Spé MP ISM Poly a trous 2025-26

CH MQ 2 : Exemples de résolution de I’équation de Schrodinger

Meéthode générale :
Hypothéses :  Systéme conservatif
Les énergies potentielles V(x) sont constantes par morceaux et indépendantes du temps.
La particule est non relativiste et de masse m non nulle et on ne tient pas compte de son spin.
Démarche :
e  On décrira d’abord le comportement d’une particule classique.
e Onrecherche des états stationnaires quantiques (d’énergie fixée E) donc il s’agit de résoudre I’équation de

2
Schrodinger indépendante du temps : = - Ag(M) + V(M) p(M) = E ¢(M)
e Le potentiel constant par morceaux traduit les conditions aux limites appliquées a la particule.
On résout et on interprete les probabilités de présence trouvées.

e  Onsommera éventuellement ces états stationnaires pour observer le comportement temporel d’un paquet
d’ondes (pouvant modéliser une particule réelle localisée).

I. Marche de potentiel

1) Exemples et modélisation

a) Description de la marche

Modélisation et sens physique :

V(x) V(x)
] Vo >0 et Vg
modélisation {
§ —_— H
| d < App
|
- x
4] 0 5

La force a laquelle est soumise la particule est :
-
Pourx<Oetx>d, F =

-

PourO<x<d, F =

Modélisation par une marche si d est trés petite devant la longueur d’onde de de Broglie de la particule.
V(X)=0six<0 et V(X) =Vosix>0

b) Exemple d’un électron de conduction dans un métal preés de sa surface

CE : Citer des exemples physiques illustrant cette problématique.

Dans un métal, on peut considérer en premiére approximation que les électrons de

conduction constituent un gaz de particules qui se déplacent librement (sans
interaction) sauf au voisinage de sa surface située au niveau de x = 0 ou régne une
action limitant leur sortie (vers le vide x > 0) si leur énergie cinétique est
insuffisante.

2) Cas ou I’énergie de la particule est supérieure a la marche : réflexion partielle

\ V C’est le cas ou E >V

E |
Vo |
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a) En mécanique classique

Une particule classique de masse m et d’énergie E arrive depuis x—-co sur une marche de hauteur Vo< E.

Par conservation de 1’énergie, E =

Six<0,v= six>0,v=

La particule subit

b) Recherche des états stationnaires guantigues

CE : Etablir la solution dans le cas d une particule incidente sur une marche de potentiel.
Exploiter les conditions de continuité (admises) relatives a la fonction d’onde.

e Solutions de I’équation de Schrddinger indépendante du temps : — % ‘:Tf(x) + V(X)o(x) = E o(X)
. d? 2

Six<0, d—;f(x) +ZEp() =0

p(x) =
. d? 2

Si x>0, d—x‘g’(x) + 2E-Volo(x)=0

p(x) =

Interprétation des solutions en termes d’ondes progressives avec sens de propagation :

Si x <0, y(x,t) =

o CAL : continuité de @ et de la dérivée premiére en x=0 :

La particule vient de -co donc on prend

Introduction et calcul des coefficients de réflexion et de transmission rett :
Définition des coefficients de réflexion et de transmission en amplitude I = et t=

Si Xx<0, @(x) = A1 + rAe kI et si x>0, ¢(x)=tA;ek

Les relations de continuité donnent

D’oul = ett=

Rem : rettsonticiréelsetr+t 1
La constante A; sera fixée par les conditions initiales et la normalisation dans I’écriture du paquet d’ondes complet.
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e Tracé de la densité de probabilité de présence :

Si x<0, , ¢(x) = Ai[ "™ + re™™] donc | (x, t)|2= |41 |?(1+r*+2rcos(2kiX))

et si x>0, p(x) = Ate*>* donc |y (x, t)|?=t2 |A,]?

[ (x, O
11)3/2
t? A
1+r?
X
0
e Interprétation : CE : Expliquer les différences de comportement par rapport a une particule classique

L’onde incidente (la particule quantique) est

Interprétation probabiliste : si on effectue une mesure de la position, on peut trouver la particule avant la marche
ou aprés la marche.

