Spé MP ISM Poly a trous 2025-26

CH MQ 1 : Les bases de la mécanique quantique ondulatoire
Application a la particule libre

Historique :

1900 Premiére quantification de Planck, qui introduit la grandeur d’aide h (appelée ensuite constante de
Planck) a I’occasion de I’explication théorique du rayonnement du corps noir.

1905 Einstein explique I’effet photoélectrique en s’appuyant sur les quanta d’énergie lumineuse et ouvre la
voie de la dualité onde-corpuscule pour la lumiére.

1913  Bohr introduit son modele semi-quantique stable de 1’atome pour essayer de décrire les spectres
atomiques de raies.

1914  Les expériences de Frank et Hertz montent directement la quantification de 1’énergie des atomes.

1921 Les physiciens Otto Stern et Walter Gerlach mettent en évidence la quantification de la projection du
moment magnétique des atomes.

1923 L’américain Compton montre par I’étude de la diffusion de rayons X que les photons possedent une
guantité de mouvement.

1923  Bohr énonce un principe de correspondance entre les résultats de la physique classique et ceux de la
physigue quantique.

1923 de Broglie affirme que la matiére présente la méme dualité onde-corpuscule que la lumieére.

1926 L’équation de la dynamique de la fonction d’onde est proposée par Schrédinger qui est un fondement
de la version ondulatoire de la nouvelle mécanique quantique.

1926 Born propose I’interprétation orthodoxe de I’école de Copenhague de la fonction d’onde qui est une
interprétation probabiliste.

1927  Le principe de complémentarité, relatif a la dualité onde-corpuscule, est énoncé par Bohr.

1927 Heisenberg propose les relations d’indétermination posant une limite aux interprétations classiques.

1931 Le premier microscope électronique est concu par Ruska et von Borries.

1961 Jonsson réalise la premiére expérience d’interférences de type Young avec des électrons émis par
une source atténuée, longtemps restée une expérience de pensée.

1981 Le premier microscope a effet tunnel (STM) est inventé par Binnig et Rohrer.

l. Dualité onde-corpuscule (Rappels de Math Sup)

1) Relation de Planck — Einstein

E= avec E I’énergie, v la fréquence, o la pulsation
et h= 6,626.1073* J.s la constante de Planck
et h=h/2n la constante de Planck réduite

En 1900, pour étudier le rayonnement du corps noir, Planck a introduit la premiére hypothése de
quantification de 1’énergie du rayonnement électromagnétique :

Les échanges d’énergie entre matiére et rayonnement se font par quanta d’énergie E=hv avec

En 1905, pour expliquer I’effet photoélectrique, Einstein affirme que la lumiére est constituée de grains
indivisibles appelés photons ayant chacun I’énergie hv.

Cette relation, introduite pour les photons, est aussi valable pour les particules matérielles de masse non
nulle.

2) Principe de dualité onde — corpuscule de de Broglie

A toute particule de quantité de mouvement p est associée une onde de longueur d’onde A =

C’est la_relation de de Broglie A= oup = avec h=h/2n et k le vecteur d’onde

Donc a un corps matériel d’énergie E et de quantité de mouvement P , on associe une onde de de Broglie
(ou « onde de matiere ») de fréquence v = E/h et de longueur d’onde de de Broglie A = h/p.

Vérification expérimentale : expériences d’interférence d’électrons (1961) puis interférences d’atomes
(atomes de Néon en 1992) dans un dispositif de fentes d’Young.

Valable pour un photon et pour une particule de masse non nulle.
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3) Application a un photon et a une particule libre de masse non nulle

e Photon:

toujours valable :

seulement pour un photon :

d’ou la relation spécifique entre p et E :

e Particule libre (soumise a aucune force) de masse non nulle non relativiste :

toujours valable :

Seulement pour une particule libre de masse non nulle

D’ou la relation de dispersion :

e Particule libre de masse non nulle relativiste :

vec, p=ymv , E=ymc?, E2=p?c?+m%ic* avecy =

1
J1-(w/c)?

4) Exemples d’effets ondulatoires et corpusculaires — (Principe de complémentarité de
Bohr) Revoir le cours de MPSI

La lumiere et la matiere présentent des effets ondulatoires et corpusculaires.
CE Sup : Décrire un exemple d’expérience mettant en évidence la nécessité de la notion de photon.

