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Spé MP ISM                                                           Poly à trous  2025-26 

 

CH MQ 1  : Les bases de la mécanique quantique ondulatoire  

Application à la particule libre    
 

Historique : 
 

1900  Première quantification de Planck, qui introduit la grandeur d’aide h (appelée ensuite constante de 

Planck) à l’occasion de l’explication théorique du rayonnement du corps noir. 

1905  Einstein explique l’effet photoélectrique en s’appuyant sur les quanta d’énergie lumineuse et ouvre la 

voie de la dualité onde-corpuscule pour la lumière. 

1913  Bohr introduit son modèle semi-quantique stable de l’atome pour essayer de décrire les spectres 

atomiques de raies. 

1914 Les expériences de Frank et Hertz montent directement la quantification de l’énergie des atomes. 

1921 Les physiciens Otto Stern et Walter Gerlach mettent en évidence la quantification de la projection du 

moment magnétique des atomes.  

1923 L’américain Compton montre par l’étude de la diffusion de rayons X que les photons possèdent une 

quantité de mouvement. 

1923  Bohr énonce un principe de correspondance entre les résultats de la physique classique et ceux de la 

physique quantique. 

1923  de Broglie affirme que la matière présente la même dualité onde-corpuscule que la lumière. 

1926  L’équation de la dynamique de la fonction d’onde est proposée par Schrödinger qui est un fondement 

de la version ondulatoire de la nouvelle mécanique quantique. 

1926  Born propose l’interprétation orthodoxe de l’école de Copenhague de la fonction d’onde qui est une 

interprétation probabiliste. 

1927  Le principe de complémentarité, relatif à la dualité onde-corpuscule, est énoncé par Bohr. 

1927  Heisenberg propose les relations d’indétermination posant une limite aux interprétations classiques. 

1931  Le premier microscope électronique est conçu par Ruska et von Borries. 

1961  Jönsson réalise la première expérience d’interférences de type Young avec des électrons émis par 

une source atténuée, longtemps restée une expérience de pensée. 

1981  Le premier microscope à effet tunnel (STM) est inventé par Binnig et Rohrer. 
 

I. Dualité onde-corpuscule (Rappels de Math Sup) 
 

1) Relation de Planck – Einstein  

 

E = hν = ħω     avec E l’énergie, ν la fréquence, ω la pulsation  
et h=  6,626.10−34 J.s la constante de Planck 

et ħ=h/2π   la constante de Planck réduite 

  
En 1900, pour étudier le rayonnement du corps noir, Planck a introduit la première hypothèse de 

quantification de l’énergie du rayonnement électromagnétique : 

Les échanges d’énergie entre matière et rayonnement se font par quanta d’énergie E=hν avec  

En 1905, pour expliquer l’effet photoélectrique, Einstein affirme que la lumière est constituée de grains 

indivisibles appelés photons ayant chacun l’énergie hν. 

Cette relation, introduite pour les photons, est aussi valable pour les particules matérielles de masse non 

nulle. 
 

2) Principe de dualité onde – corpuscule de de Broglie 
 

A toute particule de quantité de mouvement 𝑝 est associée une onde  de longueur d’onde λ = h/p 

 

C’est la relation de de Broglie λ = 
𝒉

𝒑
 ou 𝒑⃗⃗⃗ = ħ𝒌⃗⃗⃗   avec ħ=h/2π   et 𝑘⃗⃗ le vecteur d’onde  

 

Donc à un corps matériel d’énergie E et de quantité de mouvement  p⃗⃗ , on associe une onde de de Broglie 

(ou « onde de matière ») de fréquence ν = E/h  et de longueur d’onde de de Broglie λ = h/p. 

Vérification expérimentale : expériences d’interférence d’électrons (1961) puis interférences d’atomes 

(atomes de Néon en 1992) dans un dispositif de fentes d’Young. 

Valable pour un photon et pour une particule de masse non nulle. 
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3) Application à un photon et à une particule libre de masse non nulle 
 

• Photon : 

 

toujours valable : énergie E = hν = ħω ,  quantité de mouvement p⃗⃗ = ħk⃗⃗ avec ħ = h/2π. 
 