Interprétation statistique : pour un flux de particules identiques et indépendantes, un certain nombre de particules
sont transmises et un certain nombre sont réfléchies.

Dans le domaine x < 0 on observe des

(oscillations sinusoidales de la densité de probabilité de présence) d’interfrange A1/2 ou A1 est la longueur d’onde
de de Broglie de la particule incidente.

Ces résultats sont trés éloignés de la mécanique classique mais sont analogues a la réflexion partielle et
transmission partielle d’une OEM qui arrive sur la surface de séparation entre deux diélectriques d’indices ni et n,.

c) Densités de courant de probabilité et coefficients de probabilité de réflexion et de
transmission
CE : Déterminer les coefficients de transmission et de réflexion en utilisant les courants de probabilités.

cl) Définition des coefficients de probabilité de réflexion et transmission R et T

Au Ch MQL1 on a défini, par analogie au vecteur densité de courant, un vecteur densité de courant de
probabilité J.

Et on a admis son expression pour un état stationnaire d’impulsion p = hK fixée d’une particule libre non
localisée et non relativiste de masse m et de vitesse v

donc pour une onde de de Broglie de la forme W(x, t) = ¢(X) e 'EVh = o giP¥MEVN) :

j=

Attention, cette expression n’est pas valable pour une autre forme d’onde ni pour un paquet d’ondes.

L’interprétation statistique, pour un flux de particules identiques, a permis de montrer que la probabilité pour

qu’une particule traverse I’abscisse x entre t et t+dt dans le sens de u, estdP(x,t) =

On peut écrire ces courants et ces probabilités pour les ondes incidentes réfléchies et transmises.
Cela permet de définir (on peut aussi faire I’analogie avec les coefficients de réflexion énergétiques rencontrés en
électromagnétisme) des coefficients de probabilité de réflexion R et de transmission T par :

et T=
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c2) Cas de la marche de potentiel

On vérifie que les ondes incidentes, réfléchies et transmises sont bien des ondes de De Broglie :

yi(x,t) = wi(X,t) =
yi(x,t) =
On en déduit les vecteurs densité de courant de probabilité :

e

J = Jy =

It =
OncalculealorsRet T :

R= et T=

On constate que R+T=
Interprétation :

Cas particuliers :
Si E >>V,,

Lorsque E tend vers Vo,

d) Réflexion et transmission d’un paquet d’ondes sur une marche de potentiel

Animation : phet.colorado.edu/en/simulation/quantum-tunneling
On observe :

3) Cas ou I’énergie de la particule est inférieure 4 la marche : réflexion totale et évanescence

A
\V
V0 ' C’est le cas ou E <V,

i

A 29

a) En mécanigue classique

Une particule classique de masse m et d’énergie E arrive depuis x—-co sur une marche de hauteur Vo > E
. , . 1

Par conservation de 1’énergie, E = V(x) + Emv2 est constante.

L’énergie cinétique ne peut pas étre négative donc la particule ne peut étre présente que
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b) Recherche des états stationnaires guantigues

2 2
e Solutions de 1’équation de Schrddinger indépendante du temps : — zh—m ZT(f(x) + V(X)o(X) = E o(X)

CE : Etablir la solution dans le cas d une particule incidente sur une marche de potentiel.
. d?e 2m
<0, —2(x) +— =
Six<0, dxz(x) v E.p(x)=0

o(x) =

. az 2
Six >0, d—x"z’(x) + h—T[E-VO](p(x) =0 avecE-V,<0

P(x) =

e CAL : CE : Exploiter les conditions de continuité (admises) relatives a la fonction d’onde.
Continuité de ¢ et de la dérivée premiére en x=0 :

On prend pour avoir une fonction d’onde bornée lorsque x—+co.

