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Spé MP ISM Poly à trous 2025-26 

 

CH MQ 2 : Exemples de résolution de l’équation de Schrödinger 
 

 

Méthode générale : 
Hypothèses :  Système conservatif 

Les énergies potentielles V(x) sont constantes par morceaux et indépendantes du temps.  

  La particule est non relativiste et de masse m non nulle et on ne tient pas compte de son spin. 

Démarche : 

• On décrira d’abord le comportement d’une particule classique. 

• On recherche des états stationnaires quantiques (d’énergie fixée E) donc il s’agit de résoudre l’équation de 

Schrödinger indépendante du temps :   − 
ħ2

2𝑚
𝛥φ(M) + V(M) φ(M) = E φ(M) 

• Le potentiel constant par morceaux traduit les conditions aux limites appliquées à la particule. 

• On résout et on interprète les probabilités de présence trouvées. 

• On sommera éventuellement ces états stationnaires pour observer le comportement temporel d’un paquet 

d’ondes (pouvant modéliser une particule réelle localisée).  

 

I. Marche de potentiel 
 

1) Exemples et modélisation 
 

a) Description de la marche         

 

Modélisation et sens physique : 

 
 

La force à laquelle est soumise la particule est : 

Pour x < 0 et x > d,    𝐹⃗ = 0⃗⃗ 

Pour 0 < x <d,   𝐹⃗ = −
𝑑𝑉

𝑑𝑥
𝑒𝑥⃗⃗ ⃗⃗  

Modélisation par une marche si d est très petite devant la longueur d’onde de de Broglie de la particule. 

V(x) = 0 si x < 0  et V(x) = V0 si x > 0 
 

b) Exemple d’un électron de conduction dans un métal près de sa surface 

 
CE : Citer des exemples physiques illustrant cette problématique. 

 

Dans un métal, on peut considérer en première approximation que les électrons de 

conduction constituent un gaz de particules qui se déplacent librement (sans 

interaction) sauf au voisinage de sa surface située au niveau de x = 0 où règne une 

action limitant leur sortie (vers le vide x > 0) si leur énergie cinétique est 

insuffisante. 
 

2) Cas où l’énergie de la particule est supérieure à la marche : réflexion partielle 
 

 

C’est le cas où E > V0 

 

 

 

 

 

 

 

 

V 

x 

E 

V0 
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a) En mécanique classique 
 

Une particule classique de masse m et d’énergie E arrive depuis x→-∞ sur une marche de hauteur V0 < E.  

Par conservation de l’énergie, E = V(x) + 
1

2
mv2, 

Si x < 0, v = √
2

𝑚
𝐸     si x > 0, v = √

2

𝑚
(𝐸 − 𝑉0) 

La particule subit une réduction de la valeur de sa vitesse au passage de x=0 (elle subit un 

choc en x=0) mais poursuit sa route car son énergie mécanique initiale est suffisante pour 

le permettre. 
 

 

b) Recherche des états stationnaires quantiques 
 

CE : Établir la solution dans le cas d’une particule incidente sur une marche de potentiel.                           

Exploiter les conditions de continuité (admises) relatives à la fonction d’onde.  

 

• Solutions de l’équation de Schrödinger indépendante du temps : −
ħ2

2𝑚
 
𝑑2𝜑

𝑑𝑥2(x) + V(x)φ(x) = E φ(x) 

 

Si x < 0,  
𝑑2𝜑

𝑑𝑥2(x) + 
2𝑚

ħ2 E.φ(x) = 0 

φ(x) = A1e
ik1x + A’1e

-ik1x avec k1 = √
2𝑚

ħ2
𝐸 

 

Si x > 0,   
𝑑2𝜑

𝑑𝑥2(x) + 
2𝑚

ħ2 [E-𝑉0]φ(x)=0 

φ(x) = A2e
ik2x + A’2e

-ik2x avec  k2 = √
2𝑚

ħ2
(𝐸 − 𝑉0) 

 

 

Interprétation des solutions en termes d’ondes progressives avec sens de propagation : 

 

Si x < 0, ψ(x,t) =  

 

 

 

