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Feuille d'exercices n°53

Exercice 1 (***)

Soit E euclidien de dimension n.

1. Montrer qu'il existe x1, . . . , xn+1 dans E tels que

∀(i, j) ∈ [[ 1 ; n+ 1 ]]2 avec i ̸= j ⟨xi, xj⟩ < 0

2. Soient x1, . . . , xp dans E véri�ant

∀(i, j) ∈ [[ 1 ; p ]]2 avec i ̸= j ⟨xi, xj⟩ < 0

(a) Soient α1, . . . , αp réels tels que
p∑

i=1

αixi = 0. Montrer
p∑

i=1

|αi|xi = 0.

(b) Soit f ∈ L (E,R) véri�ant f(xi) > 0 pour tout i ∈ [[ 1 ; p ]]. Montrer que (x1, . . . , xp)
est libre.

(c) En déduire p ⩽ n+ 1.

Corrigé : 1. Soit (e1, . . . , en) une base orthonormée de E. Pour des raisons de symétrie et après

expérimentation et dessin dans le cas n = 2, on cherche les xi de la forme xn+1 = −λ
n∑

i=1

ei et

xi = ei + xn+1 pour i ∈ [[ 1 ; n ]].

e1

e2

x3 x1

x2

Figure 1 � Famille obtusangle dans R2

Pour (i, j) ∈ [[ 1 ; n ]]2 avec i ̸= j, on trouve

⟨xi, xj⟩ = ⟨ei, ej⟩+ ⟨ei, xn+1⟩+ ⟨ej, xn+1⟩+ ∥xn+1∥2 = −2λ+ nλ2

et ⟨xi, xn+1⟩ = ⟨ei, xn+1⟩+ ∥xn+1∥2 = −λ+ nλ2

Ceci impose λ ∈
ò
0 ;

2

n

ï
et λ ∈

ò
0 ;

1

n

ï
. Ainsi, pour λ ∈

ò
0 ;

1

n

ï
, on a

∀(i, j) ∈ [[ 1 ; n+ 1 ]]2 avec i ̸= j ⟨xi, xj⟩ < 0

Remarque : Une telle famille est dite obtusangle.
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2.(a) On a ∥
p∑

i=1

|αi|xi∥2 =
∑

1⩽i,j⩽p

|αiαj| ⟨xi, xj⟩

Comme ⟨xi, xj⟩ < 0, pour i ̸= j, il vient pour tout (i, j) ∈ [[ 1 ; p ]]2

αiαj ⩽ |αiαj| =⇒ αiαj ⟨xi, xj⟩ ⩾ |αiαj| ⟨xi, xj⟩
Après sommation, on obtient

∥
p∑

i=1

αixi∥2 =
∑

1⩽i,j⩽p

αiαj ⟨xi, xj⟩ ⩾
∑

1⩽i,j⩽p

|αiαj| ⟨xi, xj⟩ = ∥
p∑

i=1

|αi|xi∥2

On conclut
p∑

i=1

|αi|xi = 0

2.(b) Soit α1, . . ., αp réels tels que
p∑

i=1

αixi = 0. D'après le résultat de la question précédente, on

a
p∑

i=1

|αi|xi = 0 puis, par linéarité de f

f

Å
p∑

i=1

|αi|xi

ã
=

p∑
i=1

|αi| f(xi)︸ ︷︷ ︸
>0

= 0

On en déduit clairement la nullité des αi et on conclut

S'il existe f ∈ L (E,R) telle que f(xi) > 0 pour tout i ∈ [[ 1 ; p ]], alors (x1, . . . , xp) est libre.

2.(c) On suppose p > 1 sinon c'est trivial. On pose f(x) = −⟨x, xp⟩ pour x ∈ E. On a clairement
f(xi) > 0 pour tout i ∈ [[ 1 ; p − 1 ]] et (x1, . . . , xp−1) est obtusangle. D'après le résultat de la
question précédente, c'est une famille libre et on conclut

p ⩽ n+ 1

Exercice 2 (**)

Soit E = R2[X] muni de ⟨P,Q⟩ =
∫ 1

−1

P(t)Q(t) dt pour (P,Q) ∈ E2.

1. Justi�er (P,Q) 7→ ⟨P,Q⟩ est un produit scalaire sur E.

2. Déterminer une base orthonormée (π0, π1, π2) de E.

3. Soit P ∈ E avec ∥P∥ = 1. Montrer que |P(t)| ⩽
 

2∑
i=0

π2
i (t) pour tout t réel.

4. En déduire que pour tout P ∈ E avec ∥P∥ = 1, on a ∥P∥∞,[−1 ;1 ] ⩽
3
√
2

2
.

Corrigé : 1. Classique.

