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TD MQ2 – Exemples de résolution de l’équation de Schrödinger 
 

 

 

Exercice 1*♥ : Etats non stationnaires dans un puits infini 
 

On étudie une particule quantique de masse m dans un puits rectangulaire infini entre x=0 et x=L. 

1) On considère les états stationnaires d’énergie En associés aux fonctions d’onde spatiales : 𝜑
𝑛
(𝑥) = √

2

𝐿
sin (

𝑛𝜋𝑥

𝐿
) 

a. Etablir les valeurs des énergies En associées. 

b. Représenter les densités de probabilités de présence des deux niveaux de plus basse énergie. 

2) On suppose qu’à t=0, la particule est dans l’état initial : 𝛹(𝑥, 0) =
1

√2
[𝜑1(𝑥) + 𝜑2(𝑥)] 

a. Exprimer la fonction d’onde 𝛹(𝑥, 𝑡) à un instant ultérieur et la densité de probabilité de 

présence associée. 

b. Exprimer la période d’évolution de la densité de probabilité de présence au cours du temps en 

fonction de m, L et ℏ. 
 

 

 

 

Exercice 2***♥ : Puits rectangulaire fini  
 

Une particule de masse m est placée dans un puits de potentiel infini : V(x)=0 pour –a < x < a, la zone extérieure 

étant inaccessible (V(x)=+∞). 
 

1) Retrouver le plus simplement possible les niveaux d’énergie des états stationnaires. 

 

Le puits de potentiel est maintenant modélisé de manière moins sommaire : l’énergie potentielle est toujours 

nulle sur [−𝑎, 𝑎] mais vaut V(x) = V0 > 0 en dehors. 

2) On s’intéresse aux états liés. Quelles sont les valeurs limites possibles de l’énergie ? 

On pose k = 
 √2𝑚𝐸

ħ
 et K = 

√2𝑚(𝑉0−𝐸)

ħ
 

3) Ecrire l’équation de Schrödinger indépendante du temps dans les différentes zones. 

4) Combien de constantes interviennent dans les amplitudes ? Lesquelles peut-on déjà éliminer ? 

5) Quelles sont les différentes conditions aux limites utilisables ? 

6) La parité du potentiel V(x) permet d’affirmer que les fonctions d’onde des états stationnaires sont soit 

paires soit impaires. Déduire des conditions aux limites les relations :  

k.a.tan(k.a) = K.a  ou  k.a.cotan(k.a) = -K.a 

7) Etablir à partir des expressions de k et K la relation :   (k.a)2 + (K.a)2 =  
2𝑚𝑎2𝑉0

ħ2  

8) Interpréter graphiquement les solutions dans le plan de coordonnées (ka,Ka) à l’aide de la figure ci-

dessous : 

 
9) Existe-t-il toujours des états liés ? A quelle condition existe-t-il un seul état lié ? 

10) Dans le cas où le puits devient très profond, retrouver les énergies du 1). 



 

 

Exercice 3** : Enrichissement isotopique 
 

Une source envoie (depuis x=-∞) un faisceau de particules quantiques constitué d’un mélange d’isotopes sur 

une marche de potentiel :   V(x)=0 si x<0 (région I)   et V(x)=V0 si x>0 (région II). On souhaite utiliser le 

phénomène de réflexion sur la marche de potentiel pour modifier la composition isotopique du mélange. 
 

1) Rappeler les différences de comportement d’une particule classique et d’une particule quantique dans 

les cas E > V0 et E < V0. Expliquer pourquoi il est nécessaire que l’énergie E des particules quantiques 

soit supérieure à la hauteur de la marche de potentiel V0 si on veut modifier la composition isotopique 

du mélange.  

2) Déterminer la probabilité de réflexion R d’une particule quantique de masse m et d’énergie E par la 

marche de potentiel pour E > V0.  