• CAL : continuité de φ et de la dérivée première en x=0 : 

 

 A1 + A’1 = A2 + A’2 et ik1 (A1 - A’1) = ik2 (A2 - A’2) 
 

 

 

La particule vient de -∞ donc on prend A’2 = 0 

 

Introduction et calcul des coefficients de réflexion et de transmission r et t : 

Définition des coefficients de réflexion et de transmission en amplitude     r = 
𝐴′1

𝐴1
     et     t = 

𝐴2

𝐴1
 

Si x≤0,  φ(x) = A1eik1x + rA1e-ik1x et si x≥0,  φ(x) = tA1eik2x  

 

Les relations de continuité donnent 1 + r = t     et     ik1 (1- r) = ik2 t 
 

 

 

D’où r = 
𝑘1−𝑘2

𝑘1+𝑘2
 et t =  

2𝑘1

𝑘1+𝑘2
 

Rem : r et t sont ici réels et r+t  1 

La constante A1 sera fixée par les conditions initiales et la normalisation dans l’écriture du paquet d’ondes complet. 
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• Tracé de la densité de probabilité de présence : 

 

Si x≤0, , φ(x) = A1[ eik1x + re-ik1x] donc  |𝜓(𝑥, 𝑡)|2= |𝐴1|2(1+r2+2rcos(2k1x)) 

 

et si x≥0, φ(x) = A1teik2x donc    |𝜓(𝑥, 𝑡)|2= 𝑡2 |𝐴1|2 

 

 

    

 

 

 

 
 

 

• Interprétation : CE : Expliquer les différences de comportement par rapport à une particule classique 

 

L’onde incidente (la particule quantique) est partiellement réfléchie et partiellement transmise. 
Interprétation probabiliste : si on effectue une mesure de la position, on peut trouver la particule avant la marche 

ou après la marche. 

Interprétation statistique : pour un flux de particules identiques et indépendantes, un certain nombre de particules 

sont transmises et un certain nombre sont réfléchies. 

Dans le domaine x < 0 on observe des interférences quantiques           

(oscillations sinusoïdales de la densité de probabilité de présence) d’interfrange λ1/2 où λ1 est la longueur d’onde 

de de Broglie de la particule incidente.  

 

Ces résultats sont très éloignés de la mécanique classique mais sont analogues à la réflexion partielle et 

transmission partielle d’une OEM qui arrive sur la surface de séparation entre deux diélectriques d’indices n1 et n2. 

 
 

c) Densités de courant de probabilité et coefficients de probabilité de réflexion et de 

transmission  
CE : Déterminer les coefficients de transmission et de réflexion en utilisant les courants de probabilités.  

 

c1) Définition des coefficients de probabilité de réflexion et transmission R et T   
 

 

Au Ch MQ1 on a défini, par analogie au vecteur densité de courant, un  vecteur densité de courant de 

probabilité 𝑱⃗.  

Et on a admis  son expression pour un état stationnaire d’impulsion p⃗⃗ = ħk⃗⃗ fixée d’une particule libre non 

localisée et non relativiste de masse m et de vitesse 𝑣⃗ 

donc pour une onde de de Broglie de la forme Ψ(x, t) = φ(x) e−i E t/ħ = φ0 ei(px/ħ-Et/ħ) : 

 

      𝑱⃗ =     |𝜳|𝟐 ħ𝒌⃗⃗⃗

𝒎
          =           |𝜳|𝟐 𝒑⃗⃗⃗

𝒎
        =             |𝜳|𝟐 𝒗⃗⃗⃗ 

Attention, cette expression n’est pas valable pour une autre forme d’onde ni pour un paquet d’ondes. 

 

L’interprétation statistique, pour un flux de particules identiques, a permis de montrer que la probabilité pour 

qu’une particule traverse l’abscisse x entre t et t+dt dans le sens de 𝑢𝑥⃗⃗ ⃗⃗⃗   est 𝑑𝑃(𝑥, 𝑡) = 𝐽(x,t). 𝑢𝑥⃗⃗⃗⃗⃗ 𝑑𝑡 

 

On peut écrire ces courants et ces probabilités pour les ondes incidentes réfléchies et transmises. 

