Feuille d'exercices n°39

Exercice 1 (***)

Soit $f:[a;b]\to\mathbb{R}$ croissante. Pour $x\in a$; b, on note $\delta(x)=f(x^+)-f(x^-)$.

- 1. Pour n entier non nul, montrer que $E_n = \left\{ x \in \left] a; b \right[\mid \delta(x) > \frac{1}{n} \right\}$ est fini.
- 2. En déduire que l'ensemble des points de discontinuité de f est au plus dénombrable.
- 3. Généraliser ce résultat pour $f: \mathbb{R} \to \mathbb{R}$.

Indications: 1. Pour n entier non nul, considérer $x_1 < \ldots < x_p$ dans E_n puis $0 \le y_0 < x_1 < y_1 < x_1 < \ldots < x_p < y_p \le b$ puis $f(y_k) - f(y_{k-1})$ pour $k \in [1; p]$.

- 2. Montrer que l'ensemble des points de discontinuité de f est inclus dans un ensemble au plus dénombrable décrit à l'aide des ensembles E_n .
- 3. Considérer les restrictions $f_{\lfloor [-n;n]}$ pour n entier.

Exercice 2 (***)

Un nombre complexe est dit algébrique s'il est racine d'un polynôme à coefficients rationnels. Montrer que l'ensemble \mathscr{A} des nombres algébriques est dénombrable.

Indications: Avec l'égalité $\mathbb{Q}[X] = \bigcup_{n \in \mathbb{N}} \mathbb{Q}_n[X]$, établir que $\mathbb{Q}[X]$ est dénombrable puis notant Z(P) l'ensemble des racines complexes de P pour $P \in \mathbb{Q}[X]$, décrire \mathscr{A} à l'aide de $\mathbb{Q}[X]$.

Exercice 3 (**)

$$\sum_{(p,q)\in\mathbb{N}^2} \frac{1}{p!q!(p+q+1)}$$

Indications: Considérer $I_n = \{(p,q) \in \mathbb{N}^2 \mid p+q=n\}$ pour n entier et utiliser le théorème de sommation par paquets.

Exercice 4 (**)

Pour t réel, on note

$$S(t) = \sum_{n=1}^{+\infty} \frac{t^n}{1 - t^n}$$

- 1. Préciser l'ensemble de définition D de S.
- 2. Montrer

$$\forall t \in D$$
 $S(t) = \sum_{n=1}^{+\infty} d(n) t^n$

où d(n) désigne le nombre de diviseurs de n dans \mathbb{N} .

Indications: 1. Distinguer |t| < 1, |t| = 1 et |t| > 1.

2. Considérer le recouvrement disjoint $(A_p)_{p\in\mathbb{N}^*}$ de $(\mathbb{N}^*)^2$ avec $A_p = \{(k,n) \in (\mathbb{N}^*)^2 \mid k \times n = p\}$.

1

Exercice 5 (**)

Soit $z\in\mathbb{C}$ tel que |z|<1. Justifier l'existence de $\sum_{n\in\mathbb{N}^*}\frac{1}{n^2-z^2}$ puis montrer

$$\sum_{n \in \mathbb{N}^*} \frac{1}{n^2 - z^2} = \sum_{k=0}^{+\infty} \zeta(2k+2) z^{2k} \quad \text{avec} \quad \zeta(s) = \sum_{n=1}^{+\infty} \frac{1}{n^s}$$

Indications : Utiliser le théorème de Fubini.

Exercice 6 (****)

Soit n entier non nul, α réel et $\|\cdot\|$ une norme sur \mathbb{R}^n . Étudier la sommabilité de la famille

$$\left(\frac{1}{\|x\|^{\alpha}}\right)_{x\in\mathbb{Z}^n\setminus\{0_{\mathbb{Z}^n}\}}$$

Indications: Se ramener au cas de la norme $\|\cdot\|_{\infty}$ puis considérer le recouvrement disjoint $(I_p)_{p\in\mathbb{N}^*}$ de $\mathbb{Z}^n\setminus\{0_{\mathbb{Z}^n}\}$ avec $I_p=\{x\in\mathbb{Z}^n\mid \|x\|_{\infty}=p\}$.