Calcul des coefficients de réflexion et de transmissionrett:

Définition des coefficients de réflexion et de transmission en amplitude I = et t=

Les relations de continuité donnent
Dourl = ett=

La constante A; sera fixée par les conditions initiales et la normalisation dans 1’écriture du paquet d’ondes
complet.

e Description des ondes incidente, réfléchie et transmise
CE : Reconnaitre l’existence d’une onde évanescente et la caractériser.

On observe dans la région x <0

On observe dans la région x >0

Distance caractéristique de pénétration par 1’onde évanescente sous la marche : O =

e Calcul de R et T et interprétation :
CE :Déterminer les coefficients de transmission et de réflexion en utilisant les courants de probabilité.

Seules les ondes incidentes et réfléchies sont des ondes de De Broglie, pas 1’onde transmise. Donc on ne peut pas
calculer T a I’aide des courants de probabilité.

J. = Jr =
D’ou R =
Puis T=
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e Tracé de la densité de probabilité de présence :

Si x<0, | (x, t)|2= 2|4, |2(1+cos(2kix-0)) [(x, )17

etsi x=0, [Y(x,t)|>=[t|? |A,|%e>?
— |2m _ h \
avecki = | Eetd NI \

— . 1
0= -2Arctan o

CE : Expliquer les différences de comportement par rapport a une particule classique.
On observe :

Du c6té x > 0,

Du c6té x < 0,

Quand on augmente la masse m, ou quand on augmente la hauteur de la marche (Vo-E), on retrouve le cas
classique :

c) Réflexion d’un paquet d’ondes sur une marche de potentiel

Animation : phet.colorado.edu/en/simulation/quantum-tunneling
On observe :

I1. Puits de potentiel ; quantification de I’énergie

A

\ I Puits de potentiel infini
I E V=0six>00oux<L
> V est infini ailleurs
0 L X

1) Exemples de puits de potentiels

e Electron dans un atome, nucléon dans un noyau _ |
Plutdt modeélisé autour de la position d’équilibre X ' /7
par un modeéle moins grossier : O L

le potentiel harmonique V(x) =5 m 0o X? \ #

o Electrons dans des boites quantiques (par exemple un « sandwich » de semi-conducteurs AlGaAs-GaAs-
AlGaAs)
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2) Etats stationnaires liés du puits de potentiel infini

On dit que des états sont liés car

a) En mécanique classique

C’est une bille entre deux murs. Elle se déplace

b) Recherche des états stationnaires guantiques

CE : Etablir les solutions et les niveaux d’énergie de la particule confinée.

e Solutions de 1’équation de Schrodinger indépendante du temps :

En dehors de I’intervalle [0, L], V est infini donc cet espace n’est pas accessible donc la fonction d’onde est nulle.
L’espace accessible est donc x € [0, L] et dans cet espace le potentiel est nul donc il faut résoudre :

pZ
AveCE=—2>0
2m

* CasE=0:

Les états stationnaires possibles ont donc une énergie strictement positive (méme supérieure a 1’énergie
minimale de confinement, voir 4). Alors que les particules classiques peuvent rester immobiles dans le puits et
avoir une énergie nulle.

* CasE>0:

P(x) =

CAL:

Donc les CAL imposent la quantification de la pulsation spatiale k et donc de I’énergie E :

kn = et En = avec n un entier non nul positif

on (X) = on peut choisir A, réel positif car on ne s’intéresse qu’a son module au carré

Cette fonction d’onde est normalisable car 1’espace accessible est borné :

Jy 1, DPdx = 1=

Dot o¢n(X)= est le seul état stationnaire 1ié d’énergie E,

1l n’y a pas dégénérescence du niveau d’énergie.

Y, (x,t) =
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e Tracé des densités de probabilité :

Le niveau d’énergie le plus bas est appelé le

Les autres sont les

Différence avec le comportement classique :

On observe

, C€ qui n’est pas
du tout le cas pour une particule classique.

Du point de vue classique, la densité de
probabilité de présence est

Limite classique : Pour des énergies élevées,

Eq4

E3

E;

anlz

]1;14|2

lys|?