2. On trouve

Ç
1√
2
,

…
3

2
X,

…
45

9

Å
X2 − 1

3

ãå
3. Soit P ∈ E avec ∥P∥ = 1. On a P =

2∑
i=0

⟨P, πi⟩πi puis, d'après l'inégalité de Cauchy-Schwarz

dans R3 muni du produit scalaire canonique

∀t ∈ R P(t)2 ⩽
Å

2∑
i=0

⟨P, πi⟩2
ãÅ

2∑
i=0

πi(t)
2

ã
2



D'où ∀t ∈ R |P(t)| ⩽
 

2∑
i=0

π2
i (t)

4. On a ∀t ∈ [−1 ; 1 ]
2∑

i=0

π(t)2 =
1

2
+

3

2
t2 +

45

8

Å
t2 − 1

3

ã2
On pose P =

1

2
+

3

2
X +

45

8

Å
X− 1

3

ã2
=

9

8
(5X2 − 2X + 1)

La fonction t 7→ P(t) atteint sont maximum sur [ 0 ; 1 ] en t = 1 et on conclut

∀P ∈ S(0, 1) ∥P∥∞,[−1 ;1 ] ⩽
3
√
2

2

Exercice 3 (**)

Soit E préhilbertien réel, n entier non nul, une famille de vecteurs (u1, . . . , un) ∈ En et une
matrice G ∈ Mn(R) dé�nie par G =

(
⟨ui, uj⟩

)
1⩽i,j⩽n

.

1. Montrer qu'il existe A ∈ Mp,n(R) avec p ⩽ n telle que G = A⊤A.

2. Justi�er l'égalité ∀M ∈ Mp,n(R) rg
(
M⊤M

)
= rg (M)

3. En déduire une relation entre rg (G) et rg (u1, . . . , un).

Corrigé : 1. Si les ui sont tous nuls, le résultat est trivial. Notons F = Vect (u1, . . . , un). L'espace
F est euclidien et admet une base orthonormée B = (e1, . . . , ep) avec p ⩽ n. Par suite

∀(i, j) ∈ [[ 1 ; n ]]2 ⟨ui, uj⟩ = ⟨
p∑

k=1

⟨ui, ek⟩ek,
p∑

ℓ=1

⟨uj, eℓ⟩eℓ⟩ =
p∑

k=1

⟨ui, ek⟩⟨uj, ek⟩

Ainsi, notant A = matB(u1, . . . , un) =
(
⟨uj, ei⟩

)
(i,j)∈[[ 1 ; p ]]×[[ 1 ;n ]]

, on conclut

G = A⊤A

2. Soit M ∈ Mp,n(R). On clairement Ker M ⊂ Ker M⊤M. Soit X ∈ Mn,1(R) tel que M⊤MX = 0.
En multipliant à gauche par X⊤, on obtient

X⊤M⊤MX = ⟨MX,MX⟩ = 0

d'où MX = 0 et l'inclusion Ker M⊤M ⊂ Ker M. Le théorème du rang appliqué M et M⊤M donne
alors

dimRn = dimKer M + rg (M) dimRn = dimKer M⊤M+ rg
(
M⊤M

)
On conclut rg (M) = rg

(
M⊤M

)
3. D'après les résultats précédemment établis, on conclut

rg (G) = rg
(
A⊤A

)
= rg (A) = rg (u1, . . . , un)
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Exercice 4 (***)

Soit E = Mn,1(R) muni de sa structure euclidienne canonique, A ∈ Mn,p(R) de rang égal à p et
B ∈ E. Montrer qu'il existe un unique X0 ∈ Mp,1(R) rendant minimum ∥AX − B∥2 et préciser
ce X0.

Corrigé : On ne sait pas a priori qu'il s'agit d'un minimum. Considérons Inf
X∈Mn,1(R)

∥AX−B∥2.

On a {AX,X ∈ Mp,1(R)} = Im A d'où, par continuité et croissance de t 7→ t2 sur R+

Inf
X∈Mp,1(R)

∥AX− B∥2 =
Å

Inf
X∈Mp,1(R)

