> nz::Q {n—l n}
. +00 +00 1 +00
puis Lo =S (E) =S w1
mn>2n m=2 \n=27 m=2
+00
On obtient 'égalité > lCm)—1]=1
m=2

Corollaire 3. Soient (a;)icr et (b;)jes des familles a valeurs dans [0;+00]. On a

>, ab;= (Za@-) (ij)
(3,5)€IxJ i€l jEJ

Exemple : D’aprés le théoréme de Fubini positif, on a

S = (E) =<

2 2
(mn)e(=)2 T n=17

Théoréme 17 (Théoréme de Fubini). Soit (a; ;) jeixs € (I x J). On a

> Gij =) (Z%’) = (Zam)

(4,5)€IxJ 1€l \j€J 7€J Niel

Remarque : D’aprés le théoréme de Fubini positif, on a

Z ’CLZ'J'| < +00 <= Z (Z ‘az’,j|> < 400

(4,7)€IxJ i€l \jelJ

ce qui implique (a;;); sommable pour tout i € I et <Zam~) sommable, et de méme en
J€J i€l
échangeant les roles de 7 et j.
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Corollaire 4. Soit (a;);er € ('(I) et (b;)jes € €1(J). Alors, on a (a;b;) i jyeixs € (I x J) et

>, ab;= (Zai) (ij)
(3,5)€IxJ i€l jeJ

2 Produit de Cauchy

Définition 11. On appelle produit de Cauchy des séries > u,, et > v, réelles ou complezes la
série Y w, de terme général

n
Vn € N Wy = D UpUn_k
k=0

Théoréme 18. Soient Y u, et > v, deux séries réelles ou complezes absolument convergentes.
Alors, leur produit de Cauchy > w, est une série absolument convergente et on a

Démonstration. Sans difficulté, la famille (u,v,,) cne est sommable puisque

(n,m)
5 vl = (5 Jd) (5 Jol ) < w00
(m,n)EN? neN meN
+00 +00

Ainsi Yo upvy, = (Z%) ( > Um>

(n,m)eEN? n=0 m=0
Onpose VpeN IL,={(nm)eN?’|n+m=p}={(n,p—n),nef0;p]}
La famille (I,),en est un recouvrement disjoint n
de N2

FIGURE 3 — Famille (I,)),en partition de N?

D’aprés le théoréme de sommation par paquets, pour p entier la famille (u,vm,)mm)er, est
sommable (en fait, I, est un ensemble fini) avec

Vp € N D UpVy =Wy

(n,m)€el,

puis, la série ) ( > unvm> = Y w, converge absolument et on a

(n,m)€l,
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+0o0
2 Wp = D, Unlpm
p=0

(n,m)€eN2

et le résultat suit. O

Remarque : Sans I’hypothése de convergence absolue, le résultat est faux en général. Consi-

(=D"

dérons u, = v, = pour n entier non nul et ug = vy = 0. On a

Jn

n—1 1
Vn e N wy, = (1" ——
P 2N o)
Or, on a k(n — k) < (n— 1) pour tout k € [1; n— 1] d’ou la divergence grossicre de la série
> w,,. En fait, les hypothéses du théoréme précédent peuvent étre un peu affaiblies (théoréme
de Mertens, hors programme).

Exemple : Soit (a,b) € C? avec |a| < 1, |b] < 1 et a # b. Les séries Y a" et Y _b" convergent
absolument d’ou, d’aprés le théoréme du produit de Cauchy

+00 n +00 +00

Z Eakbn—k — <Ean> (Z bn)

n=0k=0 n=0 n=0
et avec un recours a l'identité de Bernoulli, on obtient

+00 an+l . anrl 1
YT = T
n=0 a b (1 CL)(]_ b)

On peut aussi établir ce résultat naivement, sans recours au produit de Cauchy.
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Annexes

Produit d’ensembles

’Théoréme 3. L’ensemble N? est dénombrable.

Démonstration. Soit m : N> — N définie pour
(m,n) € N? par

(m+n)(m+n+1)
2

w(m,n) =

Montrons que 7 est une bijection. FIGURE 4 — Parcours de N* par 7

On suit la trame suivante :

1. Justifier que 7 est définie de N2 sur N.
2. Montrer

V(m,n) € N? 7m,n+1)=n(m+1,n)+1 e w(n+1,0)=7(0,n)+1
En déduire que 7 est surjective.
3. Montrer
Vim,n,m',n') eN*  m/+n' >m+n+1= 7(m/,n) > n(m,n)
En déduire l'injectivité de .

Etapes : 1. Les entiers m +n et m + n + 1 sont consécutifs donc I'un d’eux est pair et par
conséquent

L’application 7 est bien définie de N? sur N.

Variante : On peut observer que

m+n
V(m,n) € N? m(m,n)=n+ > keN
k=1
2. On a 7(0,0) = 0 d’ou 0 € Im 7. On vérifie sans peine les relations demandées. Puis, pour
(m,n) € N2, on observe
m(n+1,0) sim=0
m(m—1,n+1) sinon

m(m,n)+1= {

d’ou m(m,n) + 1 € Im 7. Ainsi, 'ensemble Im 7 et une partie de N contenant 0 et qui vérifie
le principe de récurrence et on conclut

Im7m=N

3. Soient, (m,n) et (m’,n’) dans N? avec (m,n) # (m’,n’). Sim’ +n' > m+n+ 1, il vient
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(m’+n’)<w21’+n'+1) Ly Mt Dmin+2)

A
=,
:\
[
\

(m—l—n)(m?{—n—l—l)

z 2

+n+m+1+n">mr(m,n)

c’est-a-dire m+n'>m+n = w(m' n)>n(m,n)
Par symétrie des roles, on en déduit
m+n#m' +n = w(m,n)#mx(m, n)

Supposons (m,n) # (m/,n’). Sim+n =m'+n’', alors n # n’ d’oi m7(m,n) # w(m',n’) et sinon
on a également 7(m’,n’) # w(m,n) d’aprés 'implication précédente. Dans tous les cas, on a
donc

(m,n) # (m',n') = w(m,n)#x(m',n')

Ainsi L’application 7 est une injection de N? sur N.

Variante : Pour montrer 'inégalité demandée, on peut aussi écrire

m/+n’ m+n+1 m+mn
am/,n)=n"+ > k=2n'+ > k=m+1l+n'+n+ > k=m+1+n +7(m,n)
k=1 k=1 k=1

Ainsi, Papplication 7 est surjective et injective et réalise donc une bijection de N? dans N. [J
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