ISM MP, Mathématiques
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Feuille d’exercices n°53

Exercice 1 (***)

Soit E euclidien de dimension n.
1. Montrer qu’il existe zy,...,x,.1 dans E tels que
V(i,j5) €[1;n+1]* avec i#] (xi,25) <0
2. Soient 1, ...,x, dans E vérifiant

V(i,j) € [1; p]* avec i#j (zi,25) <0

p p
a) dolent aq, ..., «q, réels tels que o;x; = 0. Montrer o;| x; = 0.
Soi p» Téels tel 0. M 0
i=1 i=1

(b) Soit f € Z(E,R) vérifiant f(z;) > 0 pour tout ¢ € [1; p]. Montrer que (z1,...,x,)
est libre.
(¢) En déduire p < n+ 1.
Corrigé : 1. Soit (eq,...,e,) une base orthonormée de E. Pour des raisons de symétrie et aprés
expérimentation et dessin dans le cas n = 2, on cherche les z; de la forme z,.1 = =\ e; et

=1
T =e€;+ T, pouri € [1;n].

€2
T

€3 o

FIGURE 1 — Famille obtusangle dans R?

Pour (i,7) € [1; n]? avec i # j, on trouve

(zi,25) = (i, €5) + {€i, Tnt1) + (€, Tn1) + [[Tpa||* = =24 + 12

et (i Tng1) = (€is Tng1) + [[Tn4a [ = =X + 0N

2 1 1
Ceciimpose)\E}O;— [et)\e 0;— { Ainsi, pour)\e}();— [, on a
n n n

V(i,j)e[1l;n+1]* avec i#j (z;,25) <0

Remarque : Une telle famille est dite obtusangle.



p
2.(a) On a 2 il mil* = 32 lowoy] (zi, z5)

1<i,j<p
Comme (x;, z;) < 0, pour i # j, il vient pour tout (i,7) € [1; p]?
a0 < ooy = oy (s, a5) 2 Josog| (i, )

Aprés sommation, on obtient

p p
I3 auill® = 3 auag(wiag) > 3 lesey| (zi, 25) = 1| 2 foal il
1=

1<i,j<p 1<i,j<p i=1
p
On conclut Yoz =0
i=1
. p .
2.(b) Soit ay, ..., a, réels tels que > ayx; = 0. D’aprés le résultat de la question précédente, on
i=1

p
a Y || z; = 0 puis, par linéarité de f
i=1

£ (S leule:) = 35 el fw) =0
- =y

On en déduit clairement la nullité des a; et on conclut

S'il existe f € Z(E,R) telle que f(z;) > 0 pour tout ¢ € [1; p], alors (z,...,x,) est libre.

2.(c) On suppose p > 1 sinon c¢’est trivial. On pose f(x) = — (z, z,) pour z € E. On a clairement
f(z;) > 0 pour tout @ € [1;p—1] et (x1,...,2,_1) est obtusangle. D’aprés le résultat de la
question précédente, c’est une famille libre et on conclut

Exercice 2 (**)

Soit E = Ry[X] muni de (P, Q) = /1P(t)Q(t) dt pour (P,Q) € E2

-1
1. Justifier (P, Q) — (P, Q) est un produit scalaire sur E.
2. Déterminer une base orthonormée (mg, 71, 7o) de E.

2
3. Soit P € E avec ||P|| = 1. Montrer que |P(¢)| < /> 72(t) pour tout ¢ réel.

i=0
< —3\/5.

