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Feuille d'exercices n°52

Exercice 1 (**)

Établir les inégalités suivantes :

1. ∀n ∈ N∗
n∑

k=0

(
n
k

)√
k <

 
2n

n∑
k=0

(
n
k

)
k

2. ∀f ∈ C 0([ 0 ; 1 ] ,R)
Ç∫ 1

0

f(t) dt

å2

⩽
2

3

∫ 1

0

f 2(t)√
t

dt

3. ∀(ai,j)(i,j)∈[[ 1 ;n ]]2 ∈ Rn2

∣∣∣∣∣ ∑
1⩽i,j⩽n

ai,j

∣∣∣∣∣ ⩽ n
… ∑

1⩽i,j⩽n

a2i,j

Corrigé : 1. Soit E = Rn+1 muni du produit scalaire canonique, x =
Ä»

0
(
n
0

)
,
»
1
(
n
1

)
, . . . ,

»
n
(
n
n

)ä
et y =

Ä»(
n
0

)
, . . . ,

»(
n
n

)ä
. D'après l'inégalité de Cauchy-Schwarz, il vient

⟨x, y⟩ =
n∑

k=0

(
n
k

)√
k ⩽ ∥x∥∥y∥ =

 Å
n∑

k=1

k
(
n
k

)ãÅ n∑
k=0

(
n
k

)ã
=

 
2n

n∑
k=0

(
n
k

)
k

L'inégalité est une égalité si et seulement si (x, y) est liée ce qui n'est clairement pas le cas. On
conclut

∀n ∈ N∗
n∑

k=0

(
n
k

)√
k <

 
2n

n∑
k=0

(
n
k

)
k

Remarque : On peut �naliser le calcul avec
n∑

k=0

(
n
k

)
k =

n∑
k=1

(
n−1
k−1

)
n = n2n−1

Variante : On peut aussi considérer E = Rn+1 muni du produit scalaire

∀(x, y) ∈ E2 ⟨x, y⟩ =
n∑

k=0

(
n
k

)
xkyk

et appliquer l'inégalité de Cauchy-Schwarz avec x =
Ä√

0,
√
1, . . . ,

√
n
ä
et y = (1, . . . , 1).

2. On pose E = C 0([ 0 ; 1 ] ,R) muni de

∀(f, g) ∈ E2 ⟨f, g⟩ =
∫ 1

0

f(t)g(t)√
t

dt

Soit (f, g) ∈ E2. On a t 7→ f(t)g(t)√
t
∈ Cpm(] 0 ; 1 ] ,R) et comme f et g sont continues sur le

segment [ 0 ; 1 ], il vient

f(t)g(t)√
t

=
t→0

O
Å

1√
t

ã
d'où l'existence de l'intégrale dé�nissant ⟨f, g⟩ par comparaison et critère de Riemann. L'appli-
cation (f, g) 7→ ⟨f, g⟩ est symétrique, linéaire en la première variable par linéarité de l'intégrale
et du produit à droite. Pour f ∈ E, on a
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⟨f, f⟩ =
∫ 1

0

f(t)2√
t

dt ⩾ 0

par positivité de l'intégrale. Puis, par séparation de l'intégrale avec t 7→ f(t)2√
t

positive et continue

sur ] 0 ; 1 ], il vient

⟨f, f⟩ = 0 ⇐⇒ ∀t ∈ ] 0 ; 1 ]
f(t)2√

t
= 0 ⇐⇒ ∀t ∈ ] 0 ; 1 ] f(t) = 0

Par continuité de f en 0, il s'ensuit que f = 0E. Ainsi, l'application (f, g) 7→ ⟨f, g⟩ est un produit
scalaire sur E. Avec g(t) =