 

seulement pour un photon : masse nulle m = 0, vitesse c , relation de dispersion  k = ω/c  
 

 

d’où la relation spécifique entre p et E : p = ħk = ħ2πν/c = hν/c = E/c 
 

 

 

• Particule libre (soumise à aucune force) de masse non nulle non relativiste : 

 

toujours valable : énergie E = hν = ħω ,  quantité de mouvement p⃗⃗ = ħk⃗⃗ avec ħ = h/2π. 
 

 

Seulement pour une particule libre de masse non nulle Ep = 0 donc E = Ec = 
1

2
mv2 et p⃗⃗ = m𝑣⃗ 

donc E = p2/2m 

 

D’où la relation de dispersion : p = ħk donne k2 = 2mω/ħ 
 

 

 

• Particule libre de masse non nulle  relativiste : 

 

v≈ 𝑐,     p⃗⃗ = γm𝑣⃗    ,   E = γmc2 ,  E2 = p2c2 + m2c4   avec 𝛾 =
1

√1−(𝑣/𝑐)2
 

 

4) Exemples d’effets ondulatoires et corpusculaires – (Principe de complémentarité de 

Bohr)  Revoir le cours de MPSI 
 

La lumière et la matière présentent des effets ondulatoires et corpusculaires. 
CE Sup : Décrire un exemple d’expérience mettant en évidence la nécessité de la notion de photon. 

 

CE de Sup : Décrire un exemple d’expérience mettant en évidence le comportement ondulatoire de la matière. 

Interpréter une expérience d’interférences (matière ou lumière) « particule par particule » en termes probabilistes 
 

 

 

5) Quand doit-on raisonner de façon quantique ? 
 

CE Sup: Évaluer des ordres de grandeurs typiques intervenant dans des phénomènes quantiques.  

 

Critère de détection des ondes de de Broglie : 

 

Une particule matérielle révèle un caractère ondulatoire de de Broglie si sa longueur d’onde de de Broglie 

n’est pas négligeable devant les distances caractéristiques du système. 
 

 
 
 

 

λDB 

Comportement quantique Comportement classique 

Distance caractéristique 
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✓ Calculer la longueur d’onde de De Broglie pour : 

− un électron d’énergie cinétique 10 eV 
 

E =  

λDB =h/p=
ℎ

√2𝑚𝐸
=3,9.10-10m  

l’aspect ondulatoire de l’électron se manifeste à l’échelle atomique 
 

 

 

 

− une personne de masse m = 70 kg, se déplaçant à une vitesse de l’ordre du mètre par seconde 
 

λDB =h/p=h/mv=9,4.10-36m  

si petite que les effets quantiques ne se manifestent pas 
 

 

 

✓ En 1992 expérience d’interférences atomiques : interférence d’atomes de néon de vitesse v = 2m.s-1 

de masse atomique M = 20g.mol-1 à travers des fentes d’Young ultrafines distantes de d = 6μm. La 

figure est observée à une distance D = 85cm des fentes.  

 

λDB=h/p=h/mv=10nm  

d’où l’interfrange i=Dλ/d=1,4mm. Les interférences sont observables. 
 

 

 

Principe de correspondance de Bohr : Les prédictions de la théorie quantique tendent vers leurs valeurs 

classiques dans les conditions où les résultats classiques et quantiques doivent concorder 

 

Vocabulaire : on appellera particule quantique (ou quanton) une particule qui peut révéler un 

comportement quantique. 

 

II. Les bases de la mécanique quantique ondulatoire : Fonction d’onde  et 

équation de Schrödinger 
 

1) Fonction d’onde et interprétation probabiliste de Born 

 
Fonction d’onde : La description complète de l’état d’une particule de masse m dans l’espace à l’instant t se 

fait au moyen d’une fonction d’onde complexe Ψ(𝑀, 𝑡). 

 

Interprétation probabiliste de Born :  

La probabilité de trouver la particule dans un volume dτ autour de  M est dP = |Ψ(M, t)|2 dτ 

 

Le programme étudie surtout le cas unidirectionnel :  

la probabilité de trouver lors d’une mesure la particule entre x et x+dx est dP = |Ψ(x, t)|2 dx. 
 

 

 

CE : Interpréter en termes de probabilité l’amplitude d’une onde associée à une particule. 