CE de Sup : Décrire un exemple d’expérience mettant en évidence le comportement ondulatoire de la matiére.
Interpréter une expérience d’interférences (matiére ou lumiere) « particule par particule » en termes probabilistes

5) Quand doit-on raisonner de facon quantigue ?

CE Sup: Evaluer des ordres de grandeurs typiques intervenant dans des phénoménes quantiques.
Critéere de détection des ondes de de Broglie :

Une particule matérielle révele un caractére ondulatoire de de Broglie si sa longueur d’onde de de Broglie
n’est pas négligeable devant les distances caractéristiques du systéme.

Comportement Comportement

»
|

ADB Distance caractéristique
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v" Calculer la longueur d’onde de De Broglie pour :
— un ¢lectron d’énergie cinétique 10 eV

— une personne de masse m = 70 kg, se déplagant a une vitesse de 1’ordre du métre par seconde

v En 1992 expérience d’interférences atomiques : interférence d’atomes de néon de vitesse v = 2m.s*
de masse atomique M = 20g.mol* a travers des fentes d’Young ultrafines distantes de d = 6um. La
figure est observée a une distance D = 85cm des fentes.

Principe de correspondance de Bohr : Les prédictions de la théorie quantique tendent vers leurs valeurs
classiques dans les conditions ou les résultats classiques et quantiques doivent concorder

Vocabulaire : on appellera particule quantique (ou quanton) une particule qui peut révéler un
comportement quantique.

1. Les bases de la mécanique guantique ondulatoire : Fonction d’onde et
équation de Schrodinger

1) Fonction d’onde et interprétation probabiliste de Born

Fonction d’onde : La description compléte de 1’état d’une particule de masse m dans I’espace a I’instant t se
fait au moyen d’une fonction d’onde complexe ¥(M, t).

Interprétation probabiliste de Born :
La probabilité de trouver la particule dans un volume dt autour de M est P =

Le programme étudie surtout le cas unidirectionnel :
la probabilité de trouver lors d’une mesure la particule entre x et x+dx est dP =

CE : Interpréter en termes de probabilité I’amplitude d’une onde associée a une particule.

Vocabulaire :

La fonction d’onde complexe W(M, t) est appelée amplitude de probabilité (de présence ou d’état ou plus
justement de trouver lors d’une mesure la particule en M) et son module au carré est une densité de
probabilité p=|y (M, t)|?
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Interprétation statistique : On peut aussi imaginer une assemblée d’un grand nombre N de particules
indépendantes et identiques. Alors [¥(M, t)|? donne leur répartition en position :

[P(x, t)]> dx = %N avec dN le nombre de particules situées entre x et x+dx.

Normalisation de la fonction d’onde :

Si D est le domaine de I’espace accessible a la particule, fD [P (M, t) |2d‘[ =1,
ailleurs ¥(M, t) = 0.

Dans le cas unidirectionnel :

Continuité de la fonction d’onde : L’interprétation probabiliste impose que la fonction d’onde est
nécessairement continue et bornée dans I’espace accessible.

2) Equation de Schridinger

Hypothéses : Une particule de masse m , non relativiste et sans spin, placée dans un champ de forces dérivant
d’une énergie potentielle V, est décrite par une fonction d’onde qui vérifie I’équation de Schrodinger :

Le programme se limite aux énergies potentielles qui ne dépendent pas du temps : V(M).

CE : Utiliser le caractere linéaire de I’équation (principe de superposition).

Par linéarité de 1’équation de Schrodinger,

3) Etats stationnaires

Définition d’un état stationnaire : On appelle état stationnaire 1’état quantique caractérisé par une fonction
d’onde pouvant s’écrire sous forme a variables d’espace et de temps séparées

P(M, t) =

CE : Distinguer |’'onde associée a un état stationnaire en mécanique quantique d 'une onde stationnaire au sens usuel de la
physique des ondes.

