Feuille d'exercices n°37

Exercice 1 (*)

Montrer que]-1;1[n'est pas dénombrable.

Exercice 2 (*)

Étudier la sommabilité de $\left(\frac{1}{1+mn}\right)_{(m,n)\in(\mathbb{N}^*)^2}$.

Exercice 3 (*)

Étudier la sommabilité de $\left(\frac{1}{1+m^2n^2}\right)_{(m,n)\in(\mathbb{N}^*)^2}$.

Exercice 4 (*)

Soit $(a_i)_{i\in I}$ et $(b_i)_{i\in I}$ deux familles sommables d'éléments de \mathbb{R}_+ . Montrer que la famille $(\sqrt{a_ib_i})_{i\in I}$ est sommable.

Exercice 5 (**)

Soit α réel. Étudier la somme $\sum_{(m,n)\in(\mathbb{N}^*)^2}\frac{1}{(m+n)^{\alpha}}$.

Exercice 6 (**)

Soient a>1 et b>1. Étudier la somme $\sum_{(m,n)\in(\mathbb{N}^*)^2}\frac{1}{a^m+b^n}.$

Exercice 7 (*)

Justifier la convergence puis calculer la somme de $\sum \left(\sum_{k=1}^{n} \frac{2^{k-n}}{k(k+1)}\right)$.

Exercice 8 (**)

Justifier la convergence puis calculer la somme de $\sum ne^{-n}$.

Exercice 9 (**)

Soit $z\in\mathbb{C}$ tel que |z|<1. Montrer l'égalité

$$\sum_{n=0}^{+\infty} \frac{z^{2n+1}}{1-z^{2n+1}} = \sum_{n=1}^{+\infty} \frac{z^n}{1-z^{2n}}$$

1

Exercice 10 (**)

Soit
$$a > 0$$
. Montrer
$$\sum_{n=0}^{+\infty} \frac{1}{\operatorname{ch}((2n+1)a)} = \sum_{n=0}^{+\infty} \frac{(-1)^n}{\operatorname{sh}((2n+1)a)}$$

Exercice 11 (**)

Pour
$$t$$
 réel, on note
$$S(t) = \sum_{n=1}^{+\infty} \frac{t^n}{1+t^n}$$

- 1. Préciser l'ensemble de définition D de S.
- 2. Montrer $\forall t \in D \qquad S(t) = \sum_{k=1}^{+\infty} (-1)^{k-1} \frac{t^k}{1-t^k}$
- 3. Montrer $\forall t \in D$ $S(t) = \sum_{n=0}^{+\infty} a_n t^n$ avec $(a_n)_n \in \mathbb{Z}^{\mathbb{N}}$

Exercice 12 (*)

Soit $\sigma: \mathbb{N}^* \to \mathbb{N}^*$ bijective. Étudier la nature des séries de terme général :

 $2. \ \frac{1}{\sigma(n)^2 + n}$

$$1. \ \frac{1}{\sigma(n) + n^2}$$