4. En déduire que pour tout P € E avec |P|| =1, on a ||P|lo-1,1] < 5

Corrigé : 1. Classique.
1 /4 1
2. On trouve (E’ \/g)(7 55 (X2 _ §)>
2

3. Soit P € E avec ||P||=1. On a P =) (P, ) m puis, d’aprés l'inégalité de Cauchy-Schwarz
i=0

dans R? muni du produit scalaire canonique

VteR  P(t)? < <i <P,m->2> <§%m(t)2>

1=0

2



Do VteR  [P()] < 4/ Sm2(t)

1=0
2 1 3 45 1\2
4. te[—1;1 )2 =~ + —t? —<t2——>
On a vtel-Lil] amtT =545+ g 3
1 3 45 1\ 9
o) P=-+4+=X —(X——) = - (X2 -92X +1
n pose 2—1-2 +8 3 8( +1)

La fonction t — P(t) atteint sont maximum sur [0;1] en ¢ =1 et on conclut

3v2
VP € S(Oa 1) HPHOO,[—l;l] < T

Exercice 3 (**)

Soit E préhilbertien réel, n entier non nul, une famille de vecteurs (ui,...,u,) € E" et une
matrice G € .#,(R) définie par G = ((u;, u;))

1<, j<n’

1. Montrer qu'il existe A € ., ,,(R) avec p < n telle que G = ATA.
2. Justifier I'égalite VM € 4, ,(R) rg (MTM) = rg (M)
3. En déduire une relation entre rg (G) et rg (u1, ..., uy).

Corrigé : 1. Si les u; sont tous nuls, le résultat est trivial. Notons F = Vect (uy, ..., u,). L’espace
F est euclidien et admet une base orthonormée % = (ey,...,e,) avec p < n. Par suite

p p p
V(i) € [1in]®  (uiug) = (30 (wis en)er, 3- (ujsecher) = 37 (s, en)(uy, ex)
k=1 =1

k=1

Ainsi, notant A = matg(uy, ..., u,) = ((u;, ei))(ij)e[[rp]]xﬂrn]]? on conclut

2. Soit M € #,,,,(R). On clairement Ker M C Ker M"M. Soit X € ., 1(R) tel que M"MX = 0.
En multipliant & gauche par X', on obtient

XTMTMX = (MX, MX) = 0

d’ott MX = 0 et I'inclusion Ker MTM C Ker M. Le théoréme du rang appliqué M et MM donne
alors

dim R" = dim Ker M + rg (M) dim R" = dim Ker MTM +rg (M™M)

On conclut rg (M) =rg (M"M)

3. D’apres les résultats précédemment établis, on conclut

rg (G) =rg (ATA) =rg(A) =rg(uy, ..., u,)




Exercice 4 (***)

Soit E = ., 1(R) muni de sa structure euclidienne canonique, A € ., ,(R) de rang égal a p et
B € E. Montrer qu'il existe un unique Xg € .#,1(R) rendant minimum ||AX — BJ? et préciser
ce Xop.

Corrigé : On ne sait pas a priori qu’il s’agit d’'un minimum. Considérons /I//nf( : |AX — BJ*.
EMn1(R

On a {AX,X € #,;(R)} =Im A d’ou, par continuité et croissance de t — t? sur R,
2

2
Inf |[AX — B|2 = ( Inf [|AX — BH) = ( Inf ||B— CH) — d(B,Im A)?
Xey1(R) Xep1(R) Celm A

Le sev Im A est de dimension finie et par caractérisation métrique du projeté orthogonal, on a
d(B,Im A) = |IB — pm a(B)|

Comme ppy, A(B) € Im A, il existe donc Xy € 4, 1(R) tel que p, a(B) = AXj ce qui prouve que
la borne inférieure cherchée est effectivement un minimum. L’élément X, solution de I’équation
Pim A(B) = AX d’'inconnue X € .#,1(R) est unique par injectivité de X — AX puisque d’apreés
le théoréme du rang

dimR? = dimKer A +1rg(A) <= p=dimKer A +p < dimKer A =0
D’apres la caractérisation géométrique du projeté orthogonal, on a

VC eIm A (C,B—pma(B))=0

c’est-a-dire VX € M1 (R) (AX,B—AX() =0

Autrement dit, pour tout X € .#,;(R), on trouve (AX)" (B — AX,) = 0 ce qui s’interpréte, en
munissant .4, ;(R) de sa structure euclidienne canonique

