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Feuille d’exercices n°60

Exercice 1 (***)

Soit E euclidien de dimension n entier non nul et f € #(E). On note A\; < ... <\, les valeurs
propres de f et (eq,...,e,) une base orthonormée de vecteurs propres associées aux A;. On fixe
kell;n].

1. Onnote E, = Vect (e, ..., ex), Fr = Vect (e, ..., e,) et fi, fo les endomorphismes induits
par f respectivement sur E, et Fy. Déterminer A\, en fonction de f; puis en fonction de
fa.

2. On note 7, 'ensemble des sev de E de dimension k. Montrer le théoréme du minimaz :

A = Min  Max (f(z),z) = Max  Min (f(z),x)

Fea), z€F,||z||=1 Fedy g1 z€F,||z||=1

Corrigé : Pour F sev de E, les quantités Max (f(x),z) et Min (f(x),x) sont bien définies
zeF,[|lz]=1 z€F,||z[=1
puisque = — (f(x),x) est continue sur la sphére unité de F qui est compacte (fermée bornée

dans un espace de dimension finie).
k

1. Si z € Eg, on a x = ) _x;e; puis
i=1

k
(file),2) = 2 < Mllal®
i=1

n
avec égalité si x = e;. De méme, pour x € Fi, on a x = > x;e; puis
i—k

(falz),z) = T hiaf = Ael]?
i=k

avec égalité si x = e;. On conclut

VEe[l;n] A= Max  (fi(z),z) = Min (fo(z),z)

)
z€Ey, [|z[|=1 z€Fy,||z]|=1

2. Soit F € . Pour raison de dimension, on a Fy N F # {0Og}. On peut choisir x normé dans

Fr NF. D’aprés, ce qui précede, on a (f(x),x) > A\ d’ou 1%/1“a>|<|; (f(x),z) = A\ et par passage
zeF,||z||=1

A la borne inférieure
Inf  Max (f(z),x) = M\

Feew), zeF,||z||=1

Cette borne inférieure est atteinte pour F = E; € 7, et par conséquent
A= Min  Max  (f(z),z)

Fed), zcF,|z||=1
Soit F € 4, jy1. Toujours pour raison de dimension, on a Ex N F # {0g}. On peut choisir
xr normé dans Ex N F. D’aprés le résultat de la question précédente, on (f(z),z) < Ay d’ou

Nﬁirﬁ (f(x),z) < A. Par passage a la borne supérieure puis en remarquant que cette borne
z€F,||z||=1

est atteinte pour F = Fy, on conclut

A = Min  Max (f(z),z) = Max  Min (f(x),x)

)
Fed), z€F,|z|=1 Fedy ki1 2€F,|]=1




Exercice 2 (***)

Soit E euclidien de dimension n entier non nul, H un hyperplan de E, f € .¥(E) et g ’endomor-
phisme induit sur H par pg o f.
1. Justifier que g € .(H).
2. On note \; < ... < A\, les valeurs propres de f et p; < ... < p,—1 les valeurs propres de
g. Montrer
M <A< S A Sl S A,

Corrigé : 1. Soit (z,y) € H2 On note p = py pour alléger la suite. 1l s’agit d’un projecteur
orthogonal donc par théoréme, on a p € .%(E). Puis, on trouve en utilisant p € .Z(E), Im p =
Ker (id —p), f € L(E)

Ainsi g € S (H)
2. Soit k € [1; n—1]. On note < 'ensemble des sev de E de dimension k et % I'ensemble

des sev de H de dimension k. Pour F € %, on a

Max (g(z),z) = Max (f(z),z)

z€F,[|z]|=1 zeF,[lxl|=1

Ainsi, d’aprés le théoréme du minimax appliqué a g, il vient

— Min M — Min M
[k FeﬁiafFJSﬁ:1<g(x)’x> Fe;ixeFJ@ﬁ:1<f(x),x>

Comme %, C 7, il s’ensuit

Min Max (f(z),z) > Min Max (f(x),z)

FEBy, z€F||z||=1 Fed), €l |z||=1
D’aprés le théoréme du minimax appliqué a f, il vient

Min Max (f(x),z) = A

Fea, xeF,||lz||=1

et par conséquent P = Ak
De méme, pour F € %,,_x, on trouve

e = Max  Min (9(2),z) Feaz}kaeb“,ugﬁ:1<f(x)’x>

et comme A,_, C o,_},

Max  Min (f(z),z) < Max Min (f(x),z)

FE%,_1, 2€F,|z]|=1 ’ Fed, _j, z€F,||z|=1
et Max  Min ), ) =\
Feﬂa_kxeFJMH:1<f( ), T) = Akt
d’on M < /\k-‘rl
On conclut MK <A< KA S o1 <A,




Exercice 3 (***)

Soit E euclidien et p, ¢ des projecteurs orthogonaux.
1. Montrer que pogop € .¥(E).
2. Déterminer (Im p + Ker ¢)™.
3. En déduire que p o q est diagonalisable.