Cela permet de définir (on peut aussi faire l’analogie avec les coefficients de réflexion énergétiques rencontrés en 

électromagnétisme) des coefficients de probabilité de réflexion R et de transmission T par : 

 

 R = 
|𝒅𝑷𝒓|

|𝒅𝑷𝒊|
 = |

𝑱𝒓

𝑱𝒊
|    

et T = 
|𝒅𝑷𝒕|

|𝒅𝑷𝒊|
   = |

𝑱𝒕

𝑱𝒊
| 

 

 

1+r2 

 𝑡2 |𝐴1|2 

|𝜓(𝑥, 𝑡)|2 
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  c2) Cas de la marche de potentiel 

 

On vérifie que les ondes incidentes, réfléchies et transmises sont bien des ondes de De Broglie : 

ψi(x,t) =    ψr(x,t) = 

ψt(x,t) = 

On en déduit les vecteurs densité de courant de probabilité : 

𝐽𝑖 ⃗⃗⃗⃗ = |𝐴1|2  
ħ𝑘1

𝑚
𝑢𝑥⃗⃗⃗⃗⃗     𝐽𝑟  ⃗⃗⃗⃗⃗ = -|𝑟𝐴1|2  

ħ𝑘1

𝑚
𝑢𝑥⃗⃗⃗⃗⃗   

𝐽𝑡 ⃗⃗ ⃗⃗  = |𝑡𝐴1|2  
ħ𝑘2

𝑚
𝑢𝑥⃗⃗⃗⃗⃗ 

 

On calcule alors R et T : 

 R = |𝑟|2 = ( 
𝑘1−𝑘2

𝑘1+𝑘2
)

2
    et T = 

𝑘2

𝑘1
|𝑡|2 = 

4𝑘1𝑘2

(𝑘1+𝑘2)
2 

 

On constate que  R + T = 1  

Interprétation : Si une particule arrive sur la marche de potentiel, elle est soit réfléchie soit 

transmise et la somme des probabilités de ces événements est 1. 
 

 

Cas particuliers :  

Si E >> V0, k1 ≈ k2 donc R = 0 et T = 1  On retrouve le cas de la mécanique classique. 
 

Lorsque E tend vers V0, k2 ≈ 0 donc R = 1 et T = 0 
 

 

d) Réflexion et transmission d’un paquet d’ondes sur une marche de potentiel 
 

Animation : phet.colorado.edu/en/simulation/quantum-tunneling 

On observe :  

Un rebond d’une partie du paquet d’onde,  

une déformation du paquet avec des interférences quantiques au moment du passage de la 

marche,  

un étalement habituel du paquet d’ondes par dispersion. 
 
 

3) Cas où l’énergie de la particule est inférieure à  la marche : réflexion totale et évanescence
  

 

C’est le cas où E < V0. 

 

 

 

a) En mécanique classique 
 

Une particule classique de masse m et d’énergie E arrive depuis x→-∞ sur une marche de hauteur V0 > E 

Par conservation de l’énergie, E = V(x) + 
1

2
mv2 est constante. 

L’énergie cinétique ne peut pas être négative donc la particule  ne peut être présente que  

dans le domaine  x < 0 où sa vitesse est  v = √
2

𝑚
𝐸   

La particule rebondit sur la marche en conservant sa vitesse en norme (choc élastique) car 

son énergie mécanique initiale n’est pas suffisante pour lui permettre de passer la marche 

de potentiel. 
 

x 

V
0 

 E 

V 
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b) Recherche des états stationnaires quantiques 
 

• Solutions de l’équation de Schrödinger indépendante du temps :   −
ħ2

2𝑚
 
𝑑2𝜑

𝑑𝑥2(x) + V(x)φ(x) = E φ(x) 

CE : Établir la solution dans le cas d’une particule incidente sur une marche de potentiel.   