√
t pour t ∈ [ 0 ; 1 ], on obtient d'après l'inégalité de Cauchy-Schwarz

⟨f, g⟩2 =
Ç∫ 1

0

f(t) dt

å2

⩽ ∥f∥2∥g∥2 =
∫ 1

0

f 2(t)√
t

dt

∫ 1

0

√
t dt

On conclut ∀f ∈ C ([ 0 ; 1 ] ,R)
Ç∫ 1

0

f(t) dt

å2

⩽
2

3

∫ 1

0

f 2(t)√
t

dt

3. Soit E = Mn(R) muni du produit scalaire canonique. Avec J =
(
1
)
1⩽i,j⩽n

et A =
(
ai,j

)
1⩽i,j⩽n

,
on a avec l'inégalité de Cauchy-Schwarz

|⟨A, J⟩| =
∣∣∣∣∣ ∑
1⩽i,j⩽n

ai,j

∣∣∣∣∣ ⩽ ∥A∥∥J∥ =… ∑
1⩽i,j⩽n

ai,j

… ∑
1⩽i,j⩽n

12

On conclut ∀(ai,j)(i,j)∈[[ 1 ;n ]]2 ∈ Rn2

∣∣∣∣∣ ∑
1⩽i,j⩽n

ai,j

∣∣∣∣∣ ⩽ n
… ∑

1⩽i,j⩽n

a2i,j

Exercice 2 (*)

Soit E = R2[X] muni de ⟨P,Q⟩ =
1∑

k=−1

P(k)Q(k) pour (P,Q) ∈ E2.

1. Justi�er (P,Q) 7→ ⟨P,Q⟩ est un produit scalaire sur E.

2. Construire une base orthonormée de E.

Corrigé : 1. L'application (P,Q) 7→ ⟨P,Q⟩ est clairement symétrique, linéaire en la première

variable par linéarité du produit à droite et de la somme. Pour P ∈ E, on a ⟨P,P⟩ =
1∑

k=−1

P(k)2 ⩾

0. Si ⟨P,P⟩ = 0, comme
1∑

k=−1

P(k)2 est une somme de termes positifs, il vient P(k) = 0 pour

k ∈ [[−1 ; 1 ]] d'où 3 racines distinctes pour P avec deg P ⩽ 2 ce qui prouve que P est nul. On
conclut

L'application (P,Q) 7→ ⟨P,Q⟩ est un produit scalaire sur E.

2. On applique l'algorithme d'orthonormalisation de Gram-Schmidt et on trouveÇ√
3

3
,

√
2

2
X,

√
6

2

Å
X2 − 2

3

ãå
2



Exercice 3 (*)

Soit E = M2(R)muni du produit scalaire ⟨A,B⟩ = Tr (A⊤B). On note F =

ßÅ
a b
b −a

ã
, (a, b) ∈ R2

™
.

1. Justi�er que F est un sev de E et en préciser une base.

2. Pour M ∈ E, calculer d(M,F).

3. Déterminer une base de F⊥.

Corrigé : 1. Notons U =

Å
1 0
0 −1

ã
et V =

Å
0 1
1 0

ã
. On a clairement F = Vect (U,V) et par

liberté de (U,V), on conclut

La famille (U,V) est une base de F.

2. Soit M ∈ E. Le sev F est de dimension �nie d'où, par caractérisation métrique du projeté
orthogonal,

d(M,F) = ∥M− pF(M)∥

On pF(M) ∈ F d'où pF(M) = aU+ bV avec a et b réels puis

M− pF(M) ∈ F⊥ ⇐⇒
®
⟨M− pF(M),U⟩ = 0

⟨M− pF(M),V⟩ = 0
⇐⇒

®
⟨U,U⟩ a+ ⟨U,V⟩ b = ⟨M,U⟩
⟨U,V⟩ a+ ⟨V,V⟩ b = ⟨M,V⟩

Pour M =

Å
x y
z t

ã
∈ E, on a

⟨M,U⟩ = x− t ⟨M,V⟩ = y + z ⟨U,U⟩ = ⟨V,V⟩ = 2 ⟨U,V⟩ = 0

d'où

®
2a = x− t
2b = y + z

D'où M− pF(M) =

Å
x y
z t

ã
− x− t

2

Å
1 0
0 −1

ã
− y + z

2

Å
0 1
1 0

ã
=

1

2

Å
x+ t y − z
z − y x+ t

ã
On trouve ∀M =

Å
x y
z t

ã
∈ E d(M,F) =

1√
2

√
(x+ t)2 + (y − z)2

3. Soit M =

Å
x y
z t

ã
∈ E. On a

E ∈ F⊥ ⇐⇒ ⟨M,U⟩ = ⟨M,V⟩ = 0 ⇐⇒
®
x− t = 0

y + z = 0

Il s'ensuit La famille
ÅÅ

1 0
0 1

ã
,

Å
0 1
−1 0

ãã
est une base de F⊥.