∥AX− B∥
ã2

=

Å
Inf

C∈Im A
∥B− C∥

ã2
= d(B, Im A)2

Le sev Im A est de dimension �nie et par caractérisation métrique du projeté orthogonal, on a

d(B, Im A) = ∥B− pIm A(B)∥

Comme pIm A(B) ∈ Im A, il existe donc X0 ∈ Mp,1(R) tel que pIm A(B) = AX0 ce qui prouve que
la borne inférieure cherchée est e�ectivement un minimum. L'élément X0 solution de l'équation
pIm A(B) = AX d'inconnue X ∈ Mp,1(R) est unique par injectivité de X 7→ AX puisque d'après
le théorème du rang

dimRp = dimKer A + rg (A) ⇐⇒ p = dimKer A + p ⇐⇒ dimKer A = 0

D'après la caractérisation géométrique du projeté orthogonal, on a

∀C ∈ Im A ⟨C,B− pIm A(B)⟩ = 0

c'est-à-dire ∀X ∈ Mp,1(R) ⟨AX,B− AX0⟩ = 0

Autrement dit, pour tout X ∈ Mp,1(R), on trouve (AX)⊤(B − AX0) = 0 ce qui s'interprète, en
munissant Mp,1(R) de sa structure euclidienne canonique

∀X ∈ Mp,1(R)
〈
X,A⊤B− A⊤AX0

〉
Mp,1(R)

= 0

La matrice colonne A⊤B − A⊤AX0 est orthogonale à toute matrice colonne de Mp,1(R) donc à
elle-même en particulier ce qui prouve que sa norme est nulle et qu'elle est donc nulle. On en
déduit

A⊤AX0 = A⊤B

En�n, on sait que rg (A) = rg (A⊤A) = p et comme A⊤A ∈ Mp(R), cela signi�e que A⊤A ∈
GLp(R) et on conclut

X0 = (A⊤A)−1A⊤B et Min
X∈Mp,1(R)

∥AX− B∥2 = ∥A(A⊤A)−1A⊤B− B∥2

Remarque : On a pIm A(B) = AX0 = A(A⊤A)−1A⊤B ce qui prouve que A(A⊤A)−1A⊤ est la
matrice de la projection orthogonale pIm A dans la base canonique de E.

Exercice 5 (**)

Soit E = Rn[X] avec n entier non nul muni de ⟨P,Q⟩ =
∫ 1

−1

P(t)Q(t)dt pour (P,Q) ∈ E2. On note

(π0, . . . , πn) la base orthonormée fournie par l'algorithme de Gram-Schmidt sur (1,X . . . ,Xn).

1. Justi�er que deg πk = k pour tout k ∈ [[ 0 ; n ]].

Désormais, on �xe j ∈ [[ 1 ; n ]].
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2. En considérant ⟨1, πj⟩, montrer que πj a au moins une racine d'ordre impair dans ]−1 ; 1 [.

On note α1, . . . , αm les racines d'ordre impair de πj dans ]−1 ; 1 [ et S =
m∏
i=1

(X− αi).

3. En considérant ⟨S, πj⟩, montrer que πj admet exactement j racines distinctes dans ]−1 ; 1 [.

Corrigé : 1. On a clairement deg π0 = deg 1 = 0. Soit k ∈ [[ 1 ; n ]]. L'étape itérative de l'algo-
rithme consiste à construire

Pk = Xk −
k−1∑
j=0

⟨Xk, πj⟩πj et πk =
Pk

∥Pk∥

Comme Vect (1, . . . ,Xk−1) = Vect (π0, . . . , πk−1), il s'ensuit que

deg Pk = deg
(
Xk −

k−1∑
j=0

⟨Xk, πj⟩πj︸ ︷︷ ︸
∈Rk−1[X]

)
= k et deg πk = deg Pk

On conclut ∀k ∈ [[ 0 ; n ]] deg πk = k

2. On a 1 =
√
2π0 d'où

∫ 1

−1

πj(t) dt = ⟨1, πj⟩ =
√
2⟨π0, πj⟩ = 0

Supposons que πj n'ait pas de racine d'ordre impair dans ]−1 ; 1 [. Cela signi�erait que πj est
de signe constant sur [−1 ; 1 ] d'après le théorème de valeurs intermédiaires appliqué à t 7→ πj(t)
continue, les seules racines éventuelles étant d'ordre pair. En e�et, soit α racine de πj sur ]−1 ; 1 [
d'ordre 2p avec p entier. On aurait πj(t) = (t−α)2pQ(t) avec Q(α) ̸= 0 et cette expression de πj

montre qu'il s'annule en α sans changer de signe. Comme t 7→ πj(t) est continue, la propriété de
séparation de l'intégrale donnerait alors πj(t) = 0 pour tout t ∈ [−1 ; 1 ] d'où πj = 0E (in�nité
de racines) ce qui absurde puisque deg πj = j ⩾ 1. Par conséquent

Le polynôme πj a au moins une racine d'ordre impair dans ]−1 ; 1 [.