Si x < 0,  
𝑑2𝜑

𝑑𝑥2(x) + 
2𝑚

ħ2 E.φ(x) = 0 

φ(x) = A1e
ik1x + A’1e

-ik1x   avec  k1 = √
2𝑚

ħ2
𝐸 

 

Si x > 0,  
𝑑2𝜑

𝑑𝑥2(x) + 
2𝑚

ħ2 [E-𝑉0]φ(x) = 0   avec E-V0 < 0 

φ(x) = B2e
μ2x + B’2e

-μ2x avec   μ2 = √
2𝑚

ħ2
(𝑉0 − 𝐸) 

 
• CAL : CE : Exploiter les conditions de continuité (admises) relatives à la fonction d’onde. 

Continuité de φ et de la dérivée première en x=0 : 

 

 A1 + A’1 = B2 + B’2 et ik1 (A1 - A’1) = μ2 (B2 - B’2) 
 

 

 

On prend B2 = 0   pour avoir une fonction d’onde bornée lorsque x→+∞. 

 

Calcul des coefficients de réflexion et de transmission r et t : 

Définition des coefficients de réflexion et de transmission en amplitude     r = 
𝐴′1

𝐴1
       et     t = 

𝐵′2

𝐴1
 

Les relations de continuité donnent 1 + r = t     et     ik1 (1- r) = - μ2 t 
 

D’où r = 
𝑘1−𝑖𝜇2

𝑘1+𝑖𝜇2
 et t =  

2𝑘1

𝑘1+𝑖𝜇2
 

 

La constante A1 sera fixée par les conditions initiales et la normalisation dans l’écriture du paquet d’ondes 

complet. 
 

• Description des ondes incidente, réfléchie et transmise 
CE : Reconnaître l’existence d’une onde évanescente et la caractériser. 

 

On observe dans la région x < 0 la superposition de deux OPPM Ψ(x,t) = 

 

 

On observe dans la région x > 0 une onde évanescente Ψ(x,t) = tA1e
-μ2x eiωt 

 

 

Distance caractéristique de pénétration par l’onde évanescente sous la marche :  δ ≈
1

𝜇2
 = 

ħ

√2𝑚(𝑉0−𝐸)
 

• Calcul de R et T et interprétation : 
CE :Déterminer les coefficients de transmission et de réflexion en utilisant les courants de probabilité. 

 

Seules les ondes incidentes et réfléchies sont des ondes de De Broglie, pas l’onde transmise. Donc on ne peut pas 

calculer T à l’aide des courants de probabilité. 

 

𝐽𝑖 ⃗⃗⃗⃗ = |𝐴1|2  
ħ𝑘1

𝑚
𝑢𝑥⃗⃗⃗⃗⃗     𝐽𝑟  ⃗⃗⃗⃗⃗ = -|𝑟𝐴1|2  

ħ𝑘1

𝑚
𝑢𝑥⃗⃗⃗⃗⃗  

 

D’où R = 
|𝒅𝑷𝒓|

|𝒅𝑷𝒊|
 = |

𝑱𝒓

𝑱𝒊
| = |𝑟|2 = |

𝑘1−𝑖𝜇2

𝑘1+𝑖𝜇2
|

2
= 1  

Puis T = 1 – R = 0 
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• Tracé de la densité de probabilité de présence :  

 

Si x≤0,  |𝜓(𝑥, 𝑡)|2= 2|𝐴1|2(1+cos(2k1x-θ))

   

et si x≥0,  |𝜓(𝑥, 𝑡)|2= |𝑡|2 |𝐴1|2e-2x/δ  
 

avec k1 = √
2𝑚

ħ2 𝐸 et δ = 
ħ

√2𝑚(𝑉0−𝐸)
 

θ= -2Arctan
1

𝛿𝑘1
    

 

CE : Expliquer les différences de comportement par rapport à une particule classique. 

On observe : 

Du côté x > 0, une probabilité de présence non nulle de la particule sur une petite distance de 

l’ordre de δ. 

Du côté x < 0, des interférences quantiques avec même des lieux de probabilité de présence 

nulle. 
Quand on augmente la masse m, ou quand on augmente la hauteur de la marche (V0-E), on retrouve le cas 

classique : 
 

c) Réflexion d’un paquet d’ondes sur une marche de potentiel 
 

Animation : phet.colorado.edu/en/simulation/quantum-tunneling    

On observe :  

Une réflexion totale du paquet d’ondes,  

une déformation du paquet avec des interférences quantiques et une onde évanescente au 

moment de la réflexion sur la marche,  

un étalement habituel du paquet d’ondes par dispersion. 
 