Rappel pour les OEM :

Onde stationnaire :
Onde progressive :

Séparation des variables temps et espace :  CE : Procéder & la séparation des variables temps et espace.
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Identification de 1’énergie par la relation de Planck — Einstein :
CE : Relier I’énergie de la particule a I’évolution temporelle de sa fonction d’onde et faire le lien avec la relation de Planck-Einstein.

Conclusion et équation de Schrédinger indépendante du temps :

Les états stationnaires de 1’équation de Schrodinger dans le cas d’une énergie potentielle indépendante du
temps s’écrivent, en notant E leur énergie,

P(M, t) =

ou la partie spatiale (M) de la fonction d’onde vérifie I’équation de Schrodinger indépendante du
temps :

Pourqguoi la dénomination « stationnaire » ?

La densité de probabilité de présence d’un état stationnaire est indépendante du temps : [\¥(M, t)|2 =
Autrement dit, un état stationnaire ne présente aucune dynamique dans sa probabilité de présence.

On pourrait montrer aussi que la valeur moyenne de toute grandeur physique d’un systéme préparé dans un
état stationnaire est indépendante du temps (par exemple son énergie).

Propriétés de ¢ :

e normalisée :
e continue et bornée dans tout I’espace accessible (car W est continue et bornée).
® 3 dérivée continue partout ou

Contre exemple :

4) Interprétation énergétique de ’équation de Schrodinger

CE : Identifier le terme lié¢ a | ’énergie cinétique

L’équation de Schrodinger traduit la conservation de I’énergie d’une particule quantique placée dans un
2
champ de force qui dérive d’un potentiel V : E = E+V = ~mp2+V = 24V

® Terme associé a 1’énergie E :
e Terme associé a énergie potentielle V :
e Terme associé a I’énergie cinétique :
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5) Etats non stationnaires d’une particule quantigue

Superposition de deux états stationnaires : Soit une fonction d’onde W(M, t) résultant de la
combinaison lin€aire de deux états stationnaires de fonctions d’onde spatiales respectives ¢1(M) et g2(M) et
d’énergies différentes respectives E1 et Ex>E Y(M, t) = C1p1(M) e TELVR + C; p(M) g1 E2 R

Evolution temporelle de I’état de la particule : _
[PM, ) = [C1 ¢1(M)* + |C2 @2(M)[*+c+ + 2Re(C1 91(M) C2” 2" (M) el (F2EDVR)
Voir les animations du site : phet.colorado.edu/en/simulation/bound-states
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On observe

Inégalité d’Heisenberg temps-énergie (Hors Programme) :

L’évolution de cet état est périodique et la période peut étre prise comme temps caractéristique :
t=T=

D’oii 1 (E2 — E1) =

Un état dont I’énergie présente une indétermination AE admet un temps caractéristique
d’évolution 7 tel que T AE > h/2

Conservation de I’énergie :

En mécanique classique, pour un systéme conservatif, son énergie est conservée au cours de son évolution.
Du point de vue quantique, on voit dans I’exemple de la superposition de deux états stationnaires que
I’énergie varie au cours du temps.

I11. Application a la particule libre quantique

C’est le cas ou la particule n’est soumise a aucune force (elle évolue dans le vide sans interaction). Par un
p2
& 3 - N \ ﬁ. - .
Rem : V = Ep est définie a une constante pres Vo. On peut montrer que choisir Vo non nulle ne change pas la

probabilité de présence mais seulement la phase de V.

choix correct de ’origine des énergies, Ep=V =0. Alors E=Ec =

1) Fonction d’onde d’une particule libre non localisée — Ondes de De Broglie

Recherche d’états stationnaires : CE : Etablir les solutions.

Il faut résoudre 1’équation de Schrddinger indépendante du temps :

Les solutions de cette équation différentielle sont :

En I’absence de conditions aux limites, toutes les valeurs positives de E sont acceptables. Le spectre est donc
continu. On parle d’un continuum d’énergie.

