ISM MP, Mathématiques
Année 2025/2026

Feuille d’exercices n°52

Exercice 1 (**)

Etablir les inégalités suivantes :

1. Vn e N i(:)ﬂ<1/2ni(2)k
2. Vf € °(0:1],R) </1f(t)dt> g%/lfj/(?dt

> i <ny/ > ai;
1<i,j<n

1<ij<n
Corrigé : 1. Soit E = R""! muni du produit scalaire canonique, z = (w/()(g), \/ 1(’11), ce \/n(2)>

et y = (,/ (5): s/ (Z)) D’aprés I'inégalité de Cauchy-Schwarz, il vient

) = SEVE< el = [(Sr0) (S0) - S0

k=0 k=0

3. V(ai,j)(i,j)eﬁl;n}]Q e R™

L’inégalité est une égalité si et seulement si (x,y) est liée ce qui n’est clairement pas le cas. On

conclut
VneN S (VE< (205 (0)k
k=0 k=0

Remarque : On peut finaliser le calcul avec

S (k=3 (1) =n2n?

k=0 k=1

Variante : On peut aussi considérer E = R™*! muni du produit scalaire

V) €B ()= 3 (D

et appliquer I'inégalité de Cauchy-Schwarz avec z = <\/6, Vi,..., \/ﬁ) ety =(1,...,1).
2. On pose E = ¢°([0;1],R) muni de
1
V(f.9) €E*  (f.9) =/
0

f)g(t)
Vit

f)g(t)
i dt

€ 6m(]0;1],R) et comme f et g sont continues sur le

Soit (f,g) € E On a t —

segment [0;1], il vient

000 _ (1)
Vi 0 NG

d’on Pexistence de lintégrale définissant (f, g) par comparaison et critére de Riemann. L’appli-

cation (f,g) — (f,g) est symétrique, linéaire en la premiére variable par linéarité de I'intégrale

et du produit & droite. Pour f € E, on a



<f,f):/of\(22dt>0

par positivité de 'intégrale. Puis, par séparation de I'intégrale avec t —

()
Vi

positive et continue
sur | 0;1], il vient

f(t)?
Vi

Par continuité de f en 0, il s’ensuit que f = Og. Ainsi, I'application (f, g) — (f,g) est un produit
scalaire sur E. Avec g(t) = v/t pour t € [0;1], on obtient d’aprés l'inégalité de Cauchy-Schwarz

(f.9)* = ( / £(t) dt) <INl = / fj? dt / Vit

On conclut Vfe?(0;1],R) (/lf(t)dt) g;/lwdt

Vit

(f,f)=0 < Vte]0;1]

=0 < Vte]0;1]  f(t)=0

3. Soit E = .#,(R) muni du produit scalaire canonique. Avec J = (1)1<ij<n et A = (ai7j)1<ij<n,
on a avec l'inégalité de Cauchy-Schwarz

(A DI = 2 a| <AV =/ > aigy/ > 17
1<i,9<n 1<i,9<n 1<,5<n
On conclut Y(aij)ijyel1in]? € R"’ Yo aij| <n,/ > ai
1<i,5<n 1<i,g<n

Exercice 2 (*)

Soit E = Ry[X] muni de (P, Q) = i P(k)Q(k) pour (P,Q) € E2

k=1
1. Justifier (P, Q) — (P, Q) est un produit scalaire sur E.

2. Construire une base orthonormée de E.
Corrigé : 1. L’application (P,Q) — (P, Q) est clairement symétrique, linéaire en la premiére

1
variable par linéarité du produit a droite et de la somme. Pour P € E, on a (P,P) = > P(k)?
k=1

1

0. Si (P,P) = 0, comme Y P(k)? est une somme de termes positifs, il vient P(k) = 0 pour
k=—1

ke [—1;1] d’ou 3 racines distinctes pour P avec degP < 2 ce qui prouve que P est nul. On

conclut

L’application (P, Q) — (P, Q) est un produit scalaire sur E.

