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Feuille d'exercices n°60

Exercice 1 (***)

Soit E euclidien de dimension n entier non nul et f ∈ S (E). On note λ1 ⩽ . . . ⩽ λn les valeurs
propres de f et (e1, . . . , en) une base orthonormée de vecteurs propres associées aux λi. On �xe
k ∈ [[ 1 ; n ]].

1. On note Ek = Vect (e1, . . . , ek), Fk = Vect (ek, . . . , en) et f1, f2 les endomorphismes induits
par f respectivement sur Ek et Fk. Déterminer λk en fonction de f1 puis en fonction de
f2.

2. On note Ak l'ensemble des sev de E de dimension k. Montrer le théorème du minimax :

λk = Min
F∈Ak

Max
x∈F,∥x∥=1

⟨f(x), x⟩ = Max
F∈An−k+1

Min
x∈F,∥x∥=1

⟨f(x), x⟩

Corrigé : Pour F sev de E, les quantités Max
x∈F,∥x∥=1

⟨f(x), x⟩ et Min
x∈F,∥x∥=1

⟨f(x), x⟩ sont bien dé�nies

puisque x 7→ ⟨f(x), x⟩ est continue sur la sphère unité de F qui est compacte (fermée bornée
dans un espace de dimension �nie).

1. Si x ∈ Ek, on a x =
k∑

i=1

xiei puis

⟨f1(x), x⟩ =
k∑

i=1

λix
2
i ⩽ λk∥x∥2

avec égalité si x = ek. De même, pour x ∈ Fk, on a x =
n∑

i=k

xiei puis

⟨f2(x), x⟩ =
n∑

i=k

λix
2
i ⩾ λk∥x∥2

avec égalité si x = ek. On conclut

∀k ∈ [[ 1 ; n ]] λk = Max
x∈Ek,∥x∥=1

⟨f1(x), x⟩ = Min
x∈Fk,∥x∥=1

⟨f2(x), x⟩

2. Soit F ∈ Ak. Pour raison de dimension, on a Fk ∩ F ̸= {0E}. On peut choisir x normé dans
Fk ∩ F. D'après, ce qui précède, on a ⟨f(x), x⟩ ⩾ λk d'où Max

x∈F,∥x∥=1
⟨f(x), x⟩ ⩾ λk et par passage

à la borne inférieure

Inf
F∈∈Ak

Max
x∈F,∥x∥=1

⟨f(x), x⟩ ⩾ λk

Cette borne inférieure est atteinte pour F = Ek ∈ Ak et par conséquent

λk = Min
F∈Ak

Max
x∈F,∥x∥=1

⟨f(x), x⟩

Soit F ∈ An−k+1. Toujours pour raison de dimension, on a Ek ∩ F ̸= {0E}. On peut choisir
x normé dans Ek ∩ F. D'après le résultat de la question précédente, on ⟨f(x), x⟩ ⩽ λk d'où
Min

x∈F,∥x∥=1
⟨f(x), x⟩ ⩽ λk. Par passage à la borne supérieure puis en remarquant que cette borne

est atteinte pour F = Fk, on conclut

λk = Min
F∈Ak

Max
x∈F,∥x∥=1

⟨f(x), x⟩ = Max
F∈An−k+1

Min
x∈F,∥x∥=1

⟨f(x), x⟩
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Exercice 2 (***)

Soit E euclidien de dimension n entier non nul, H un hyperplan de E, f ∈ S (E) et g l'endomor-
phisme induit sur H par pH ◦ f .

1. Justi�er que g ∈ S (H).

2. On note λ1 ⩽ . . . ⩽ λn les valeurs propres de f et µ1 ⩽ . . . ⩽ µn−1 les valeurs propres de
g. Montrer

λ1 ⩽ µ1 ⩽ λ2 ⩽ . . . ⩽ λn−1 ⩽ µn−1 ⩽ λn

Corrigé : 1. Soit (x, y) ∈ H2. On note p = pH pour alléger la suite. Il s'agit d'un projecteur
orthogonal donc par théorème, on a p ∈ S (E). Puis, on trouve en utilisant p ∈ S (E), Im p =
Ker (id −p), f ∈ S (E)

⟨g(x), y⟩ = ⟨p(f(x)), y⟩ = ⟨f(x), p(y)⟩ = ⟨f(x), y⟩

= ⟨x, f(y)⟩ = ⟨p(x), f(y)⟩ = ⟨x, p(f(y))⟩ = ⟨x, g(y)⟩

Ainsi g ∈ S (H)