 

II. Puits de potentiel ; quantification de l’énergie 

 
Puits de potentiel infini 

 

V = 0 si x > 0 ou x < L 

V est infini ailleurs 

 

 

1) Exemples de puits de potentiels 
 

• Electron dans un atome, nucléon dans un noyau  

Plutôt modélisé autour de la position d’équilibre  

par un modèle moins grossier : 

le potentiel harmonique V(x) = 
1

2
 m ω0

2 x2 

 

 

 

 

 

 

 

 
 

 
 

 

 

• Electrons dans des boites quantiques (par exemple un « sandwich » de semi-conducteurs AlGaAs-GaAs-

AlGaAs )  

x 

V 

0      L 

E 

|𝜓(𝑥, 𝑡)|2 
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2) Etats stationnaires liés du puits de potentiel infini 
 

On dit que des états sont liés car l’espace accessible est borné. 
 

a) En mécanique classique 
 

C’est une bille entre deux murs. Elle se déplace sans frottement dans le puits et rebondit sur les 

murs par des chocs élastiques donc en conservant sa vitesse en norme. 
 
 

b) Recherche des états stationnaires quantiques 
 

CE : Etablir les solutions et les niveaux d’énergie de la particule confinée. 

 

• Solutions de l’équation de Schrödinger indépendante du temps :  

 

En dehors de l’intervalle  [0, 𝐿], V est infini donc cet espace n’est pas accessible donc la fonction d’onde est nulle. 

L’espace accessible est donc x ∈  [0, 𝐿] et dans cet espace le potentiel est nul donc il faut résoudre : 

  
𝑑2𝜑

𝑑𝑥2
(x) + 

2𝑚

ħ2
E.φ(x) = 0   

 

Avec E = 
𝑝2

2𝑚
≥ 0 

 

 Cas E= 0 :  

φ(x) = Ax+B 

Mais les CAL φ(0) = 0 et φ(L) = 0 imposent que les fonctions d’onde sont nulles. 
 

 

 

Les états stationnaires possibles ont donc une énergie strictement positive (même supérieure à l’énergie 

minimale de confinement, voir 4). Alors que les particules classiques peuvent rester immobiles dans le puits et 

avoir une énergie nulle. 

 

 Cas E > 0 :   

 φ(x) = A sin(kx) + A’ cos(kx) avec k = √
2𝑚

ħ2
𝐸 

 

CAL : φ(0) = 0 donne A’ = 0   

φ(L) = 0 donne sin(kL) = 0 (pour que φ soit non nulle) 
 

 

 

Donc les CAL imposent la quantification de la pulsation spatiale k et donc de l’énergie E : 

 kn   =   n 
𝝅

𝑳
 et En    =   

ħ2𝑘2

2𝑚
   =     

𝑛2𝜋2ħ2

2𝑚𝐿2
    avec n un  entier non nul positif 

 

φn (x) = An sin(kn x)           on peut choisir An réel positif car on ne s’intéresse qu’à son module au carré 

 

Cette fonction d’onde est normalisable car l’espace accessible est borné : 

∫ |Ψ(x, t)|2dx 
𝐿

0
 = 1 = ∫ |𝐴𝑛 sin(𝑘𝑛 x)  |2dx

𝐿

0
 = 

𝐴𝑛
2 𝐿

2
 

 

 

D’où  φn (x) = √
2

𝐿
 sin(

𝑛𝜋𝑥

𝐿
)   est le seul état stationnaire lié d’énergie En  

Il n’y a pas dégénérescence du niveau d’énergie. 

 

Ψ𝑛(x, t) = 
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• Tracé des densités de probabilité : 

 

Le niveau d’énergie le plus bas est appelé le niveau fondamental.  
 

Les autres sont les niveaux excités. 
 

 

Différence avec le comportement classique :  

 

On observe des lieux de probabilité de 

présence nulle                 , ce qui n’est pas 

du tout le cas pour une particule classique.   