2. On applique I'algorithme d’orthonormalisation de Gram-Schmidt et on trouve

(599 (e 3)




Exercice 3 (*)
Soit E = .#,(R) muni du produit scalaire (A, B) = Tr (ATB). On note F = {(b —a) ,(a,b) € RQ}.

1. Justifier que F est un sev de E et en préciser une base.
2. Pour M € E, calculer d(M, F).

3. Déterminer une base de F+.

Corrigé : 1. Notons U = (é _01> et V= <(1) é) On a clairement F = Vect (U, V) et par

liberté de (U, V), on conclut

La famille (U, V) est une base de F.

2. Soit M € E. Le sev F est de dimension finie d’oti, par caractérisation métrique du projeté
orthogonal,

d(M, F) = [M — pe(M)|
On pr(M) € F d’ott pp(M) = aU + bV avec a et b réels puis

(M —pp(M),U) =0 — {(U,U>a+<U,V)b i(M,U>

L IV

PourM:<m y)EE,ona
z t

(MUy=z—t (MVi=y+z (U,U)=(V,V)=2 (U,V)=0

20 =x —t
d’ou
{2b=y+z

N B (zy _:c—t(l 0)_y+z(0 1>_l<x+t y—z>
Dou M pF(M)—<Z t> 5 \0 -1 2 \1 0/ 2\z—y x4+t

_(* Y _ b 2 — )2
On trouve VM—<Z t)eE d(M,F)—ﬂ\/(z+t) + (y — 2)

3.SoitM:<j ?Z>€E.Ona

r—1t=0

EeFt < (M,U)=(M,V) =0 < {
y+z2=0

Il s’ensuit La famille <<(1) (1)) , (_01 é)) est une base de F*.

Exercice 4 (**)

Soit E préhilbertien réel et (eq,...,e,) une famille de vecteurs normés de E telle que

Vr € E Sz, e)? = ||z||?
k=1



Montrer que (eq, ..., e,) est une base orthonormée de E et que E est donc euclidien.

Corrigé : Notons F = Vect (ey,...,e,). Pour z € FX, on a ||| = 0 d’out F+ = {0} et par suite
F = (FY)! = {0} = E ce qui prouve que (ey,...,e,) est génératrice. Puis, pour i € [1; n], on
a

k;(euew?:Hein = lall+ ¥ (aea)=all = ¥ (ee)’=0

ke[1;n]~{:} \_T'/ ke[ 1;n]~{:}
Il s’ensuit que la famille (e, ..., e,) est orthonormée donc libre et on conclut
L’espace E est euclidien et (eq, ..., e,) est une base orthonormée de E.

Exercice 5 (*)

Soit E = R" avec n entier non nul.

1. Soit @ € E normé. Déterminer la matrice dans la base canonique de pyect (a) €t Pvect (o) -

2. Soit (uy, ..., u,) orthonormée et F' = Vect (uq, ..., u,). Déterminer la matrice dans la base
canonique de pg.

Corrigé : 1. Soit z € E. Notons Py = mat¢pvect (o), P2 = MatgpPyect@)r, A = matga et
X = matgx. On a

DVect (a) (.T) - <.7), (l>(l

Matriciellement VX € ., 1(R) PiX = (X, A)A =A(ATX) = AATX

On trouve P, =AAT et Py=1,—P;=1,—AA"
2.0mn a VeeE  pp(z)=> (z,u)u
i=1
p
Matriciellement, on obtient Pr = ZUiUiT
i=1

Exercice 6 (*)
Soit E préhilbertien réel et (a,b) € E? tel que (a,b) = 1. Décrire I'application définie par
Ve e E f(z) = {(z,a)b

Corrigé : On a clairement f € Z(E), Ker f = Vect (a)* et Im f C Vect (b). La forme linéaire
x + (z,a) est non nulle puisqu’elle ne s’annule pas en a et elle est par conséquent surjective.
Ainsi, on a Im f = Vect (b). Enfin, on constate

VeeE  fx) = f({z,a)b) = (z,a) f(b) = (z,a) (a,b) b= [(z)

On conclut | L’application f est le projecteur sur Vect (b) parallélement a Vect (a).