[y
v |

donc des grands nombres quantiques n, les niveaux d’énergie se rapprochent et la fonction d’onde spatiale oscille
trés vite. On retrouve les résultats classiques (énergie variant continument et probabilité de présence uniforme),

conformément au principe de correspondance de Bohr.

c) Analogie avec d’autres domaines de la physigue

CE : Identifier des analogies avec d’autres domaines de la physique

Puits quantigue 1D infini

Cavité électromagnétique

Différences : Mais les équations de propagation ne sont pas les mémes, la relation de dispersion n’est pas la

méme, pas d’analogie pour les pulsations...

Cette analogie permet de retrouver rapidement les énergies du puits infini :
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3) Quantification de I’énergie des états liés et continuum d’énergie des états non liés

Généralisons quelques résultats obtenus au paragraphe précédent :

Un état stationnaire est dit lié si I’espace accessible est fini (donc si la fonction d’onde spatiale correspondante est
normalisable). Dans le cas contraire, on parle d’état non 1ié ou libre ou de diffusion.

Le spectre des énergies des états stationnaires liés est forcément discret alors que celui des états libres forme un
continuum. Cette quantification de I’énergie vient des CAL, on I’a vu dans le cas du potentiel infini. Et on a vu au
I que les états stationnaires de la marche de potentiel sont des états non liés et que leur énergie peut varier
continument.

état libre (ou état de diffusion) état lié
espace accessible espace accessible
continuum d’énergie quantification de I’énergie
spectre spectre

4) Energie minimale d’une particule confinée : énergie de confinement

CE : Estimer [’énergie d’une particule confinée dans son état fondamental pour un puits non rectangulaire.
Associer I’analyse a l'inégalité d’Heisenberg.

Une particule confinée ne peut qu’admettre une énergie cinétique minimale non nulle appelée énergie
minimale de confinement.

Ceci se démontre par la relation d’indétermination d’Heisenberg :

On peut vérifier que 1’énergie de 1’état fondamental dans le puits unidimensionnel infini est compatible avec cette
relation :

Rem : L’énergie de confinement diminue lorsque m augmente, on tend vers la limite classique.

AN :
- Electron dans un atome :

M = etL= donne E¢min=
On retrouve 1’ordre de grandeur des énergies mises en jeu dans les transformations chimiques.

- Nucléon dans un noyau :
M = etL= donne E¢min=

Les énergies de liaison par nucléon dans un noyau sont de I’ordre de

Conclusion : la physique de I’infiniment petit est la physique des hautes énergies.
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111. Barriére de potentiel (étude qualitative conformément au programme)

1) Exemples et modélisation

bV
ﬂ On va étudier la barriere de potentiel unidimensionnelle
rectangulaire de largeur L :
I I I V(x) = Vo six€ [0,L]
V(x)=0 six<Oou six>L
"X
Exemples : ;
e Le microscope a effet tunnel, p

On impose une différence de potentiel entre une pointe métallique tres fine et un
échantillon. Un électron ne peut normalement pas circuler dans 1’air entre la
pointe métallique et 1’échantillon. Mais, Si la distance z est assez faible, il peut
étre transmis par effet tunnel. Il en résulte un courant électrique d’intensité trés
faible mais mesurable.

asservissement

piézos

pointe

échantillon

e Laradioactivité o :

Elle correspond a I’émission, par un noyau instable, d’une particule a, qui est en réalité un ®
noyau d’hélium 3He (composé de deux protons et deux neutrons) ;
On s’intéresse ici a la désintégration a d’un noyau lourd suivant la réaction :

75X > A72Y + SHe.

2) Etude classique

Une particule classique de masse m et d’énergie E arrive depuis x—-oo sur cette barriere.
e SiE> Vo
. , . 1
Par conservation de 1’énergie, E = V(x) + Emvz,

Six<Ooux>L,v= sixe [0,L],v=

e SIiE<V,

L’énergie cinétique ne peut pas étre négative donc la particule ne peut étre présente que

3) Etude guantigue pour E > V.. interférences guantigues

On obtient des solutions progressives dans les zones I, 11 et 111. AT ;
|
Trace des densités de probabilité de présence : /\\ /\ /\ !
/ |
YauA \
On observe des \ | o

UV

I .