Exercice 4 (**)

Soit E préhilbertien réel et (e1, . . . , en) une famille de vecteurs normés de E telle que

∀x ∈ E
n∑

k=1

⟨x, ek⟩2 = ∥x∥2
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Montrer que (e1, . . . , en) est une base orthonormée de E et que E est donc euclidien.

Corrigé : Notons F = Vect (e1, . . . , en). Pour x ∈ F⊥, on a ∥x∥ = 0 d'où F⊥ = {0} et par suite
F = (F⊥)⊥ = {0}⊥ = E ce qui prouve que (e1, . . . , en) est génératrice. Puis, pour i ∈ [[ 1 ; n ]], on
a

n∑
k=1

⟨ei, ek⟩2 = ∥ei∥2 ⇐⇒ ∥ei∥4︸ ︷︷ ︸
=1

+
∑

k∈[[ 1 ;n ]]∖{i}
⟨ei, ek⟩2 = ∥ei∥2︸ ︷︷ ︸

=1

⇐⇒
∑

k∈[[ 1 ;n ]]∖{i}
⟨ei, ek⟩2 = 0

Il s'ensuit que la famille (e1, . . . , en) est orthonormée donc libre et on conclut

L'espace E est euclidien et (e1, . . . , en) est une base orthonormée de E.

Exercice 5 (*)

Soit E = Rn avec n entier non nul.

1. Soit a ∈ E normé. Déterminer la matrice dans la base canonique de pVect (a) et pVect (a)⊥ .

2. Soit (u1, . . . , up) orthonormée et F = Vect (u1, . . . , up). Déterminer la matrice dans la base
canonique de pF.

Corrigé : 1. Soit x ∈ E. Notons P1 = matC pVect (a), P2 = matC pVect (a)⊥ , A = matC a et
X = matCx. On a

pVect (a)(x) = ⟨x, a⟩a

Matriciellement ∀X ∈Mn,1(R) P1X = ⟨X,A⟩A = A(A⊤X) = AA⊤X

On trouve P1 = AA⊤ et P2 = In − P1 = In − AA⊤

2. On a ∀x ∈ E pF(x) =
p∑

i=1

⟨x, ui⟩ui

Matriciellement, on obtient PF =
p∑

i=1

UiUi
⊤

Exercice 6 (*)

Soit E préhilbertien réel et (a, b) ∈ E2 tel que ⟨a, b⟩ = 1. Décrire l'application dé�nie par

∀x ∈ E f(x) = ⟨x, a⟩ b

Corrigé : On a clairement f ∈ L (E), Ker f = Vect (a)⊥ et Im f ⊂ Vect (b). La forme linéaire
x 7→ ⟨x, a⟩ est non nulle puisqu'elle ne s'annule pas en a et elle est par conséquent surjective.
Ainsi, on a Im f = Vect (b). En�n, on constate

∀x ∈ E f 2(x) = f(⟨x, a⟩ b) = ⟨x, a⟩ f(b) = ⟨x, a⟩ ⟨a, b⟩ b = f(x)

On conclut L'application f est le projecteur sur Vect (b) parallèlement à Vect (a).
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Exercice 7 (**)

Soit Fn = Rn[X] (n entier non nul) muni du produit scalaire ⟨P,Q⟩ =
∫ 1

0

P(t)Q(t) dt pour

(P,Q) ∈ F2
n et (π0, . . . , πn) la base orthonormée fournie par l'algorithme de Gram-Schmidt sur

(1,X, . . . ,Xn).

1. Montrer ∀k ∈ [[ 0 ; n ]] deg πk = k

On admet que πn est scindé dans Fn à racines simples x1, . . . , xn.

2. Montrer ∃!(λk)k∈[[ 1 ;n ]] ∈ Rn | ∀P ∈ Fn−1

∫ 1

0

P(t) dt =
n∑

k=1

λkP(xk)

3. Véri�er que l'égalité précédente est encore vraie pour tout P ∈ F2n−1.

Corrigé : 1. On a clairement deg π0 = deg 1 = 0. Soit k ∈ [[ 1 ; n ]]. L'étape itérative de l'algo-
rithme consiste à construire

Pk = Xk −
k−1∑
j=0

⟨Xk, πj⟩πj et πk =
Pk

∥Pk∥

Comme Vect (1, . . . ,Xk−1) = Vect (π0, . . . , πk−1), il s'ensuit que

deg Pk = deg
(
Xk −

k−1∑
j=0

⟨Xk, πj⟩πj︸ ︷︷ ︸
∈Rk−1[X]