T T _
VX € M (R) (X, ATB—ATAXy) , o) =0
La matrice colonne ATB — ATAXj est orthogonale & toute matrice colonne de .#,;(R) donc &
elle-méme en particulier ce qui prouve que sa norme est nulle et qu’elle est donc nulle. On en
déduit
ATAX;=A"B

Enfin, on sait que rg(A) = rg(ATA) = p et comme ATA € #,(R), cela signifie que ATA €
GL,(R) et on conclut

Xo=(ATA)'ATB et  Min ||AX - B|> = ||[A(ATA)'ATB — B|?
X€</ﬂp71(R)

Remarque : On a pp, A(B) = AXy = A(ATA)"'ATB ce qui prouve que A(ATA)"TAT est la
matrice de la projection orthogonale pr, o dans la base canonique de E.

Exercice 5 (*%*)

1
Soit E = R,,[X] avec n entier non nul muni de (P, Q) = / P(¢)Q(t)dt pour (P, Q) € E2 On note
-1
(7o, - . ., m,) la base orthonormée fournie par 1'algorithme de Gram-Schmidt sur (1,X..., X").
1. Justifier que degm, = k pour tout k € [0; n].

Désormais, on fixe j € [1; n].



2. En considérant (1, 7;), montrer que 7; a au moins une racine d’ordre impair dans | —1;1].

On note aq, ..., a, les racines d’ordre impair de 7; dans | —1;1[et S = [[(X — o).
i=1

3. En considérant (S, 7;), montrer que 7; admet exactement j racines distinctes dans | —1;11.

Corrigé : 1. On a clairement degmy = deg1 = 0. Soit k € [1; n]. L’étape itérative de lalgo-
rithme consiste a construire

k-1 P,
P =Xt - S (XF m)m; et mp =
= [Pkl
Comme Vect (1,..., Xk 1) = Vect (g, ..., mx_1), il s’ensuit que
k-1
deg P;, = deg (Xk -y <Xk,7Tj>7Tj> =k et degm, =degPy
=0
_
€Ry_1[X]
On conclut VEk e[0;n] degm, = k

1
2. 0n al=v2r, don / (1) dt = (1,7) = /3 {mo, 7;) = 0
~1
Supposons que 7; n’ait pas de racine d’ordre impair dans | —1;1[. Cela signifierait que m; est
de signe constant sur [ —1;1] d’aprés le théoréme de valeurs intermédiaires appliqué a ¢t — 7;(¢)
continue, les seules racines éventuelles étant d’ordre pair. En effet, soit a racine de j sur | —1;1]
d’ordre 2p avec p entier. On aurait 7;(t) = (t — a)?*?Q(¢) avec Q(a) # 0 et cette expression de 7;
montre qu’il s’annule en « sans changer de signe. Comme ¢ +— ;(t) est continue, la propriété de
séparation de l'intégrale donnerait alors 7;(¢) = 0 pour tout ¢ € [—1;1] d’oit 7; = Og (infinité
de racines) ce qui absurde puisque deg7; = j > 1. Par conséquent

Le polynome 7; a au moins une racine d’ordre impair dans | —1;1].

3. On a m < j puisque 7; admet moins de racines distinctes et a fortiori moins de racines
distinctes d’ordre impair que son degré. Supposons m < j. On a alors

S € R, [X] = Vect (1,...,X™) = Vect (mg, ..., Tm) et m; € Vect (mo, ..., mm)"

1
Par suite / 5 (D)S(t) dt = (7,,8) = 0

-1
Mais le polynéme 7; x S n’admet que des racines d’ordre pair sur | —1;1[ et il est donc de signe
constant sur [—1;1], ce qui, par propriété de séparation de I'intégrale, entraine que m;(¢)S(t) = 0
pour tout t € [—1;1] d’ott 7; X S = 0 ce qui est absurde puisque 7; # Op et S # O (puisque
m > 1). Par conséquent, il en résulte que

On a I’égalité m = j.

On a donc établi que 7; de degré j admet j racines d’ordre impair. Comme la somme des ordres
des racines ne peut dépasser deg m; puisque ce n’est pas le polynome nul, on en déduit que toutes
les racines sont simples et ce sont exactement toutes les racines de 7;, autrement dit

Le polynome 7; admet exactement j racines distinctes dans | —1;1].