 

Vocabulaire : 
 

La fonction d’onde complexe Ψ(𝑀, 𝑡) est appelée amplitude de probabilité (de présence ou d’état ou plus 

justement de trouver lors d’une mesure la particule en M) et son module au carré est une densité de 

probabilité ρ=|𝜓(𝑀, 𝑡)|2 
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Interprétation statistique : On peut aussi imaginer une assemblée d’un grand nombre N de particules 

indépendantes et identiques. Alors |Ψ(M, t)|2 donne leur répartition en position : 

 |Ψ(x, t)|2 dx = 
𝑑𝑁

𝑁
 avec dN le nombre de particules situées entre x et x+dx. 

 

 

 

 

 

Normalisation de la fonction d’onde :  

Si D est le domaine de l’espace accessible à la particule, ∫ |Ψ(M, t)|2dτ 
𝐷

 = 1,  

ailleurs  Ψ(M, t) = 0. 

 

 

Dans le cas unidirectionnel : ∫ |Ψ(x, t)|2dx 
+∞

−∞
=1 

 

Continuité de la fonction d’onde : L’interprétation probabiliste impose que la fonction d’onde est 

nécessairement continue et bornée dans l’espace accessible.  

 
 

2) Equation de Schrödinger 
 

Hypothèses : Une particule de masse m , non relativiste et sans spin, placée dans un champ de forces dérivant 

d’une énergie potentielle V, est décrite par une fonction d’onde qui vérifie l’équation de Schrödinger : 

 

iħ
𝝏𝜳

𝝏𝒕
(𝑴, 𝒕) = - 

ħ𝟐

𝟐𝒎
𝜟𝜳(𝑴, 𝒕) + 𝑽(𝑴, 𝒕). 𝜳(𝑴, 𝒕) 

 

Le programme se limite aux énergies potentielles qui ne dépendent pas du temps : V(M). 

 
CE : Utiliser le caractère linéaire de l’équation (principe de superposition). 

Par linéarité de l’équation de Schrödinger, toute combinaison linéaire de solutions est solution. 
 

 

3) Etats stationnaires  
 

Définition d’un état stationnaire : On appelle état stationnaire l’état quantique caractérisé par une fonction 

d’onde pouvant s’écrire sous forme à variables d’espace et de temps séparées 

 Ψ(M, t) = φ(M) g(t) avec φ(M) et g(t) complexes  

   
CE : Distinguer l’onde associée à un état stationnaire en mécanique quantique d’une onde  stationnaire au sens usuel de la  

physique des ondes. 
 

Rappel pour les OEM : 

 

Onde stationnaire : 

Onde progressive : 

 

Séparation des variables temps et espace :     CE : Procéder à la séparation des variables temps et espace. 
 

 

iħ𝝋(𝑴)
𝒅𝒈

𝒅𝒕
 = - 

ħ𝟐

𝟐𝒎
𝜟𝝋(𝑴). 𝒈(𝒕) + 𝑽(𝑴). 𝝋(𝑴). 𝒈(𝒕)  

et on sépare les variables   
𝐢ħ

𝒈(𝒕)

𝒅𝒈

𝒅𝒕
 =

𝟏

𝝋(𝑴)
( - 

ħ𝟐

𝟐𝒎
𝜟𝝋(𝑴) + 𝑽(𝑴). 𝝋(𝑴)) 

Chaque membre dépend de variables quelconques indépendantes t et M donc est égal à une même 

constante que l’on note K. 

Alors, le premier membre donne g(t) = g(0) e−iK t/ħ et on peut choisir g(0) = 1 sans restreindre la 

généralité puisque cela revient à multiplier φ(M) par une constante.  
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Identification de l’énergie par la relation de Planck – Einstein :  
CE : Relier l’énergie de la particule à l’évolution temporelle de sa fonction d’onde et faire le lien avec la relation de Planck-Einstein. 
 

En mécanique quantique on choisit des ondes en 𝑒−𝑖𝜔𝑡 

On constate que cette onde est de pulsation ω = K/ħ. Or la relation de Planck – Einstein donne la 

relation entre l’énergie E et la pulsation ω : E = ħω.  

Donc le facteur K dans g(t) est l’énergie de l’état stationnaire : K = E  

(avec E = Ec > 0 pour une particule libre, pour une particule non libre Ep = V peut être négative, elle est définie à une constante 

près). 