)
= k et deg πk = deg Pk

On conclut ∀k ∈ [[ 0 ; n ]] deg πk = k

2. Notons (Li)i∈[[ 1 ;n ]] la famille de polynômes d'interpolations de Lagrange associés à (x1, . . . , xn).
On a donc

∀(i, j) ∈ [[ 1 ; n ]]2 Li(λj) = δi,j

• Analyse : Supposons qu'il existe des scalaires λk tels qu'on ait la propriété souhaitée. En
particulier

∀i ∈ [[ 1 ; n ]]

∫ 1

0

Pi(t) dt =
n∑

k=1

λkLi(xk) = λi

ce qui prouve l'unicité sous réserve d'existence.

• Synthèse : Les formes linéaires φ : P 7→
∫ 1

0

P(t) dt et ψ : P 7→
n∑

k=1

λkP(xk) coïncident sur une

base (la base des polynômes interpolateurs) donc coïncident par caractérisation d'applications
linéaires sur une base. Ainsi

∃!(λk)k∈[[ 1 ;n ]] ∈ Rn | ∀P ∈ Fn−1

∫ 1

0

P(t) dt =
n∑

k=1

λkP(xk)

3. On prolonge la dé�nition de φ et ψ à F2n−1. Soit P ∈ F2n−1. D'après le théorème de la division
euclidienne

∃!(Q,R) ∈ R[X] avec degR < n | P = πn ×Q+R

On a deg πn ×Q = deg πn + degQ = deg(P− R) ⩽ 2n− 1 d'où degQ ⩽ 2n− 1− n = n− 1 et
par conséquent Q⊥πn. En exploitant le résultat de la question précédente, on obtient
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φ(P) = ⟨πn,Q⟩︸ ︷︷ ︸
=0

+φ(R) = ψ(R) = ψ(πn ×Q)︸ ︷︷ ︸
=0

+ψ(R) = ψ(πn ×Q+R)

Ainsi ∃!(λk)k∈[[ 1 ;n ]] ∈ Rn | ∀P ∈ F2n−1

∫ 1

0

P(t) dt =
n∑

k=1

λkP(xk)

Exercice 8 (**)

Soit E préhilbertien réel et p projecteur de E. Montrer

p orthogonal ⇐⇒ ∀x ∈ E ⟨p(x), x⟩ ⩾ 0

Corrigé : Supposons p orthogonal, c'est-à-dire Im p⊥Ker p. Pour x ∈ E, on a ⟨p(x), x− p(x)⟩ =
0 puisque p(x) ∈ Im p et x− p(x) ∈ Ker p puis on obtient

⟨p(x), x⟩ = ⟨p(x), p(x) + x− p(x)⟩ = ∥p(x)∥2 + ⟨p(x), x− p(x)⟩ = ∥p(x)∥2 ⩾ 0

Réciproquement, Soit x ∈ E et y ∈ Ker p. On a

∀t ∈ R ⟨p(x+ ty), x+ ty⟩ = ⟨p(x), x+ ty⟩ = ⟨p(x), x⟩+ t ⟨p(x), y⟩ ⩾ 0

La fonction a�ne t 7→ ⟨p(x), x⟩+ t ⟨p(x), y⟩ est positive ce qui impose ⟨p(x), y⟩ = 0. Ainsi, on a
Im p⊥Ker p. On conclut

p orthogonal ⇐⇒ ∀x ∈ E ⟨p(x), x⟩ ⩾ 0

Exercice 9 (**)

Soit E préhilbertien réel et F sev de E. Montrer que F⊥ = F̄⊥.

Corrigé : On a F ⊂ F̄ d'où F̄⊥ ⊂ F⊥. Considérons x ∈ F⊥ et y ∈ F̄. Par caractérisation
séquentielle, il existe (yn)n ∈ FN telle que yn −−−→

n→∞
y. L'application u 7→ ⟨x, u⟩ est continue car

linéaire et ∥x∥-lipschitzienne d'après l'inégalité de Cauchy-Schwarz. Ainsi, on a

⟨x, yn⟩ −−−→
n→∞

⟨x, y⟩ et ∀n ∈ N ⟨x, yn⟩ = 0

d'où ∀(x, y) ∈ F⊥ × F̄ ⟨x, y⟩ = 0

ce qui prouve F⊥ ⊂ F̄⊥ et on conclut

F⊥ = F̄⊥

Exercice 10 (**)

Justi�er l'existence puis calculer Inf
(a,b)∈R2

∫ 1

0

(1 + at+ bt2)
2
dt.