2. Soit k ∈ [[ 1 ; n − 1 ]]. On note Ak l'ensemble des sev de E de dimension k et Bk l'ensemble
des sev de H de dimension k. Pour F ∈ Bk, on a

Max
x∈F,∥x∥=1

⟨g(x), x⟩ = Max
x∈F,∥x∥=1

⟨f(x), x⟩

Ainsi, d'après le théorème du minimax appliqué à g, il vient

µk = Min
F∈Bk

Max
x∈F,∥x∥=1

⟨g(x), x⟩ = Min
F∈Bk

Max
x∈F,∥x∥=1

⟨f(x), x⟩

Comme Bk ⊂ Ak, il s'ensuit

Min
F∈Bk

Max
x∈F,∥x∥=1

⟨f(x), x⟩ ⩾ Min
F∈Ak

Max
x∈F,∥x∥=1

⟨f(x), x⟩

D'après le théorème du minimax appliqué à f , il vient

Min
F∈Ak

Max
x∈F,∥x∥=1

⟨f(x), x⟩ = λk

et par conséquent µk ⩾ λk

De même, pour F ∈ Bn−k, on trouve

µk = Max
F∈Bn−k

Min
x∈F,∥x∥=1

⟨g(x), x⟩ = Max
F∈An−k

Min
x∈F,∥x∥=1

⟨f(x), x⟩

et comme Bn−k ⊂ An−k,

Max
F∈Bn−k

Min
x∈F,∥x∥=1

⟨f(x), x⟩ ⩽ Max
F∈An−k

Min
x∈F,∥x∥=1

⟨f(x), x⟩

et Max
F∈An−k

Min
x∈F,∥x∥=1

⟨f(x), x⟩ = λk+1

d'où µk ⩽ λk+1

On conclut λ1 ⩽ µ1 ⩽ λ2 ⩽ . . . ⩽ λn−1 ⩽ µn−1 ⩽ λn
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Exercice 3 (***)

Soit E euclidien et p, q des projecteurs orthogonaux.

1. Montrer que p ◦ q ◦ p ∈ S (E).

2. Déterminer (Im p+Ker q)⊥.

3. En déduire que p ◦ q est diagonalisable.

Corrigé : 1. On sait que p, q sont des endomorphismes symétriques en tant que projecteurs
orthogonaux. Soit (x, y) ∈ E2. On a

⟨p ◦ q ◦ p(x), y⟩ = ⟨q ◦ p(x), p(y)⟩ = ⟨p(x), q ◦ p(y)⟩ = ⟨x, p ◦ q ◦ p(y)⟩

Ainsi p ◦ q ◦ p ∈ S (E)

2. Soient F,G sev de E. Montrons (F + G)⊥ = F⊥ ∩G⊥. Soit x ∈ F⊥ ∩G⊥. On a

∀(y, z) ∈ F×G ⟨x, y + z⟩ = ⟨x, y⟩+ ⟨x, z⟩ = 0

ce qui prouve F⊥ ∩ G⊥ ⊂ (F + G)⊥. Réciproquement, soit x ∈ (F + G)⊥. Pour y ∈ F, on a
y + 0E ∈ F +G d'où ⟨x, y⟩ = 0 d'où x ∈ F⊥ et de même, pour z ∈ G, on a 0E + z ∈ F +G d'où
⟨x, z⟩ = 0 d'où x ∈ G⊥ ce qui prouve x ∈ F⊥ ∩G⊥. On a donc établi

(F + G)⊥ = F⊥ ∩G⊥

En appliquant ce résultat avec Im p et Ker p, on conclut

(Im p+Ker q)⊥ = (Im p)⊥ ∩ (Ker q)⊥ = Ker p ∩ Im q

3. Comme Im p est stable par p ◦ q ◦ p, on peut considérer l'endomorphisme induit u sur Im p
qui est également symétrique. On note (e1, . . . , er) une base orthonormée de vecteurs propres de
u. On a donc u(ei) = p ◦ q ◦ p(ei) = p ◦ q(ei) = λiei avec les λi réels. On complète ensuite la
famille (e1, . . . , er) par des éléments (er+1, . . . , eℓ) de Ker q pour former une base orthonormée
de Im p + Ker q puis par une base orthonormée (eℓ, . . . , en) de Ker p ∩ Im q. On obtient alors
une base orthonormée de E véri�ant

∀i ∈ [[ 1 ; r ]] p ◦ q(ei) = λiei et ∀i ∈ [[ r + 1 ; n ]] p ◦ q(ei) = 0

Ainsi L'endomorphisme p ◦ q est diagonalisable.