Corrigé : 1. On sait que p, g sont des endomorphismes symétriques en tant que projecteurs
orthogonaux. Soit (z,y) € E?. On a

(pogqop(x),y) = (gop(x),p(y)) = (p(x),qop(y)) = (x,poqopy))

Ainsi poqope S (E)

2. Soient F, G sev de E. Montrons (F + G)* = F- N G*. Soit z € F- NG*. On a
V) €Fx G (et 2= o) + (2 =0

ce qui prouve F- NGt c (F + G)*t. Réciproquement, soit € (F + G)L. Pour y € F, on a
y+0g € F+G dot (z,y) =0 dott z € F+ et de méme, pour z € G, on a Og + 2 € F + G d’otl
(z,2) =0 dou z € Gt ce qui prouve z € F- N G*. On a donc établi

(F+Q)t=Ftnat

En appliquant ce résultat avec Im p et Ker p, on conclut

(Im p + Ker ¢)" = (Im p)" N (Ker ¢)" = Ker pN1Im g

3. Comme Im p est stable par p o g o p, on peut considérer I’endomorphisme induit « sur Im p
qui est également symétrique. On note (e, ..., e,.) une base orthonormée de vecteurs propres de
u. On a donc u(e;) = poqgop(e;) = poqle) = N\e; avec les \; réels. On compléte ensuite la
famille (eq,...,e,) par des éléments (e,11,...,¢e,) de Ker ¢ pour former une base orthonormée
de Im p + Ker ¢ puis par une base orthonormée (ey,...,e,) de Ker pNIm ¢g. On obtient alors
une base orthonormée de E vérifiant

Vie[l;r] poq(e;) =Ne; et Yie[r+1;n] poq(e;) =0

Ainsi ’L’endomorphisme p o q est diagonalisable. ‘

Exercice 4 (***)
Soit A € 4, (R).

1. Montrer que ATA € .ZF(R).
2. Montrer qu'il existe U, V dans O,(R) et oy, ..., o, des réels positifs tels que

A =UAV avec A =diag(ay,...,ay)
Corrigé : 1. On a clairement ATA € .%,F(R) puis, pour X € .4, (R)
(X, ATAX) = XTATAX = (AX, AX) > 0

Ainsi ATA € ZF(R)
2. Pour A réel et X € ., 1(R) \ {0} tels que ATAX = XX, il vient
(X,ATAX) = MX[2 >0

3



et comme ||X]||? > 0, il s’ensuit A > 0. Supposons A € GL,(R). On a alors Sp (A) C ]0;+00].
D’aprés le théoréme spectral, il existe P € O, (R) telle que
ATA=PDP" avec D =diag(Ai,...,\,)
et les \; > 0. On pose
V=pT A =diag(v A1, ..., vVA) U=AVTA™!
ce qui est licite puisque A est diagonale avec des termes diagonaux non nuls donc inversible. Par
construction, on a A = UAV et V € O, (R). Puis, on vérifie
UTU=A"TWATAVIA"T = A-IVVTAZVVTATL = A~IA2A-T =1,

Ainsi, pour A € GL,(R), il existe U, V dans O,(R) et A diagonale a coefficients positifs telles
que A = UAV. Soit A € .#,(R). Par densité de GL,(R), il existe (Aj)r € GL,(R)Y telle que
Ay ﬁ A. D’aprés le résultat préliminaire, pour tout k entier, il existe Uy, V. dans O, (R) et

—00
D,. diagonale a coefficients positifs telles que Ay, = UpD; V. La suite (U, Vi )i est a valeurs dans
0, (R)? compact en tant que produit fini de compacts. Par conséquent, il existe ¢ extractrice
telle que

(Upr), Vo)) —— (U, V) € O, (R)?

k—o00

Par continuité du produit matriciel, on a
Upty Mgty Vorry | —— UTAVT = A
k—o0
et comme la suite (UkTAkaT)k est a valeurs dans ’ensemble des matrices diagonales a coeffi-

cients positifs qui est clairement un fermé, il en résulte que A est diagonale a coeflicients positifs.
Ainsi

Il existe U, V dans O, (R) et les a; > 0 tels que A = UAV avec A = diag(ay, ..., ay).

