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TD MQ2 — Exemples de résolution de I’équation de Schrodinger

Exercice 1°Y : Etats non stationnaires dans un puits infini

On étudie une particule quantique de masse m dans un puits rectangulaire infini entre x=0 et x=L.
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1) On considere les états stationnaires d’énergie Eq associés aux fonctions d’onde spatiales : ¢ (x) = \/;sm (T)

a. Etablir les valeurs des énergies E, associées.
b. Représenter les densités de probabilités de présence des deux niveaux de plus basse énergie.
2) On suppose qu’a t=0, la particule est dans I’état initial : ¥ (x,0) = % [p1(x) + @, ()]
a. Exprimer la fonction d’onde ¥ (x, t) a un instant ultérieur et la densité de probabilité de
présence associée.
b. Exprimer la période d’évolution de la densité de probabilité de présence au cours du temps en

fonction de m, L et A.

Exercice 27" : Puits rectangulaire fini

Une particule de masse m est placée dans un puits de potentiel infini : V(X)=0 pour —a < X < a, la zone extérieure
étant inaccessible (V(x)=+c).

1) Retrouver le plus simplement possible les niveaux d’énergie des états stationnaires.

Le puits de potentiel est maintenant modélisé de manieére moins sommaire : 1’énergie potentielle est toujours
nulle sur [—a, a] mais vaut V(x) = Vo> 0 en dehors.
2) On s’intéresse aux états liés. Quelles sont les valeurs limites possibles de 1’énergie ?

V2mE _J2m(Vy-E)
— et K= -
3) Ecrire I’équation de Schrodinger indépendante du temps dans les différentes zones.

4) Combien de constantes interviennent dans les amplitudes ? Lesquelles peut-on déja éliminer ?
5) Quelles sont les différentes conditions aux limites utilisables ?
6) La parité du potentiel V(x) permet d’affirmer que les fonctions d’onde des états stationnaires sont soit
paires soit impaires. Déduire des conditions aux limites les relations :
k.atan(k.a) = K.a ou k.a.cotan(k.a) = -K.a

On pose k =

7) Etablir a partir des expressions de k et K la relation :  (k.a)? + (K.a)? = ngﬁ
8) Interpréter graphiquement les solutions dans le plan de coordonnées (ka,Ka) a I’aide de la figure ci-
dessous :
Ka=Y
A
; , } » ka=X
2 T n 3n

2 ]
9) Existe-t-il toujours des états liés ? A quelle condition existe-t-il un seul état lié ?
10) Dans le cas ou le puits devient trés profond, retrouver les énergies du 1).



Exercice 3™ : Enrichissement isotopique

Une source envoie (depuis X=-00) un faisceau de particules quantiques constitué d’un mélange d’isotopes sur
une marche de potentiel : V(x)=0 si x<0 (région I) et V(x)=Vo si x>0 (région II). On souhaite utiliser le
phénomene de réflexion sur la marche de potentiel pour modifier la composition isotopique du mélange.

1) Rappeler les différences de comportement d’une particule classique et d’une particule quantique dans
les cas E > Vg et E < V. Expliquer pourquoi il est nécessaire que 1’énergie E des particules quantiques
soit supérieure a la hauteur de la marche de potentiel Vo si on veut modifier la composition isotopique
du mélange.

2) Déterminer la probabilité de réflexion R d’une particule quantique de masse m et d’énergie E par la
marche de potentiel pour E > V..

3) On se place dans le cas limite ou E >> Vg

2
a) Montrer que I’expression approchée de R pour E>>V, peut se mettre sous la forme R~ k % ou

k est une constante que 1’on déterminera.

b) On note m; et m, les masses des deux isotopes qui forment le faisceau incident. Toutes les
particules sont envoyées avec la méme vitesse. Expliquer pourquoi le coefficient de réflexion
différe pour les deux isotopes et exprimer le rapport R2/R1 en fonction du rapport des masses
ma/m;.

c) Le faisceau réfléchi est-il enrichi en isotope le plus lourd ou le plus léger ?