Exercice 4 (***)

Soit A ∈ Mn(R).

1. Montrer que A⊤A ∈ S +
n (R).

2. Montrer qu'il existe U, V dans On(R) et α1, . . ., αn des réels positifs tels que

A = U∆V avec ∆ = diag(α1, . . . , αn)

Corrigé : 1. On a clairement A⊤A ∈ S +
n (R) puis, pour X ∈ Mn,1(R)〈

X,A⊤AX
〉
= X⊤A⊤AX = ⟨AX,AX⟩ ⩾ 0

Ainsi A⊤A ∈ S +
n (R)

2. Pour λ réel et X ∈ Mn,1(R)∖ {0} tels que A⊤AX = λX, il vient〈
X,A⊤AX

〉
= λ∥X∥2 ⩾ 0
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et comme ∥X∥2 > 0, il s'ensuit λ ⩾ 0. Supposons A ∈ GLn(R). On a alors Sp (A) ⊂ ] 0 ; +∞ [.
D'après le théorème spectral, il existe P ∈ On(R) telle que

A⊤A = PDP⊤ avec D = diag(λ1, . . . , λn)

et les λi > 0. On pose

V = P⊤ ∆ = diag(
√
λ1, . . . ,

√
λn) U = AV⊤∆−1

ce qui est licite puisque ∆ est diagonale avec des termes diagonaux non nuls donc inversible. Par
construction, on a A = U∆V et V ∈ On(R). Puis, on véri�e

U⊤U = ∆−1VA⊤AV⊤∆−1 = ∆−1VV⊤∆2VV⊤∆−1 = ∆−1∆2∆−1 = In

Ainsi, pour A ∈ GLn(R), il existe U, V dans On(R) et ∆ diagonale à coe�cients positifs telles
que A = U∆V. Soit A ∈ Mn(R). Par densité de GLn(R), il existe (Ak)k ∈ GLn(R)N telle que
Ak −−−→

k→∞
A. D'après le résultat préliminaire, pour tout k entier, il existe Uk, Vk dans On(R) et

Dk diagonale à coe�cients positifs telles que Ak = UkDkVk. La suite (Uk,Vk)k est à valeurs dans
On(R)2 compact en tant que produit �ni de compacts. Par conséquent, il existe φ extractrice
telle que

(Uφ(k),Vφ(k)) −−−→
k→∞

(U,V) ∈ On(R)2

Par continuité du produit matriciel, on a

Uφ(k)
⊤Aφ(k)Vφ(k)

⊤ −−−→
k→∞

U⊤AV⊤ = ∆

et comme la suite
(
Uk

⊤AkVk
⊤)

k
est à valeurs dans l'ensemble des matrices diagonales à coe�-

cients positifs qui est clairement un fermé, il en résulte que ∆ est diagonale à coe�cients positifs.
Ainsi

Il existe U, V dans On(R) et les αi ⩾ 0 tels que A = U∆V avec ∆ = diag(α1, . . . , αn).

Remarque : Il s'agit de la décomposition en valeurs singulières.

Exercice 5 (****)

Soit E euclidien et (x1, . . . , xn) une famille libre de vecteurs de E. Montrer qu'il existe (y1, . . . , yn)
famille de vecteurs normés de E véri�ant ∥yi − yj∥ = 1 pour tout i ̸= j et

∀k ∈ [[ 1 ; n ]] Vect (x1, . . . , xk) = Vect (y1, . . . , yk)

Corrigé : Une famille de vecteurs de E normés et équidistants est dite régulière. Par ortho-
normalisation de Gram-Schmidt, il existe (u1, . . . , un) famille orthonormée de E qui véri�e le
grossissement simultané

∀k ∈ [[ 1 ; n ]] Vect (x1, . . . , xk) = Vect (u1, . . . , uk)