Rem : on voit qu’il y a deux états stationnaires indépendant pour chaque énergie E # 0, on dit qu’un niveau
d’énergie E est dégénére.

Alors W(x, t) =

Les états stationnaires d’une particule libre non localisée sont

appelées ondes de de Broglie de la forme W(x,t) =

Rem : ce sont des états stationnaires au sens de la mécanique quantique mais des ondes progressives, pas
des ondes stationnaires au sens de la physique des ondes!
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Relations de Planck-Einstein, de Broglie et relation de dispersion :
CE : Relier [’énergie de la particule libre et le vecteur d’onde de I’onde plane associée.

Cette onde a pour pulsation ® =E/h. Ceci est conforme a la relation de Planck — Einstein.

Cette onde a pour vecteur d’onde k = %. Ceci est conforme a la relation de de Broglie.

La relation de dispersion est ici :

Difficulté de normalisation : CE : Interpréter la difficulté de normalisation de cette fonction d’onde.

Ces ondes de de Broglie ne sont pas normalisables :

Ceci qui est lié au fait que cette « particule » est non localisée. Tous les points de I’axe (Ox) ont la méme
probabilité d’occupation par la « particule ».

Une onde de De Broglie ne peut pas décrire une particule réelle qui est nécessairement localisée dans un
certain domaine de 1’espace. On va obtenir cette localisation par superposition d’ondes planes progressives
dans un paquet d’ondes.

Interprétation statistique :

Cette onde de de Broglie non localisée pourrait représenter un faisceau parallele homocinétique de particules
identiques et indépendantes, par exemple un faisceau d’électrons.

2) Description d’une particule guantique libre localisée par un paquet d’ondes

Ecriture du paquet d’ondes :

On a trouvé comme états stationnaires d’une particule libre des ondes monochromatiques d’énergie et de
quantité de mouvement parfaitement déterminées. Mais ces fonctions d’onde ne sont pas normalisables donc
elles ne peuvent pas décrire une particule réelle. Mais les états stationnaires forment une base des fonctions
d’onde pour un potentiel indépendant du temps. Pour obtenir cette normalisation, on va sommer ces états
dans un paquet d’ondes. De plus en ’absence de conditions aux limites, toutes les énergies positives sont
accessibles.

A chaque valeur E de I’énergie correspond deux ondes progressives en sens inverse telles que p = +/- V2mE .
On va plutét sommer sur les quantités de mouvement :

(o] . 2
Y(x,t) = %fjoo @(p).e!@*—E@D/Mgy  avec E(p) = f—m (Hors programme)

Dans le paquet, p représente 1’impulsion de chaque onde plane de facteur d’amplitude @(p) et d’énergie E(p).

Vitesses de phase et de groupe :

La vitesse de phase est :

C’est la moitié de la vitesse de la particule : cela ne représente rien physiquement (sans surprise car la vitesse
de phase est relative a un état non localisé. . .).

La vitesse de groupe est :

C’est elle qui représente la vitesse de la particule !
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Evolution temporelle : dispersion et étalement du paquet d’ondes

Avec la relation de dispersion précédente k = ’2;';5 = lzmT‘" , la vitesse de phase dépend forcément
de o :

donc on prévoit un étalement du paquet d’ondes au cours de sa propagation.

Evolution temporelle d’un paquet d’ondes :

Voir les animations du site : phet.colorado.edu/en/simulation/quantum-tunneling
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3) Densité de courant de probabilité

Introduction par analogie avec I’électricité :
En électricité, on relie le vecteur densité de courant j a la densité volumique de charges mobiles py €t a la

vitesse de ces charges v : j =
En mécanique quantique, on définit par analogie un vecteur densité de courant de probabilitéi.

On admet que son expression pour un état stationnaire d’impulsion p = hK fixée d’une particule libre non
localisée et non relativiste (donc pour une onde de De Broglie) est :

j=

Grandeurs analogues :

Attention, cette expression n’est pas valable pour une autre forme d’onde ni pour un paquet d’ondes.