Exercice 6 (***)

1 " 2 1
On pose Vn € N P,(z) = ST % (22 —1)"] et U, = / n2—|— P,

1
Soit E = ¢°([—1;1],R) muni du produit scalaire (f,g) = / f(t)g(t) dt pour (f,g) € E2.
-1

1. Pour n entier, déterminer le degré et coefficient dominant de P, puis calculer (P,, X¥)
avec k € [0; n].
2. En déduire que (U,), est une famille orthonormale de E et que Vect (U,,), = E.

Corrigé : 1. Soit n entier. Notons L, = (X* —1)". On a

1 2n)!
L,=X"+Q, avec degQ,<2n =— P,= mX" + Qi
2rnl L n!
)
D’ou P, = QLnX” + R, avec degR, <n
2. Soit n entier et £k € [0; n]. On a
1 I
P,, X*) = — (LY X* :_/ LY (6% dt
(P Xt) = 079 = 2 1)

En intégrant par parties, il vient
1 L 1
/ L ()t dt = (LY (k] — / LIV () (tF) dt

—1 - -1
Or, les réels 1 et —1 sont racines d’ordre n de L,, donc Lg)(i 1) =0pour j € [0;n—1]. Par
suite, le crochet s’annule et on a

(L7 XE) = (L, (X9))
Supposons k € [0; n — 1]. En itérant k + 1 intégrations par parties, on obtient
(LA XE) = (—DRFLT ), (X)) = (1)L, 0) o

Pour k£ = n, avec n intégrations par parties, il vient
1

(L, = (=141, (0)0) = (-1t |2 = 1y

-1

1
Posons 1, , = / (t+ 1)™(t — 1)™ dt pour (m,n) € N2, En intégrant par parties, on trouve
-1

n
A € N x N* Ljn = ———Li1ne
(m,n) X , 1 +1,n—1

n! |
(n+1)...(2n) "°

= (n!)ﬁ . /1 (12 di =~ P 2

X
(2n)! 1 (2n)!  2n+1
0 sike[0;n—1]
Ainsi Pour n entier (P, X*) = ¢ 2" 2 :
TN X — sik=n
"y 2n+1

6



[2n + 1 . .
3. Notons U,, = n2 P,, pour n entier. Soit (m,n) € N? avec m # n. On peut supposer

m < n sans perte de généralité. D’aprés le résultat de la question précédente, on a
Vk <n (P, XF) =0 < P, e R, 1[X]*

Comme P,, € R, 1[X], il en résulte que P, LP,, pour m < n. Puis

2n + 1 C2n+1 (

Un2: P’mPn_
U = 2, P,y = 2

@(Pn,}(“) + (Pn,Rn>) =1

Comme deg U,, = n pour tout n entier, on a R[X] = Vect (U,),. Soit f € E. D’aprés le théoréme
d’approximation de Weierstrass, pour ¢ > 0, on dispose de P € R[X] = Vect (U,), tel que
If = Plloc-1a] <& don

7P| = \/ [ P ar <oy

Ainsi La famille (U,),, est une famille orthonormale de E et Vect (U,),, = E.

Exercice 7 (***)

Soit E 'espace des fonctions continues de R dans R, paires et 2m-périodiques. On pose :

Wra) B (o) = [ f0at)

On pose co:t—1 et Vn>1 cn:t»—>\/§cos(nt)
1. Verifier que (f, g) — (f, g) est un produit scalaire sur E.
2. Soit f € E. Montrer

Ve>0 FPERX] : |f—Pocos|ufon] <<

3. Montrer que (c,), est une famille orthonormale de E et que Vect (¢,), = E.

Corrigé : 1. Soit (f,g) € E% L’intégrale définissant (f,g) existe comme intégrale de fonction
continue sur un segment. L’application (f,g) — (f,g) est symétrique, linéaire en la premiére
variable par linéarité de 'intégrale et du produit, positive par positivité de 'intégrale. Soit f € E

1 ™
telle que (f, f) = —/ f(t)? dt = 0. L’application f? est continue positive d’otl, par séparation
TJo
de l'intégrale
Vte [0;7] ft)=0
Par parité Vte [—m;0] f(t)=f(=t)=0

Enfin, par 2m-périodicité,

vieR f(t):f(Q;%):O avec n = E (%+1>J

el—mm|

L’application (f,g) — (f,g) est un produit scalaire sur E.