On pose G =
1

2
(J + In) avec J ∈ Mn(R) matrice constituée de 1. On montre que G est or-

thogonalement semblable à
1

2
diag(n + 1, In−1). Par conséquent, il existe S ∈ S +

n (R) telle que

G = S2 = S⊤S. On pose

∀j ∈ [[ 1 ; n ]] vj =
n∑

i=1

si,jui

Ainsi ∀(i, j) ∈ [[ 1 ; n ]]2 ⟨vi, vj⟩ =
n∑

k=1

si,ksj,k = (S⊤S)i,j
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Par construction, la famille (v1, . . . , vn) est régulière mais on n'a pas a priori le grossissement
simultané. La matrice G est inversible et par propriété sur les matrices de Gram

rg (v1, . . . , vn) = rg G = n

autrement dit, la famille (v1, . . . , vn) est libre. Soit (ε1, . . . , εn) obtenue par orthonormalisation
de Gram-Schmidt de (v1, . . . , vn). On dé�nit f ∈ O(E) par

∀i ∈ [[ 1 ; n ]] f(εi) = ui

et on pose ∀i ∈ [[ 1 ; n ]] yi = f(vi)

L'application f étant une isométrie, on a

∀i ∈ [[ 1 ; n ]] ∥yi∥ = ∥f(vi)∥ = ∥vi∥ = 1

et ∀(i, j) ∈ [[ 1 ; n ]]2 ∥yi − yj∥ = ∥f(vi − vj)∥ = ∥vi − vj∥ = δi,j

Ainsi, la famille (y1, . . . , yn) est régulière. En�n, pour k ∈ [[ 1 ; n ]], sachant Vect (v1, . . . , vk) =
Vect (ε1, . . . , εk), il vient

Vect (y1, . . . , yk) = Vect (f(v1), . . . , f(vk))

= Vect (f(ε1), . . . , f(εk)) = Vect (u1, . . . , uk)

ce qui prouve le grossissement simultané. On conclut

Il existe une famille régulière qui véri�e le grossissement simultané avec (x1, . . . , xn).

Exercice 6 (****)

Soit A ∈ S +
n (R) et α > 0. On note

Sα = {M ∈ S +
n (R) | det(M) ⩾ α}

Établir Inf
M∈Sα

Tr (AM) = n (α det(A))
1
n

Corrigé : Soit S ∈ S +
n (R) telle que A = S2. Par propriété fondamentale de la trace, on a

∀M ∈ Sα Tr (AM) = Tr (S2M) = Tr (SMS)

On a clairement SMS ∈ Sn(R) et

∀X ∈ Mn,1(R) ⟨X, SMSX⟩ = ⟨SX,M(SX)⟩ ⩾ 0

d'où SMS ∈ S +
n (R) et par suite Tr (SMS) ⩾ 0 puisque Sp (SMS) ⊂ [ 0 ; +∞ [. Supposons 0 ∈

Sp (A). D'après le théorème spectral, il existe P ∈ On(R) telle que P⊤AP = diag(0, λ2, . . . , λn).
Soit M = Pdiag(β, εIn−1)P

⊤ avec ε > 0 et β ⩾ αε1−n. Par construction, on a M ∈ Sα et on
trouve Tr (AM) = εTr (A). On peut donc rendre Tr (AM) arbitrairement arbitrairement petit
d'où, pour A ∈ S +

n (R)∖GLn(R)

Inf
M∈Sα

Tr (AM) = 0 = n (α det(A))
1
n

Supposons désormaisA ∈ S ++
n (R). La racine carrée S est également dans S ++

n (R). L'application
M 7→ SMS réalise alors une bijection de Sα dans Sα det(A) de réciproque N 7→ S−1NS−1. Ainsi, on
a

Inf
M∈Sα

Tr (AM) = Inf
M∈Sα

Tr (SMS) = Inf
M∈Sα det(A)

Tr (M)
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Pour M ∈ S +
n (R), la matrice M est diagonalisable d'après le théorème spectral et par inégalité

arithmético-géométrique, le spectre de M étant inclus dans [ 0 ; +∞ [, on trouve

(det(M))
1
n =

Å
n∏

i=1

µi

ã 1
n

⩽
1

n

n∑
i=1

µi =
1

n
Tr (M)

avec les µi valeurs propres de M et par suite

Inf
M∈Sα det(A)

Tr (M) ⩾ n (α det(A))
1
n

Cette inégalité est une égalité pour M = (α det(A))
1
n In qui est bien dans Sα detA. On conclut

Inf
M∈Sα

Tr (AM) = n (α det(A))
1
n
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