3) On se place dans le cas limite où E >> V0
.  

a) Montrer que l’expression approchée de R pour E>>V0 peut se mettre sous la forme R≈ 𝑘
𝑉0

2

𝐸2 où 

k est une constante que l’on déterminera. 

b) On note m1 et m2 les masses des deux isotopes qui forment le faisceau incident. Toutes les 

particules sont envoyées avec la même vitesse. Expliquer pourquoi le coefficient de réflexion 

diffère pour les deux isotopes et exprimer le rapport R2/R1 en fonction du rapport des masses 

m2/m1. 

c) Le faisceau réfléchi est-il enrichi en isotope le plus lourd ou le plus léger ? 

 

 

Exercice 4** : Coefficient d’atténuation du courant dans un microscope à effet tunnel  
 

Le microscope à effet tunnel est constitué d’une pointe métallique en tungstène qu’on approche d’une surface 

métallique dont on veut étudier la structure. Entre les deux métaux, on maintient, dans un vide poussé, une 

différence de potentiel U. La distance entre les deux électrodes, de l’ordre du nanomètre, est contrôlée par un 

système d’asservissement piézoélectrique. Un microampèremètre, placé dans le circuit extérieur, révèle 

l’existence d’un courant électrique I que l’on attribue au passage d’électrons d’une électrode à l’autre dans le 

vide par effet tunnel. 

Les électrons de conduction dans un métal ont une énergie cinétique maximale égale à l’énergie de Fermi εF et 

pour extraire un électron du métal il faut fournir une énergie minimale égale au travail de sortie WS. 

 

 

 

1) L’intensité du courant, exprimée en fonction de la distance L entre la pointe et la surface du métal, peut 

se mettre sous la forme : I(L) = I(0)exp(-µL).  

Donner la signification du coefficient µ et son expression en fonction de la masse de l’électron me, WS et h. 

2) La figure de droite donne les résultats expérimentaux obtenus par Binnig et Rohrer avec T = I(L)/I(0). 

En déduire les valeurs de µ et du travail de sortie WS en eV. 

Données : masse de l’électron me=9,1.10-31kg 
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Exercice 5**♥ : Effet tunnel et radioactivité alpha 
 

L’isotope radioactif 𝐵𝑖83
212  du bismuth se désintègre en l’isotope 𝑇𝑙81

208   du thallium en émettant une particule α 

(𝑛𝑜𝑦𝑎𝑢 𝑑𝑒 𝐻𝑒2
4 ) d’énergie 𝐸  =  13,0 𝑀𝑒𝑉. On donne la masse du proton mp=1,7.10-27kg. 

 

Pour expliquer cette radioactivité alpha, on propose un modèle 

théorique basé sur l’effet tunnel : 

Il suppose que préexiste au sein du noyau de l’élément radioactif 

(noyau père) constituant la source au moins une particule α et que 

celle-ci peut s’échapper par effet tunnel à travers une barrière de 

potentiel. Tant que la particule α est à l’intérieur du noyau père, elle 

est virtuellement libre mais tend à être confinée dans le puits de 

potentiel formé par l’interaction nucléaire. Une fois en dehors du 

noyau, elle subit uniquement la force de répulsion coulombienne de 

la part du noyau fils. 

La figure ci-contre précise le diagramme d’énergie potentielle 

associé à la particule α en fonction de sa distance r au centre du 

noyau. 

 

1) Déterminer la distance r0 entre le noyau de thallium et la particule α, pour laquelle l’énergie E (de la 

particule α) est égale à l’énergie potentielle électrostatique. Evaluer numériquement cette distance. 

2)  Le rayon R d’un noyau de nombre de masse A est donné par la formule 𝑅 = 𝑅0𝐴1/3avec 𝑅0 = 1,2𝑓𝑚. 

( 1 fm = 10-15 m) Déterminer la valeur de R pour 𝑇𝑙81
208  . En déduire la valeur Vm du maximum de 

potentiel dans lequel évolue la particule α à l’extérieur du noyau. 