Remarque : Il s’agit de la décomposition en valeurs singuliéres.

Exercice 5 (****)

Soit E euclidien et (x1, ..., z,) une famille libre de vecteurs de E. Montrer qu’il existe (y1,...,¥yn)
famille de vecteurs normés de E vérifiant ||y, — y;|| = 1 pour tout i # j et

Vke[l;n] Vect (z1, ..., xx) = Vect (Y1, ..., Yr)

Corrigé : Une famille de vecteurs de E normés et équidistants est dite réguliére. Par ortho-
normalisation de Gram-Schmidt, il existe (uy,...,u,) famille orthonormée de E qui vérifie le
grossissement simultané

Vke[1l;n] Vect (z1, ..., x) = Vect (uq, ..., ux)
1
On pose G = §(J +1,) avec J € ,(R) matrice constituée de 1. On montre que G est or-

1
thogonalement semblable a §diag(n +1,1,_1). Par conséquent, il existe S € .Z.F(R) telle que
G =82=S"S. On pose

VJ c [[1, TL]] ’Uj = Esi,jui
i=1

Ainsi V(i,j) €[1;n]? (vi,v5) = isi,ksj,k = (S7S):;
k=1



Par construction, la famille (vy,...,v,) est réguliére mais on n’a pas a priori le grossissement
simultané. La matrice G est inversible et par propriété sur les matrices de Gram

rg (v1,...,0,) =16 G=n

autrement dit, la famille (vq,...,v,) est libre. Soit (£1,...,&,) obtenue par orthonormalisation
de Gram-Schmidt de (vq,...,v,). On définit f € O(E) par

Vie[l;n] fle) =
et on pose Vie[l;n] yi = f(vi)

L’application f étant une isométrie, on a

vie[lin]  ull = 1f @)l = lloill =1

et V(i,5) € [Lin]® v —yill = I1f (wi = v)|l = llvi — vill = diy
Ainsi, la famille (y1,...,y,) est réguliére. Enfin, pour k € [1; n], sachant Vect (vy,...,v;) =
Vect (1, .. .,€x), il vient

Vect (y1, ..., yr) = Vect (f(v1), ..., f(vg))
= Vect (f(e1),..., f(ex)) = Vect (ug, ..., ug)

ce qui prouve le grossissement simultané. On conclut

Il existe une famille réguliére qui vérifie le grossissement simultané avec (z1,...,x,).

Exercice 6 (****)

Soit A € ZF(R) et @ > 0. On note
So={Me .7 R)| det(M) > a}
Etablir N}g‘ga Tr (AM) = n (« det(A))%
Corrigé : Soit S € .77 (R) telle que A = S. Par propriété fondamentale de la trace, on a
VM € S, Tr (AM) = Tr (S*M) = Tr (SMS)
On a clairement SMS € .7, (R) et
VX € M, (R)  (X,SMSX) = (SX,M(SX)) >0
d’ou SMS € .7, (R) et par suite Tr (SMS) > 0 puisque Sp (SMS) C [0;+00[. Supposons 0 €
Sp (A). D’aprés le théoréme spectral, il existe P € O, (R) telle que PTAP = diag(0, Ay, ..., \,).
Soit M = Pdiag(B3,el,_1)P" avec € > 0 et 3 > ae'™™. Par construction, on a M € S, et on

trouve Tr (AM) = ¢ Tr (A). On peut donc rendre Tr (AM) arbitrairement arbitrairement petit
d’ou, pour A € .7 (R) \ GL,(R)

N}gga Tr (AM) =0 =n (adet(A))
Supposons désormais A € .77 (R). La racine carrée S est également dans .7 (R). L’application
M +— SMS réalise alors une bijection de S, dans S, qet(a) de réciproque N — S™INS~!. Ainsi, on
a
Inf Tr (AM) = Inf Tr(SMS)=_Inf Tr(M)
MESa MESa

MeS, det(A)



Pour M € .1 (R), la matrice M est diagonalisable d’aprés le théoréme spectral et par inégalité
arithmético-géométrique, le spectre de M étant inclus dans [0;+00 [, on trouve

n

ety = (F) " < 330w = )

=1

avec les p; valeurs propres de M et par suite

If T (M) > n(adet(A))r

MesS, det(A)

Cette inégalité est une égalité pour M = (« det(A))% I, qui est bien dans S, g4t - On conclut

S|=

Inf Tr (AM) = n (adet(A))

MeSa