Exercice 7 (**)

1
Soit F,, = R,[X] (n entier non nul) muni du produit scalaire (P,Q) = / P(t)Q(t) dt pour

0
(P,Q) € F? et (m,...,m,) la base orthonormée fournie par l'algorithme de Gram-Schmidt sur
(1,X,...,X").
1. Montrer Vke[0;n] degm, =k
On admet que 7, est scindé dans F,, & racines simples x1, ..., z,.

n

1
2. Montrer EI'()‘k)kE[[Ln]] e R"” | VP € Fn—l / P(t) dt = Z)\kP(l’k)
0 k=1

3. Vérifier que 1’égalité précédente est encore vraie pour tout P € Fy,, 4.

Corrigé : 1. On a clairement degmy = deg1 = 0. Soit k € [1; n]. L’étape itérative de 1’algo-
rithme consiste a construire

k-1 P,
Pp=X"— S (XF mj)m; et mp=-——
7=0 ||Pk:H
Comme Vect (1,...,X* 1) = Vect (7, ..., mx_1), il s’ensuit que
k—1
deg P, = deg (Xk - > <Xk,7rj>7rj> =k et degmp = degP;
7=0
—_——
€Ry_1[X]
On conclut VEe[0;n] degm, =k
2. Notons (L;)ic[1,,] la famille de polynomes d’interpolations de Lagrange associés a (1, ..., ).

On a donc
V(i j) € [1;n]? Li(A;) = i
e Analyse : Supposons qu’il existe des scalaires A\ tels qu’on ait la propriété souhaitée. En

particulier

n

Vie[l;n] /1Pi(t) dt = S M\Li(ze) = A

k=1

ce qui prouve 'unicité sous réserve d’existence.

1 n
e Synthése : Les formes linéaires ¢ : P — / P(t)dt et ¢ : P — > A\;P(xy) coincident sur une
0 k=1

base (la base des polynémes interpolateurs) donc coincident par caractérisation d’applications
linéaires sur une base. Ainsi

1 n
El'()‘k)ke[[l,n]] € R" | VP eF, 4 / P(t) dt = Z)\kP(wk)
0 k=1

3. On prolonge la définition de p et 1 a Fy,,_1. Soit P € Fy,,_1. D’aprés le théoréme de la division
euclidienne

A(Q,R) e R[X] avec degR<n | P=m xQ+R
On a degm, x Q =degm, + degQ =deg(P—R) <2n—1 doundegQ <2n—1—n=n—1et

par conséquent Q_Lm,. En exploitant le résultat de la question précédente, on obtient

3



=0 =0
1 n
Ainsi (A eeriin] ERT | VP € Py / P() df — 5SS AP (a)
0 k=1

Exercice 8 (**)

Soit E préhilbertien réel et p projecteur de E. Montrer
p orthogonal <= Vz € E (p(z),z) =20

Corrigé : Supposons p orthogonal, c’est-a-dire Im pL Ker p. Pour z € E, on a (p(z),x — p(z)) =
0 puisque p(x) € Im p et x — p(x) € Ker p puis on obtient

(p(x),z) = (p(x), p(x) + = — p(x)) = |[p(@)]|* + (p(z), = — p(x)) = |p(z)]|* = 0
Réciproquement, Soit x € E et y € Ker p. On a
vteR  (p(z+ty),z +ty) = (p(z),r + ty) = (p(z),r) +t(p(z),y) >0

La fonction affine t — (p(x),x) 4+ t (p(z),y) est positive ce qui impose (p(x),y) = 0. Ainsi, on a
Im pl Ker p. On conclut

p orthogonal <= Vx € E (p(x),z) =0

Exercice 9 (**)

Soit E préhilbertien réel et F sev de E. Montrer que F+ = F*.