 

Du point de vue classique, la densité de 

probabilité de présence est uniforme sur 

l’espace accessible. 
 

 

 

Limite classique : Pour des énergies élevées, 

donc des grands nombres quantiques n, les niveaux d’énergie se rapprochent et la fonction d’onde spatiale oscille 

très vite. On retrouve les résultats classiques (énergie variant continument et probabilité de présence uniforme), 

conformément au principe de correspondance de Bohr. 

 

 

c) Analogie avec d’autres domaines de la physique 
 

CE : Identifier des analogies avec d’autres domaines de la physique 

 

Puits quantique 1D infini    Cavité électromagnétique 

Espace accessible x ∈  [0, 𝐿]    Cavité remplie d’air ou de vide pour x ∈  [0, 𝐿] 
       Entre deux plans conducteurs en x = 0 et x = L  

Le champ est polarisé parallèlement à ces plans 

 

CAL  φ(0) = φ(L) = 0 CAL  E(0) = E(L) = 0 par continuité de la 

composante tangentielle du champ électrique 
 

 

Fonction d’onde spatiale φn (x) ∝ sin(kn x)  mode propre En (x) ∝ sin(kn x) 
 

Pulsation spatiale kn = n 
𝜋

𝐿
    Pulsation spatiale kn = n 

𝜋

𝐿
 

 

 

 

 

 

Différences : Mais les équations de propagation ne sont pas les mêmes, la relation de dispersion n’est pas la 

même, pas d’analogie pour les pulsations… 

 

Cette analogie permet de retrouver rapidement les énergies du puits infini : 
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3) Quantification de l’énergie des états liés et continuum d’énergie des états non liés 

 
Généralisons quelques résultats obtenus au paragraphe précédent :   

Un état stationnaire est dit lié si l’espace accessible est fini (donc si la fonction d’onde spatiale correspondante est 

normalisable). Dans le cas contraire, on parle d’état non lié ou libre ou de diffusion.  

Le spectre des énergies des états stationnaires liés est forcément discret alors que celui des états libres forme un 

continuum. Cette quantification de l’énergie vient des CAL, on l’a vu dans le cas du potentiel infini. Et on a vu au 

I que les états stationnaires de la marche de potentiel sont des états non liés et que leur énergie peut varier 

continument. 

 
état libre (ou état de diffusion) état lié 

espace accessible infini espace accessible borné 

continuum d’énergie 

spectre continu 

quantification de l’énergie 

spectre discret 
 

4) Energie minimale d’une particule confinée : énergie de confinement  
 

CE : Estimer l’énergie d’une particule confinée dans son état fondamental pour un puits non rectangulaire. 

Associer l’analyse à l’inégalité d’Heisenberg. 

 

Une particule confinée ne peut qu’admettre une énergie cinétique minimale non nulle appelée énergie 

minimale de confinement. 

 

Ceci se démontre par la relation d’indétermination d’Heisenberg : 

Si la particule est confinée dans un domaine (puits éventuellement non infini et non 

rectangulaire) de largeur L, alors Δx ≤ 𝐿.  

La relation d’indétermination donne alors Δp ≥  
ħ

2𝛥𝑥
 ≥  

ħ

2𝐿
 

Or : Δpx = √〈px
2〉 − 〈px〉2  d’où 〈px

2〉 =  Δpx
2 + 〈px〉2 ≥ Δpx

2 ≥  (
ħ

2𝐿
)2 

Alors pour un état quantique d’énergie fixée Ec = 〈𝐸𝑐〉 = 〈
𝑝2

2𝑚
〉  ≥  

ħ2

8𝑚𝐿2
 

 

 

 

 

 

 

 

 

 

On peut vérifier que l’énergie de l’état fondamental dans le puits unidimensionnel infini est compatible avec cette 

relation : 

 E1 =  
𝜋2ħ2

2𝑚𝐿2
 ≥   

ħ2

8𝑚𝐿2
 

Rem : L’énergie de confinement diminue lorsque m augmente, on tend vers la limite classique. 