Exercice 4™ : Coefficient d’atténuation du courant dans un microscope 2 effet tunnel

Le microscope a effet tunnel est constitué d’une pointe métallique en tungsténe qu’on approche d’une surface
métallique dont on veut étudier la structure. Entre les deux métaux, on maintient, dans un vide poussé, une
différence de potentiel U. La distance entre les deux électrodes, de I’ordre du nanométre, est contrdlée par un
systéme d’asservissement piézoélectrique. Un microampeéremetre, placé dans le circuit extérieur, réveéle
I’existence d’un courant électrique I que I’on attribue au passage d’électrons d’une électrode a 1’autre dans le
vide par effet tunnel.

Les ¢lectrons de conduction dans un métal ont une énergie cinétique maximale égale a 1’énergie de Fermi €r et
pour extraire un électron du métal il faut fournir une énergie minimale égale au travail de sortie Ws.
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1) L’intensité du courant, exprimée en fonction de la distance L entre la pointe et la surface du métal, peut
se mettre sous la forme : I(L) = 1(0)exp(-uL).
Donner la signification du coefficient p et son expression en fonction de la masse de 1’électron me, W5 et h.
2) La figure de droite donne les résultats expérimentaux obtenus par Binnig et Rohrer avec T = I(L)/1(0).
En déduire les valeurs de p et du travail de sortie Wsen eV.
Données : masse de 1’électron me=9,1.103tkg



Exercice 57 : Effet tunnel et radioactivité alpha

L’isotope radioactif 233Bi du bismuth se désintégre en I’isotope 238T1 du thallium en émettant une particule a
(noyau de 3He) d’énergie E = 13,0 MeV. On donne la masse du proton my=1,7.10?’kg.

Pour expliquer cette radioactivité alpha, on propose un modele vin A
théorique basé sur 1’effet tunnel : répulsion
Il suppose que préexiste au sein du noyau de 1’élément radioactif Vi coulombienne

(noyau pére) constituant la source au moins une particule o et que

celle-ci peut s’échapper par effet tunnel a travers une barriére de

potentiel. Tant que la particule o est a I’intérieur du noyau pére, elle E
est virtuellement libre mais tend a étre confinée dans le puits de

potentiel formé par I’interaction nucléaire. Une fois en dehors du

noyau, elle subit uniquement la force de répulsion coulombienne de 0

la part du noyau fils. puits de potentie] lié
La figure ci-contre précise le diagramme d’énergie potentielle aux forees nucléaires
associé a la particule o en fonction de sa distance r au centre du

noyau.

1) Déterminer la distance ro entre le noyau de thallium et la particule o, pour laquelle 1’énergie E (de la
particule a) est égale a I’énergie potentielle électrostatique. Evaluer numériquement cette distance.
2) Lerayon R d’un noyau de nombre de masse A est donné par la formule R = R,AY/3avec Ry = 1,2fm.
(1 fm =10 m) Déterminer la valeur de R pour 238T1 . En déduire la valeur Vi, du maximum de
potentiel dans lequel évolue la particule o a I’extérieur du noyau.
On rappelle que, pour une barriére épaisse, 1’expression approché du facteur de transmission tunnel T dans le
cas d’une barriére rectangulaire de hauteur Vo et de largeur a, pour une particule de masse m et d’énergie E, est :

T= 1650(1——) exp [——,/Zm(VO )]

’ .y Vin < -
3) En choisissant comme valeur approchée de la barriere V, = 7’” évaluer la valeur numérique du

coefficient de transmission T.

4) Exprimer le temps d’un aller-retour dans le puits de potentiel, en déduire le nombre de collisions sur la
barriére par unité de temps puis la probabilité d’émission d’une particule alpha par unité de temps.

5) En déduire un ordre de grandeur de la demi-vie t de I’isotope radioactif du bismuth.
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