Corrigé : On a F C F d'ou F+ C F*. Considérons € F' et y € F. Par caractérisation
séquentielle, il existe (y,), € F" telle que y, — y. L’application u — (z,u) est continue car
n—oo

linéaire et ||x||-lipschitzienne d’aprés l'inégalité de Cauchy-Schwarz. Ainsi, on a

<x7yn> — <$,y> et VneN <$7yn> =0

—00
d’ott V(z,y) e Ft x F (r,y) =0

ce qui prouve F- C F* et on conclut

Exercice 10 (**)

1
Justifier 'existence puis calculer Inf / (1+at+ l)t?)2 dt.
(a,b)ERQ 0

1
Corrigé : Notons A= {/ (1+at +bt?)*dt, (a,b) € Rz}
0

C’est une partie non vide de R et minorée donc elle admet une borne inférieure finie. On pose
1

E = R[X] muni du produit scalaire (P,Q) = / P(t)Q(t) dt pour (P,Q) € E? et on note
0

F = Vect (X, X?). En utilisant notamment la croissance et, continuité de u — u? sur R,



2
Inf A = yu+ﬂx+hxw2:< mfu1_pﬂx_hxaw = d(1,F)?

Inf
(a,b)eR? (a,b)ER?

Comme le sev F est de dimension finie, on a par caractérisation métrique du projeté orthogonal
d(L,F) = [[1 = pr(1)]

Par caractérisation géométrique du projeté orthogonal, il vient pour P € E

P = aX + BX?
PcF )
P=pr(1) <= L = o, B) e R | (1-P,X)=0
1-PeF
(1-P, X% =0
1
1—pp(1)
pe(l) F

FIGURE 1 — Distance a un sev de dimension finie

Alinsi, les scalaires «, 8 sont solutions de

a [ 1
X, X X2, X)3 = (1,X 3t 175 10
(X, X)a + (X5, X)8 = (1,X) 34 2 (&,5)_<4’__>
(X, X2 + (X2,X2)8 = (1,X2) @« B 1 3
— _|_ - =
45 3
2 ! 10 ,
Enfin 11T =pr(D[]* = (1 —pr(1),1) = L—dt+ ) dt
0
! 1
On conclut Inf / (1+at+bt?)2dt = =
(a,b)E]R2 0 9

Exercice 11 (**)

Soit E préhilbertien réel. Pour (ui,...,u,) € E", on note G(ui,...,u,) la matrice de .4, (R)
définie par G(uy, ..., u,) = (<ui,uj))1<”<n. Soit (z1,...,x,) € E" libre et F = Vect (z1,...,z,).

Etablir Ve e E d(z, F)? — det (G(z, 21, ...,2,))
det (G(z1,...,2,))

Corrigé : Soit z € E. On décompose = a + b avec (a,b) € F x F+. D’aprés le théoréme de
Pythagore, on a (z,x) = (a,a) + (b, b) puis (z,x;) = (x;,a) pour tout i € [1; n]. Avec




(x,x)y (z,11)

T1,T T1,T
G(Iwrla"‘)xn): < 1 > < 1 1>

(Xn, ) (Tp,T1)

et notant a = Y a;r; avec les a; réels, il vient
i=1

(2

det (G(l’, T1yeo - ;xn)) =

n
et avec 'opération C; < C; — > a;C; 41, on obtient
i=1

(z,2,)
<l‘1, ZEn>

(Tn, Tn)

1BI1* + 20 {a,zi) {a,21)

n
Zai <$17$i> <371,l'1>
i=1

n
Zai <xn7$i> <$m $1>
=1

<a> $n>

<$Cl,33n>

(Tn, Tn)

det (G(z,z1,...,2,)) = ||b]|*det (G(xy, ..., 2,) = d(z, F)? det G(xy, . . .

_det (G(z, 21, . ...

; Tn))

On conclut VeeE  d(z,F)??=

det (G(x, ..

)

; Tn))