2. On a f o Arccos € €°([—1;1],R). D’apres le théoréme de Weierstrass, il vient
Ve >0 JP e R[X] : [[foArccos —P|-11] <€

7



Comme la fonction Arccos réalise une bijection de [—1;1] sur [0; 7], on conclut

Ve>0 FPERX] : ||f —Pocos|afom <&

3. Sans difficulté, on a P o cos € E pour tout P € R[X]. D’apreés ce qui précéde, on a

1 s
ve>0 IPeRX : |f- PocosH—\// —_ Pocos(t ]thg\/—/g2dt:e
T Jo

or {P ocos, P € R[X]} = Vect (cos"),

ce qui prouve donc Vect (cos™),, = E. Montrons linclusion Vect (cos™),, C Vect (¢;),. Soit n
entier et ¢ réel. D’aprés l'identité d’Fuler, il vient

el e ™N\N" 1 o o Lo, oo
cos(t)” = <—> = _nz (k)e"“e i(n—k)t — — (k)el(% n)t
2 2"i=0 2" 20

Comme il s’agit d’un réel, il vient en considérant la partie réelle du membre de droite et la parité
de cos

cos(t)" = kZZ:O( ) cos(|2k — n| t)

Par suite  Vect (cos™), C Vect (¢,)n, == E = Vect(cos™),, C Vect (¢,), C E

Enfin, on trouve

2
{co, o) =1 (Vn>1 (o, Cn) = / V2 cos(nt) 7\1/_ [sin(nt)]; =0
m
1 [ 1 [
Vn € N* (CnyCp) = —/ 2 cos?(nt) dt = —/ (14 cos(2nt)) dt =1
7 Jo T Jo

et pour m,n des entiers non nuls et distincts

1 [ 1
(CnyCm) = / 2 cos(nt) cos(mt) dt = —/ cos( m)t) + cos((n + m)t)] dt
TJo TJo
1 [sm + sin((n +m)t)]" _0
T n-+m 0

les dénominateurs étant bien non nuls puisque m # n et m +n > 0. On conclut donc

La famille (¢,), est une famille orthonormale de E et Vect (¢,), = E.

Exercice 8 (***)

Soit E espace préhilbertien, (eq,...,e,) une famille libre de E. On suppose
n
VeeB  [lzf? =30 (e a)’
i=1
1. Montrer que (ey,...,e,) est une base de E.
2. Montrer que les e; sont unitaires.

3. Montrer que (eq,...,e,) est une base orthonormée de E.



Corrigé : 1. Posons F = Vect (e, ...,e,). On a clairement F+ = {Og} d'ot F = E et par
conséquent

La famille (eq,...,e,) est une base de E.

2.Soit k€ [1;n]. On a

2
llexl® = llexl* + [[E]] {k}<ez’,ek> 2 et = lell <1
e[l;n]~

Supposons qu’il existe k € [1; n] tel que ||ex|| < 1. Pour z € Vect (ei)fe[[l;n]]\{k} avec r # Og
(choix possible dans un hyperplan), on a

lz]I” = (x, ex)” < llzPllexll* < [l
ce qui est absurde. Il s’ensuit que ||ex|| = 1 pour tout k € [1; n] d’ou

Vie[l;n] el =1

3.50it k€ [1;n]. On a

lell” = lleel* + 32 Aewek)” > el = > leiek)* =0
€[ 1;n]~{k} €[ 1;n]~{k}
On conclut La famille (eq,...,e,) est une base orthonormée de E.