CE: Utiliser I’expression admise du courant de probabilité associé a une particule libre ; |'interpréter comme un produit
densité*vitesse.

Interprétation statistique : et probabilité de traverser un plan d’abscisse x dans le sens de e, entre t et t+dt

Faisceau homocinétique de N électrons (considérés comme des particules quantiques libres et indépendantes)
Ils sont décrits par une fonction d’onde Y (x, t) = e **¥=@0

v

Le nombre d’électrons entre x et x+dx est AN =
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D’ou la densité linéique d’électrons Nj =

Le nombre d’électrons qui traversent la section du faisceau située en x entre t et t+dt est :

dN’ =

D’ou la probabilité de traverser I’abscisse x dans le sens de +e,, entre t et t+dt :

dP =

IV. Mesures guantiques et inégalité de Heisenberg spatiale

En mécanique classique on peut mesurer précisément la position et la vitesse d’une particule a chaque
instant. Il n’en est pas de méme en mécanique quantique.

1) Mesure de position et d’impulsion:

Introduction statistique : Considérons 2N particules quantiques
identiques et indépendantes préparées dans un méme état
initial. A un instant t, on mesure pour N particules la position
suivant (Ox) et pour les N autres la quantité de mouvement
selon (Ox).

On obtient des histogrammes des mesures :

On définit alors des valeurs moyennes et écart type :

(x) = (x?) =

écart type sur la position Ax =

(px) = (px?) =
écart type sur la quantité de mouvement 4Ap,, =

Puis on passe a une loi de probabilité continue :

Valeur moyenne de x: {(X) = ou D est le domaine accessible a x
Valeur moyenne d’une fonction de x (Par ex. f(x)=x?): (f(x)) =
Indétermination ou écart type Ax :  AX =

Indétermination ou écart type Ap, : AP, =
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2) Relation d’indétermination spatiale de Heisenberg (1927) :

La mesure a un instant donné quelconque de la position X et de I’impulsion px (ou la quantité de
mouvement) d’une particule présente des indéterminations fondamentales AX et Apx verifiant
I’inégalité d’Heisenberg (spatiale )

AX.Ap, =

Iy a égalité dans le cas ou les distributions sont des gaussiennes.

Abandon de la notion de trajectoire : Cette relation d’indétermination signifie qu’on ne peut pas mesurer
avec précision a la fois la position et la vitesse de la particule. Si on augmente la précision sur la mesure de la
position, on perd en précision sur celle de la vitesse, et inversement. La notion de trajectoire est une notion
classique qui n’a plus aucun sens en mécanique quantique.

Ne pas confondre incertitude et indétermination :

Ce n’est pas un probléme de précision de I’appareil de mesure (ce n’est pas une incertitude, on ne peut pas la
réduire avec un appareil plus précis) mais c’est une indétermination fondamentale liée a la nature statistique
de la mécanique quantique.

Exemple de la diffraction par une fente de largeur a:

3) Retour sur la localisation de la particule guantigue libre

CE : Expliquer, en s ’appuyant sur l’inégalité d ’Heisenberg spatiale, que la localisation de la particule peut s obtenir par superposition
d’ondes planes.

Un état stationnaire d’une particule libre d’énergie E et de quantité de mouvement p parfaitement
déterminées a une probabilité de présence uniforme : si Ap — 0 alors Ax — +oo. Il est non localisé.

Pour localiser une particule libre on a fabriqué un paquet d’ondes en superposant un grand nombre d’ondes
planes d’impulsions différentes. On a donc augmenté 1’indétermination sur I’impulsion, ce qui a réduit
I’indétermination sur la position, conformément a 1’inégalité d’Heisenberg.

4) Exemple d’utilisation de la relation d’indétermination spatiale de Heisenberg:

L’atome d’hydrogéne est constitué d’un électron de masse m = 9.1073! kg confiné dans une zone de taille
a ~ 10 m autour d’un proton. Estimer I’ordre de grandeur de sa vitesse (quadratique moyenne).
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