 

 

 

 

 

 

Conclusion et équation de Schrödinger indépendante du temps : 
 

Les états stationnaires de l’équation de Schrödinger dans le cas d’une énergie potentielle indépendante du 

temps s’écrivent, en notant E leur énergie, 

 Ψ(M, t) = φ(M) e−i E t/ħ 

 

où la partie spatiale φ(M) de la fonction d’onde vérifie l’équation de Schrödinger indépendante du 

temps : 

      − 
ħ𝟐

𝟐𝒎
𝜟φ(M) + V(M) φ(M) = E φ(M) 

 

Pourquoi la dénomination « stationnaire » ? 
 

La densité de probabilité de présence d’un état stationnaire est indépendante du temps : |Ψ(M, t)|2 = |φ(M)|2 
Autrement dit, un état stationnaire ne présente aucune dynamique dans sa probabilité de présence. 

On pourrait montrer aussi que la valeur moyenne de toute grandeur physique d’un système préparé dans un 

état stationnaire est indépendante du temps (par exemple son énergie). 

 

Propriétés de φ : 

• normalisée : ∫ |Ψ(M, t)|2dτ 
𝐷

 = 1 

• continue et bornée dans tout l’espace accessible (car Ψ est continue et bornée). 

• à dérivée continue partout où V est continue ou bien ne présente pas de discontinuité 

d’amplitude infinie. 
 

Contre exemple : particule dans un puits de potentiel infini. 
 
 

 

 
 

 

 
 

 

 

4) Interprétation énergétique de l’équation de Schrödinger 
 

CE : Identifier le terme lié à l’énergie cinétique 

 

L’équation de Schrödinger traduit la conservation de l’énergie d’une particule quantique placée dans un 

champ de force qui dérive d’un potentiel V : E = Ec+V = 
1

2
𝑚𝑣2+V = 

𝑝2

2𝑚
+V 

• Terme associé à l’énergie E :  iħ
𝜕𝛹

𝜕𝑡
(𝑀, 𝑡)  (devient E.Ψ dans le cas stationnaire) 

• Terme associé à énergie potentielle V : V(M, t). Ψ(M, t)  

• Terme associé à l’énergie cinétique : - 
ħ𝟐

𝟐𝒎
𝜟𝜳(𝑴, 𝒕) 
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5) Etats non stationnaires d’une particule quantique 
 

Superposition de deux états stationnaires : Soit une fonction d’onde Ψ(M, t) résultant de la 

combinaison linéaire de deux états stationnaires de fonctions d’onde spatiales respectives φ1(M) et φ2(M) et 

d’énergies différentes respectives E1 et E2>E1           Ψ(M, t) = C1 φ1(M) e−i E1 t/ħ + C2 φ2(M) e−i E2 t/ħ 

 
Evolution temporelle de l’état de la particule :  

|Ψ(M, t)|2 = |C1 φ1(M)|2 + |C2 φ2(M)|2+c∗ + 2Re(C1 φ1(M) C2
* φ2

*(M) ei (E2−E1) t/ħ) 

Voir les animations du site : phet.colorado.edu/en/simulation/bound-states 
 

A t1 

 

A t2 

 

A t3 

 
A t4 

 
A t5 
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On observe une oscillation de l’état de la particule entre les deux états stationnaires. 

 

Inégalité d’Heisenberg temps-énergie (Hors Programme) : 

L’évolution de cet état est périodique et la période peut être prise comme temps caractéristique :  

τ = Τ = 2πħ/(E2 − E1)  

 

 

D’où τ (E2 − E1) = h > ħ/2 

Un état dont l’énergie présente une indétermination ΔE admet un temps caractéristique 

d’évolution τ tel que τ ΔE ≥ ħ/2 

 

Conservation de l’énergie : 

En mécanique classique, pour un système  conservatif, son énergie  est conservée au cours de son évolution.  

Du point de vue quantique, on voit dans l’exemple de la superposition de deux états stationnaires que 

l’énergie varie au cours du temps. 

 

III. Application à la particule libre quantique 
 

C’est le cas où la particule n’est soumise à aucune force (elle évolue dans le vide sans interaction). Par un 

choix correct de l’origine des énergies,  Ep = V = 0 . Alors  E = Ec = 
𝑝2

2𝑚
.   

Rem : V = Ep est définie à une constante près V0. On peut montrer que choisir V0 non nulle ne change pas la 

probabilité de présence mais seulement la phase de Ψ. 
 