Corrigé : Notons Λ =

®∫ 1

0

(1 + at+ bt2)2 dt, (a, b) ∈ R2

´
C'est une partie non vide de R et minorée donc elle admet une borne inférieure �nie. On pose

E = R[X] muni du produit scalaire ⟨P,Q⟩ =

∫ 1

0

P(t)Q(t) dt pour (P,Q) ∈ E2 et on note

F = Vect (X,X2). En utilisant notamment la croissance et continuité de u 7→ u2 sur R+
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Inf Λ = Inf
(a,b)∈R2

∥1 + aX+ bX2∥2 =
Å

Inf
(a,b)∈R2

∥1− (−aX− bX2)∥
ã2

= d(1,F)2

Comme le sev F est de dimension �nie, on a par caractérisation métrique du projeté orthogonal

d(1,F) = ∥1− pF(1)∥

Par caractérisation géométrique du projeté orthogonal, il vient pour P ∈ E

P = pF(1) ⇐⇒
®
P ∈ F

1− P ∈ F⊥ ⇐⇒ ∃(α, β) ∈ R2 |


P = αX+ βX2

⟨1− P,X⟩ = 0

⟨1− P,X2⟩ = 0

F

1

pF(1)

1− pF(1)

Figure 1 � Distance à un sev de dimension �nie

Ainsi, les scalaires α, β sont solutions de®
⟨X,X⟩α + ⟨X2,X⟩β = ⟨1,X⟩
⟨X,X2⟩α + ⟨X2,X2⟩β = ⟨1,X2⟩

⇐⇒


α

3
+
β

4
=

1

2
α

4
+
β

5
=

1

3

⇐⇒ (α, β) =

Å
4,−10

3

ã
En�n ∥1− pF(1)∥2 = ⟨1− pF(1), 1⟩ =

∫ 1

0

Å
1− 4t+

10

3
t2
ã

dt

On conclut Inf
(a,b)∈R2

∫ 1

0

(1 + at+ bt2)2 dt =
1

9

Exercice 11 (**)

Soit E préhilbertien réel. Pour (u1, . . . , un) ∈ En, on note G(u1, . . . , un) la matrice de Mn(R)
dé�nie par G(u1, . . . , un) =

(
⟨ui, uj⟩

)
1⩽i,j⩽n

. Soit (x1, . . . , xn) ∈ En libre et F = Vect (x1, . . . , xn).

Établir ∀x ∈ E d(x,F)2 =
det (G(x, x1, . . . , xn))

det (G(x1, . . . , xn))

Corrigé : Soit x ∈ E. On décompose x = a + b avec (a, b) ∈ F × F⊥. D'après le théorème de
Pythagore, on a ⟨x, x⟩ = ⟨a, a⟩+ ⟨b, b⟩ puis ⟨x, xi⟩ = ⟨xi, a⟩ pour tout i ∈ [[ 1 ; n ]]. Avec

7



G(x, x1, . . . , xn) =

á
⟨x, x⟩ ⟨x, x1⟩ . . . ⟨x, xn⟩
⟨x1, x⟩ ⟨x1, x1⟩ . . . ⟨x1, xn⟩
...

...
...

⟨xn, x⟩ ⟨xn, x1⟩ . . . ⟨xn, xn⟩

ë
et notant a =

n∑
i=1

aixi avec les ai réels, il vient

det (G(x, x1, . . . , xn)) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∥b∥2 +
n∑

i=1

ai ⟨a, xi⟩ ⟨a, x1⟩ . . . ⟨a, xn⟩
n∑

i=1

ai ⟨x1, xi⟩ ⟨x1, x1⟩ . . . ⟨x1, xn⟩
...

...
...

n∑
i=1

ai ⟨xn, xi⟩ ⟨xn, x1⟩ . . . ⟨xn, xn⟩

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
et avec l'opération C1 ← C1 −

n∑
i=1

aiCi+1, on obtient

det (G(x, x1, . . . , xn)) = ∥b∥2 det (G(x1, . . . , xn) = d(x,F)2 detG(x1, . . . , xn))

On conclut ∀x ∈ E d(x,F)2 =
det (G(x, x1, . . . , xn))

det (G(x1, . . . , xn))
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