 

AN : 

- Electron dans un atome : 

M = 10-30kg   et L = 10-10m    donne Ec,min = 10-18J = 7eV  
 

On retrouve l’ordre de grandeur des énergies mises en jeu dans les transformations chimiques. 

 

- Nucléon dans un noyau : 

M = 10-27kg   et L = 10-15m    donne Ec,min = 10-11J = 70MeV  

 

Les énergies de liaison par nucléon dans un noyau sont de l’ordre de la dizaine de MeV 

 

Conclusion : la physique de l’infiniment petit est la physique des hautes énergies. 
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III. Barrière de potentiel   (étude qualitative conformément au programme) 
 

1) Exemples et modélisation 
 

 

On va étudier la barrière de potentiel unidimensionnelle 

rectangulaire de largeur L : 

V(x) = V0  si x ∈  [0, 𝐿]     

V(x) = 0    si x < 0 ou  si x > L 
 

 

 

Exemples :   

• Le microscope à effet tunnel,  

On impose une différence de potentiel entre une pointe métallique très fine et un 

échantillon. Un électron ne peut normalement pas circuler dans l’air entre la 

pointe métallique et l’échantillon. Mais, si la distance z est assez faible, il peut 

être transmis par effet tunnel. Il en résulte un courant électrique d’intensité très 

faible mais mesurable. 

 
 

• La radioactivité α :  

Elle correspond à l’émission, par un noyau instable, d’une particule α, qui est en réalité un 

noyau d’hélium 𝐻𝑒2
4  (composé de deux protons et deux neutrons) 

On s’intéresse ici à la désintégration α d’un noyau lourd suivant la réaction : 

𝑋 → 𝑌 + 𝐻𝑒2
4

𝑍
𝐴−4

𝑍+2
𝐴

. 
 

 

2) Etude classique  
 

Une particule classique de masse m et d’énergie E arrive depuis x→-∞ sur cette barrière. 

• Si E > V0 

Par conservation de l’énergie, E = V(x) + 
1

2
mv2, 

Si x < 0 ou x > L , v = √
2

𝑚
𝐸  si x ∈  [0, 𝐿] , v = √

2

𝑚
(𝐸 − 𝑉0) 

La particule subit une réduction de la valeur de sa vitesse dans la zone de la barrière mais 

poursuit sa route car son énergie mécanique initiale est suffisante pour le permettre. 
 

• Si E < V0  

L’énergie cinétique ne peut pas être négative donc la particule ne peut être présente que dans les domaines  

x < 0  et x > L où sa vitesse est  v = √
2

𝑚
𝐸   

La particule rebondit sur la barrière en conservant sa vitesse en norme (choc élastique) 

car son énergie mécanique initiale n’est pas suffisante pour lui permettre de passer la 

barrière de potentiel. 
 

 

 

 

3) Etude quantique pour E > V0 : interférences quantiques  
 

On obtient des solutions progressives dans les zones I, II et III. 

 

Tracé des densités de probabilité de présence : 

      

On observe des interférences quantiques dans la 

barrière.  
 

 

II I III 

V 

x 
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4) Etude quantique pour E < V0 :  effet tunnel 
 

a) Description des états stationnaires non liés 
 

On obtient des solutions progressives dans les régions I et III, et une superposition d’ondes évanescentes dans la 

région II (dans la barrière). 

Tracé des densités de probabilité de présence : 

 

On observe : 

des interférences quantiques avant la barrière,  

et surtout la possibilité de transmission.   
 

 

 

Phénomène d’effet tunnel quantique :  

C’est la possibilité de transmission de particules quantiques à travers une barrière de potentiel, 

pour une énergie de la particule inférieure à la barrière. Ce qui n’est pas possible dans le cas 

d’une particule classique. 
 

b) Caractéristiques de l’effet tunnel quantique : 
 

CE : Exploiter un coefficient de transmission fourni. 𝑇 =
1

1+
𝑉0

2

4𝐸(𝑉0−𝐸)
𝑠ℎ2(

𝐿

𝛿
)
 

CE : Décrire qualitativement l’influence de la hauteur ou de la largeur de la barrière sur le coefficient de 

transmission.   