1) Fonction d’onde d’une particule libre non localisée – Ondes de De Broglie 
 

Recherche d’états stationnaires :  CE : Établir les solutions.      

Il faut  résoudre l’équation de Schrödinger indépendante du temps : − 
ħ2

2𝑚
𝛥φ(M)  = E φ(M) 

 

 

 

 

 

 

 

 

Les solutions de cette équation différentielle sont :  φ(x) = φ0+ eipx/ħ + φ0- e
-ipx/ħ  où p = √2mE   

(en notant φ0+  et  φ0- les constantes d’intégration) 

 
 

 

 

En l’absence de conditions aux limites, toutes les valeurs positives de E sont acceptables. Le spectre est donc 

continu. On parle d’un continuum d’énergie. 

 

Rem : on voit qu’il y a deux états stationnaires indépendant pour chaque énergie  E ≠ 0, on dit qu’un niveau 

d’énergie E est dégénéré. 

 

Alors Ψ(x, t) = φ(x) e−i E t/ħ = φ0+ ei(px/ħ-Et/ħ) + φ0- e
-i(px/ħ-Et/ħ)

   

 

Les états stationnaires d’une particule libre non localisée sont donc des ondes planes 

progressives monochromatiques  

appelées ondes de de Broglie de la forme  Ψ(x, t) =  φ0 ei(p.x-E.t)/ħ 
 

Rem : ce sont des états stationnaires au sens de la mécanique quantique mais des ondes progressives, pas 

des ondes stationnaires au sens de la physique des ondes! 
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Relations de Planck-Einstein, de Broglie et relation de dispersion : 

CE : Relier l’énergie de la particule libre et le vecteur d’onde de l’onde plane associée. 
 

Cette onde a pour pulsation  ω = E/ħ.   Ceci est conforme à  la relation de Planck – Einstein. 

Cette onde a pour vecteur d’onde 𝑘⃗⃗ =
𝑝⃗

ħ
. Ceci est conforme à la relation de de Broglie. 

La relation de dispersion est ici : p = √2mE  donc k = √
2𝑚𝐸

ħ2
= √

2𝑚𝜔

ħ
 

 

  

 

Difficulté de normalisation : CE : Interpréter la difficulté de normalisation de cette fonction d’onde. 

 

Ces ondes de de Broglie ne sont pas normalisables : 

 

 

 

Ceci qui est lié au fait que cette « particule » est non localisée. Tous les points de l’axe (Ox) ont la même 

probabilité d’occupation par la « particule ».  

Une onde de De Broglie ne peut pas décrire une particule réelle qui est nécessairement localisée dans un 

certain domaine de l’espace. On va obtenir cette localisation par superposition d’ondes planes progressives 

dans un paquet d’ondes. 

 

Interprétation statistique :  

Cette onde de de Broglie non localisée pourrait représenter un faisceau parallèle homocinétique de particules 

identiques et indépendantes, par exemple un faisceau d’électrons. 
 

 
 

2) Description d’une particule quantique libre localisée par un paquet d’ondes 
 

Ecriture du paquet d’ondes : 
 

On a trouvé comme états stationnaires d’une particule libre des ondes monochromatiques d’énergie et de 

quantité de mouvement parfaitement déterminées. Mais ces fonctions d’onde ne sont pas normalisables donc 

elles ne peuvent pas décrire une particule réelle. Mais les états stationnaires forment une base des fonctions 

d’onde pour un potentiel indépendant du temps. Pour obtenir cette normalisation, on va sommer ces états 

dans un paquet d’ondes. De plus en l’absence de conditions aux limites, toutes les énergies positives sont 

accessibles.  

A chaque valeur E de l’énergie correspond deux ondes progressives en sens inverse telles que p = +/- √2mE . 

On va plutôt sommer sur les quantités de mouvement : 

 

  Ψ(x, t) = 
1

√ħ
∫ 𝜑(𝑝). 𝑒𝑖(𝑝𝑥−𝐸(𝑝)𝑡)/ħ𝑑𝑝

+∞

−∞
   avec E(p) = 

𝑝2

2𝑚
  (Hors programme) 

 

Dans le paquet, 𝑝 représente l’impulsion de chaque onde plane de facteur d’amplitude φ(p) et d’énergie E(p). 