On rappelle que, pour une barrière épaisse, l’expression approché du facteur de transmission tunnel T dans le 

cas d’une barrière rectangulaire de hauteur V0 et de largeur a, pour une particule de masse m et d’énergie E, est :  

T ≈ 16
𝐸

𝑉0
(1 −

𝐸

𝑉0
) 𝑒𝑥𝑝 [−

2𝑎

ℏ
√2𝑚(𝑉0 − 𝐸)] 

3) En choisissant comme valeur approchée de la barrière  𝑉0 =
𝑉𝑚

2
, évaluer la valeur numérique du 

coefficient de transmission T. 

4) Exprimer le temps d’un aller-retour dans le puits de potentiel, en déduire le nombre de collisions sur la 

barrière par unité de temps puis la probabilité d’émission d’une particule alpha par unité de temps. 

5) En déduire un ordre de grandeur de la demi-vie τ de l’isotope radioactif du bismuth. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Réponses : 

Ex 1 : 1)a)  𝐸𝑛=
𝑛2𝜋2ℏ2

2𝑚𝐿2 2) ȁΨȁ2
=

1

2
[ȁ𝜑1ȁ2

+ȁ𝜑2ȁ2
+2𝜑1𝜑2cos (

(𝐸1−𝐸2)𝑡

ℏ
) ]  b) T = 

8𝑚𝐿2

3ℎ
 

Ex 2 :  1) 𝐸𝑛=
𝑛2𝜋2ℏ2

8𝑚𝑎2  2) Emin<E<V0 avec 𝐸𝑚𝑖𝑛≥
ℏ2

32𝑚𝑎2  4) Eliminer 2 des 6 constantes par les limites 

en -∞ et +∞   6) Si V(x)est paire, ȁ𝜑(𝑥)ȁ2
 est paire  7) Utiliser les expressions de k et K 8) Intersections 

cercle - courbes   9) Un seul état lié si rayon cercle < π/2  ou 𝑉0<
𝜋2ℏ2

8𝑚𝑎2 10) Si 𝑉0→+∞,𝑋≈𝑛
𝜋

2
 

Ex 3 :   1) Si E < V  toutes les particules sont réfléchies par la marche. Plus une particule est lourde, plus son comportement 

est classique, moins elle est réfléchie donc faisceau réfléchi plus pauvre en isotopes de grande masse. 

 2) R = ൤
√𝐸−√𝐸−𝑉0

√𝐸+√𝐸−𝑉0
൨

2

 3) a) k = 1/16 b)
𝑅2

𝑅1
=(

𝐸1

𝐸2
)

2

=(
𝑚1

𝑚2
)

2

 c) faisceau réfléchi enrichi en isotopes légers 

 

Ex 4 : 1) I(T)=T(L)I(0) où T est le coefficient de transmission de la barrière 𝑇(𝐿)∝𝑒
−2𝐿/𝛿

avec δ la distance caractéristique 

d’atténuation dans la barrière. Par l’équation de Schrödinger dans la barrière 𝛿=
ℏ

√2𝑚𝑊𝑠
. D’où 𝜇 =2

√2𝑚𝑊𝑠

ℏ
   

 2) 𝜇=ln(10)
∆(log(𝐼))

∆𝐿
=2,3.10

10
𝑚

−1
 Ws = 5,0 eV 

Ex 5 : 1) 𝑟0=
2(𝑍−2)𝑒2

4𝜋𝜀0𝐸
=18𝑓𝑚 2) R = 7,1fm ; ) 𝑉𝑚=

2(𝑍−2)𝑒2

4𝜋𝜀0𝑅
=33𝑀𝑒𝑉 3) a =r0-R   m = 4mproton  𝑇≈3.10

−23
 

 4) Δtaller-retour=2R/v   avec 𝑣=√
2𝐸

𝑚
  et la probabilité d’émission est 𝑑𝑃=𝑇

𝑣

2𝑅
𝑑𝑡=𝑘 𝑑𝑡 

 5) Cinétique d’ordre 1 d’où la demi-vie   𝜏=
𝑙𝑛2

𝑘
 =

1

𝑇

2.ln(2).𝑅

√2𝑚/𝐸
=8 ℎ 

 

Vm 

0 

 