0 L T
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4) Etude guantique pour E < Vo : effet tunnel

a) Description des états stationnaires non liés

On obtient des solutions progressives dans les régions | et 111, et une superposition d’ondes évanescentes dans la
région Il (dans la barriere).
Tracé des densités de probabilité de présence :

On observe : A

o : 0 Ik
Phénoméne d’effet tunnel quantique : L
C’est la possibilité de transmission de particules quantiques a travers une barriére de potentiel,
pour une énergie de la particule inférieure a la barriere. Ce qui n’est pas possible dans le cas

d’une particule classique.

b) Caractéristiques de I’effet tunnel quantique :

1
v3 2L
Ev,B @

CE : Décrire qualitativement ['influence de la hauteur ou de la largeur de la barriére sur le coefficient de
transmission.
T A

Tracé de T en fonction de L : e
1

V¢ 2L
5w, —H @

CE : Exploiter un coefficient de transmission fourni. T =

1+

ewdpt

4 -
T = v aporochd

1

Y

Pour une barriére épaisse : L >>

T(L)=

ou L est I’épaisseur de la barriére et o est la distance caractéristique de pénétration de I’onde évanescente dans la
barriére (valeur trouvée pour la marche de potentiel) :

Ordres de grandeur : pour E=Vo/2 :

Particule m (kg) Vo (eV) L (nm) o (nm) T

Electron 100 4 0,3 0,1 102
Electron 100 40 0,3 4.107 106
Electron 10°%° 4 3 0,1 10%°
Proton 10?7 4 0,3 4.10° 1063

T augmente si :

T tend vers 0 si :
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Retenir quelques caractéristiques de I’effet tunnel quantique :
® condition sur I’énergie :
® densité de probabilité de présence non nulle aprés la barriere

® distance caractéristique d’évanescence : Savoir retrouver rapidement la valeur de J en écrivant Schrédinger
dans la région I, Savoir qu’il y a des ondes évanescentes dans la barriére (région II)

diminution du coefficient de transmission T avec la largeur de la barriére :
T =~
e diminution du coefficient de transmission T avec la hauteur de la barriére

Voir les animations du site : phet.colorado.edu/en/simulation/quantum-tunneling

1V. Etats non stationnaires d’une particule quantique

1) Superposition de deux états stationnaires

CE : Expliquer qu’une superposition de deux états stationnaires engendre une évolution au cours du temps de I’état de la
particule. Etablir I’expression de la densité de probabilité de présence de la particule dans le cas d une superposition de
deux états stationnaires ; interpréter le résultat.

Déja traité au Ch MQ1 11 5. Rappels :

Pour une combinaison linéaire de deux états d’énergie E1 et E, dans un puits de potentiel infini la densité de probabilité de
Ey—Eq

présence oscille périodiquement dans le temps a la fréquence v =

La période d’évolution peut-étre prise comme temps caractéristique : T = h/(E2 — E1) donc t (E2 — E1) =h >h/2

Inégalité d’Heisenberg temps-énergie (Hors Programme) : Un état dont 1’énergie présente une indétermination AE
admet un temps caractéristique d’évolution t tel que T AE > h/2

2) Evolution d’une particule confinée dans un puits

Voir les animations du site : phet.colorado.edu/en/simulation/bound-states

Observer la différence entre le puits infini et le puits de hauteur finie :

Observer les états stationnaires dans des puits infinis non rectangulaires (harmoniques, coulombien,
dissymétrique...).
Symétrie et parité :

Evolution temporelle d’une particule confinée dans un double puits de potentiel :
On superpose les 2 premiers états d’énergie. On fait varier la distance entre les deux puits.

Observations :
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