 

Vitesses de phase et de groupe : 

La vitesse de phase est :   vφ = 
𝜔

𝑘
 = 

𝐸/ħ

𝑝/ħ
 = 

𝑝

2𝑚
=  

𝑣

2
  

en utilisant les relations de Planck-Einstein et de de Broglie et E = 
𝑝2

2𝑚
. 

 

 

C’est la moitié de la vitesse de la particule : cela ne représente rien physiquement (sans surprise car la vitesse 

de phase est relative à un état non localisé. . .).  

La vitesse de groupe est : vg = 
𝑑𝜔

𝑑𝑘
 = 

𝑑𝐸

𝑑𝑝
 = 

𝑝

𝑚
= 𝑣 

 

 

C’est elle qui représente la vitesse de la particule ! 
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Evolution temporelle : dispersion et étalement du paquet d’ondes 

Avec la relation de dispersion précédente k = √
2𝑚𝐸

ħ2 =  √
2𝑚𝜔

ħ
 , la vitesse de phase dépend forcément 

de ω : 

 

 

donc on prévoit un étalement du paquet d’ondes au cours de sa propagation. 

 

 

Evolution temporelle d’un paquet d’ondes :  

 

Voir les animations du site : phet.colorado.edu/en/simulation/quantum-tunneling 

 

A t1 

 
 

A t2 
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A t3 

 
 

 

 

 

 

 

3) Densité de courant de probabilité 
 

Introduction par analogie avec l’électricité : 

En électricité, on relie le vecteur densité de courant 𝑗 à la densité volumique de charges mobiles ρm et à la 

vitesse de ces charges 𝑣⃗ : 𝑗 = ρm𝑣⃗ 

En mécanique quantique, on définit par analogie un vecteur densité de courant de probabilité 𝑱⃗. 

On admet que son expression pour un état stationnaire d’impulsion p⃗⃗ = ħk⃗⃗ fixée d’une particule libre non 

localisée et non relativiste (donc pour une onde de De Broglie) est : 

 

𝑱⃗ =  |𝜳|𝟐 𝒗⃗⃗⃗ = |𝜳|𝟐 𝒑⃗⃗⃗

𝒎
=   |𝜳|𝟐 ħ𝒌⃗⃗⃗

𝒎
  

 

Grandeurs analogues :  

Vitesse des porteurs     Vitesse de la particule 

 

Charge volumique ρ    Densité de probabilité |𝛹|2 

 

Densité de courant électrique 𝑗 = ρ𝑣⃗  Densité de courant de probabilité 𝐽⃗⃗⃗ = |𝛹|2 ħ𝑘⃗⃗

𝑚
 = |𝛹|2𝑣⃗ 

 

 

Attention, cette expression n’est pas valable pour une autre forme d’onde ni pour un paquet d’ondes. 
 

CE: Utiliser l’expression admise du courant de probabilité associé à une particule libre ; l’interpréter comme un produit 

densité*vitesse. 

 

Interprétation statistique : et probabilité de traverser un plan d’abscisse x dans le sens de 𝑒𝑥⃗⃗⃗⃗⃗ entre t et t+dt 
 

Faisceau homocinétique de N électrons (considérés comme des particules quantiques libres et indépendantes) 

Ils sont décrits par une fonction d’onde 𝜓(𝑥, 𝑡) = 𝜓0𝑒𝑖(𝑘𝑥−𝜔𝑡) 

 

 
 

Le nombre d’électrons entre x et x+dx est dN =  

x 
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D’où la densité linéique d’électrons nl =  

 

Le nombre d’électrons qui traversent la section du faisceau située en x entre t et t+dt est : 

dN’ =  

car à l’instant t ils étaient tous situés à une distance de x inférieure à vdt. 
 

 

 

D’où la probabilité de traverser l’abscisse x dans le sens de +𝑒𝑥⃗⃗⃗⃗⃗ entre t et t+dt : 

dP = 𝐽. 𝑒𝑥⃗⃗ ⃗⃗  𝑑𝑡 

 
 

 

IV. Mesures quantiques et inégalité de Heisenberg spatiale 
 

 

En mécanique classique on peut mesurer précisément la position et la vitesse d’une particule à chaque 

instant. Il n’en est pas de même en mécanique quantique. 
 

1) Mesure de position et d’impulsion:  
 

Introduction statistique : Considérons 2N particules quantiques 

identiques et indépendantes préparées dans un même état 

initial. A un instant t, on mesure pour N particules la position 

suivant (Ox) et pour les N autres la quantité de mouvement 

selon (Ox). 