 

Tracé de T en fonction de L : 

𝑇 =
1

1 +
𝑉0

2

4𝐸(𝑉0 − 𝐸)
𝑠ℎ2(

𝐿
𝛿

)

 

 

 

 
 

Pour une barrière épaisse :     L >> δ = 
1

𝜇
 = √

ħ2

2𝑚(𝑉0−𝐸)
  

T(L)≈ 16
𝐸

𝑉0
(1 −

𝐸

𝑉0
) e-2L/δ

 

où L est l’épaisseur de la barrière et  δ est la distance caractéristique de pénétration de l’onde évanescente dans la 

barrière (valeur trouvée pour la marche de potentiel) : 
 

Ordres de grandeur : pour E=V0/2 : 
 

Particule m (kg) V0  (eV) L  (nm) δ  (nm) T 

Electron 10-30 4 0,3 0,1 10-2 

Electron 10-30 40 0,3 4.10-2 10-6 

Electron 10-30 4 3 0,1 10-20 

Proton 10-27 4 0,3 4.10-3 10-63 

 

T augmente si : -    V0 diminue (V0 tend vers E) (la barrière est de hauteur faible) 

- L diminue (barrière de faible largeur) 

- m diminue (les effets quantiques sont plus importants pour des particules 

moins massives).  

T tend vers 0 si : - E/V0 diminue (barrière très élevée) 

- L augmente 

- m augmente 
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Retenir quelques caractéristiques de l’effet tunnel quantique : 

• condition sur l’énergie : E < V0 

• densité de probabilité de présence non nulle après la barrière 

• distance caractéristique d’évanescence : Savoir retrouver rapidement la valeur de  δ en écrivant Schrödinger 

dans la région II, Savoir qu’il y a des ondes évanescentes dans la barrière (région II) 
 

 
 

 

 
 

 

 
 

 

 
 

 

 

• diminution du coefficient de transmission T avec la largeur de la barrière :  

𝑇 ≈ 𝑒−2𝐿/𝛿
 pour une barrière épaisse 

• diminution du coefficient de transmission T avec la hauteur de la barrière 
 

Voir les animations du site : phet.colorado.edu/en/simulation/quantum-tunneling  
 
 

IV. Etats non stationnaires d’une particule quantique 
 

1) Superposition de deux états stationnaires   
 

CE : Expliquer qu’une superposition de deux états stationnaires engendre une évolution au cours du temps de l’état de la 

particule. Établir l’expression de la densité de probabilité de présence de la particule dans le cas d’une superposition de 

deux états stationnaires ; interpréter le résultat. 

 

Déjà traité au Ch MQ1 II 5. Rappels : 

 

Pour une combinaison linéaire de deux états d’énergie E1 et E2 dans un puits de potentiel infini la densité de probabilité de 

présence oscille périodiquement dans le temps à la fréquence ν = 
𝐸2−𝐸1

ℎ
 

 

La période d’évolution peut-être prise comme temps caractéristique : τ = h/(E2 − E1) donc τ (E2 − E1) = h > ħ/2 

 

Inégalité d’Heisenberg temps-énergie (Hors Programme) :  Un état dont l’énergie présente une indétermination ΔE 

admet un temps caractéristique d’évolution τ tel que τ ΔE ≥ ħ/2 
 

2) Evolution d’une particule confinée dans un puits  
 

Voir les animations du site : phet.colorado.edu/en/simulation/bound-states 

 

Observer la différence entre le puits infini et le puits de hauteur finie : 

Pour le puits de hauteur finie, la probabilité de présence à l’extérieur du puits est non 

nulle (ondes évanescentes). 
 

 

Observer les états stationnaires dans des puits infinis non rectangulaires (harmoniques, coulombien, 

dissymétrique…). 

Symétrie et parité :  

Si le puits est symétrique, la densité de probabilité est paire mais la fonction d’onde est paire ou 

impaire. 

 
Evolution temporelle d’une particule confinée dans un double puits de potentiel : 

On superpose les 2 premiers états d’énergie. On fait varier la distance entre les deux puits.  

Observations : la particule oscille d’un puits à l’autre par effet tunnel si la distance entre les 

puits est suffisamment faible. 