On obtient des histogrammes des mesures : 

 

 

 

 

 

On définit alors des valeurs moyennes et écart type :  

 

  〈x〉 =
1

𝑁
∑ 𝑥𝑖𝑁𝑖𝑖             ²  〈x2〉 =

1

𝑁
∑ 𝑥𝑖

2𝑁𝑖𝑖       

écart type sur la position 𝜟𝒙 = √〈𝒙𝟐〉 − 〈𝒙〉𝟐 

 

  〈𝑝𝑥〉 = 
1

𝑁
∑ 𝑝𝑗𝑁𝑗𝑗             〈p𝑥

2〉 =
1

𝑁
∑ 𝑝𝑗

2𝑁𝑗𝑗       

écart type sur la quantité de mouvement 𝜟𝒑𝒙 = √〈𝒑𝒙
𝟐〉 − 〈𝒑𝒙〉𝟐 

 
Puis on passe à une loi de probabilité continue : 

 
 

 

 

 

 

Valeur moyenne de x: 〈x〉 = ∫ 𝑥. |Ψ(x, t)|2dx 
𝐷

    où D est le domaine accessible à x 

Valeur moyenne d’une fonction de x (Par ex. f(x)=x2):  〈f(x)〉 = ∫ 𝑓(𝑥). |Ψ(x, t)|2dx 
𝐷

 

Indétermination ou écart type Δx :  𝜟𝒙 = √〈𝒙𝟐〉 − 〈𝒙〉𝟐 

Indétermination ou écart type Δ𝒑𝒙 :  𝜟𝒑𝒙 = √〈𝒑𝒙
𝟐〉 − 〈𝒑𝒙〉𝟐 
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2) Relation d’indétermination spatiale de Heisenberg (1927) :   
 

La mesure à un instant donné quelconque de la position x et de l’impulsion px (ou la quantité de 

mouvement) d’une particule présente des indéterminations fondamentales  Δx et Δpx vérifiant 

l’inégalité d’Heisenberg (spatiale )   

  

Δx.Δ𝒑𝒙 ≥ ħ/𝟐 

 
Il y a égalité dans le cas où les distributions sont des gaussiennes. 

 

Abandon de la notion de trajectoire : Cette relation d’indétermination signifie qu’on ne peut pas mesurer 

avec précision à la fois la position et la vitesse de la particule. Si on augmente la précision sur la mesure de la 

position, on perd en précision sur celle de la vitesse, et inversement. La notion de trajectoire est une notion 

classique qui n’a plus aucun sens en mécanique quantique. 

 

Ne pas confondre incertitude et indétermination : 

Ce n’est pas un problème de précision de l’appareil de mesure (ce n’est pas une incertitude, on ne peut pas la 

réduire avec un appareil plus précis) mais c’est une indétermination fondamentale liée à la nature statistique 

de la mécanique quantique.  

Exemple de la diffraction par une fente de largeur a: L’incertitude expérimentale sur la mesure 

de x pourrait être la taille d’un pixel du détecteur mais l’indétermination  Δx est liée à 

la largeur de la tache centrale de diffraction par la fente. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3) Retour sur la localisation de la particule quantique libre 
 

CE : Expliquer, en s’appuyant sur l’inégalité d’Heisenberg spatiale, que la localisation de la particule peut s’obtenir par superposition 

d’ondes planes. 

 

Un état stationnaire d’une particule libre d’énergie E et de quantité de mouvement p parfaitement 

déterminées a une probabilité de présence uniforme : si Δp → 0 alors Δx → +∞. Il est non localisé. 

Pour localiser une particule libre on a fabriqué un paquet d’ondes en superposant un grand nombre d’ondes 

planes d’impulsions différentes. On a donc augmenté l’indétermination sur l’impulsion, ce qui a réduit 

l’indétermination sur la position, conformément à l’inégalité d’Heisenberg. 

 
 

4) Exemple d’utilisation de la relation d’indétermination spatiale de Heisenberg: 
 

L’atome d’hydrogène est constitué d’un électron de masse m = 9.10-31 kg confiné dans une zone de taille  

a ≈ 10-10 m autour d’un proton. Estimer l’ordre de grandeur de sa vitesse (quadratique moyenne). 

 

 

 

 

 