3. On a m ⩽ j puisque πj admet moins de racines distinctes et a fortiori moins de racines
distinctes d'ordre impair que son degré. Supposons m < j. On a alors

S ∈ Rm[X] = Vect (1, . . . ,Xm) = Vect (π0, . . . , πm) et πj ∈ Vect (π0, . . . , πm)
⊥

Par suite

∫ 1

−1

πj(t)S(t) dt = ⟨πj, S⟩ = 0

Mais le polynôme πj × S n'admet que des racines d'ordre pair sur ]−1 ; 1 [ et il est donc de signe
constant sur [−1 ; 1 ], ce qui, par propriété de séparation de l'intégrale, entraîne que πj(t)S(t) = 0
pour tout t ∈ [−1 ; 1 ] d'où πj × S = 0 ce qui est absurde puisque πj ̸= 0E et S ̸= 0E (puisque
m ⩾ 1). Par conséquent, il en résulte que

On a l'égalité m = j.

On a donc établi que πj de degré j admet j racines d'ordre impair. Comme la somme des ordres
des racines ne peut dépasser deg πj puisque ce n'est pas le polynôme nul, on en déduit que toutes
les racines sont simples et ce sont exactement toutes les racines de πj, autrement dit

Le polynôme πj admet exactement j racines distinctes dans ]−1 ; 1 [.
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Exercice 6 (***)

On pose ∀n ∈ N Pn(x) =
1

2nn!

dn

dxn
[(x2 − 1)n] et Un =

…
2n+ 1

2
Pn

Soit E = C 0([−1 ; 1 ] ,R) muni du produit scalaire ⟨f, g⟩ =
∫ 1

−1

f(t)g(t) dt pour (f, g) ∈ E2.

1. Pour n entier, déterminer le degré et coe�cient dominant de Pn puis calculer ⟨Pn,X
k⟩

avec k ∈ [[ 0 ; n ]].

2. En déduire que (Un)n est une famille orthonormale de E et que Vect (Un)n = E.

Corrigé : 1. Soit n entier. Notons Ln = (X2 − 1)n. On a

Ln = X2n +Qn avec degQn < 2n =⇒ Pn =
1

2nn!

ï
(2n)!

n!
Xn +Q

(n)
n

ò
D'où Pn =

(
2n
n

)
2n

Xn +Rn avec degRn < n

2. Soit n entier et k ∈ [[ 0 ; n ]]. On a

⟨Pn,X
k⟩ = 1

2nn!
⟨L(n)

n ,Xk⟩ = 1

2nn!

∫ 1

−1

L
(n)
n (t)tk dt

En intégrant par parties, il vient∫ 1

−1

L
(n)
n (t)tk dt =

î
L
(n−1)
n (t)tk

ó1
−1

−
∫ 1

−1

L
(n−1)
n (t)(tk)′ dt

Or, les réels 1 et −1 sont racines d'ordre n de Ln donc L
(j)
n (+− 1) = 0 pour j ∈ [[ 0 ; n − 1 ]]. Par

suite, le crochet s'annule et on a

⟨L(n)
n ,Xk⟩ = −⟨L(n−1)

n , (Xk)′⟩
Supposons k ∈ [[ 0 ; n− 1 ]]. En itérant k + 1 intégrations par parties, on obtient

⟨L(n)
n ,Xk⟩ = (−1)k+1⟨L(n−(k+1))

n , (Xk)(k+1)⟩ = (−1)k+1⟨L(n−(k+1))
n , 0⟩ = 0

Pour k = n, avec n intégrations par parties, il vient

⟨L(n)
n ,Xn⟩ = (−1)n⟨L(0)

n , (Xn)(n)⟩ = (−1)nn!

∫ 1

−1

(t2 − 1)n dt

Posons Im,n =

∫ 1

−1

(t+ 1)m(t− 1)n dt pour (m,n) ∈ N2. En intégrant par parties, on trouve

∀(m,n) ∈ N× N∗ Im,n = − n

m+ 1
Im+1,n−1

puis ∀n ∈ N In,n = (−1)n
n!

(n+ 1) . . . (2n)
I2n,0

= (−1)n
(n!)2

(2n)!
×
∫ 1

−1

(t+ 1)2n dt = (−1)n
(n!)2

(2n)!
× 22n+1

2n+ 1

Ainsi Pour n entier ⟨Pn,X
k⟩ =

0 si k ∈ [[ 0 ; n− 1 ]]
2n(
2n
n

) × 2

2n+ 1
si k = n
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3. Notons Un =

…
2n+ 1

2
Pn pour n entier. Soit (m,n) ∈ N2 avec m ̸= n. On peut supposer

m < n sans perte de généralité. D'après le résultat de la question précédente, on a

∀k < n ⟨Pn,X
k⟩ = 0 ⇐⇒ Pn ∈ Rn−1[X]

⊥

Comme Pm ∈ Rn−1[X], il en résulte que Pn⊥Pm pour m < n. Puis

∥Un∥2 =
2n+ 1

2
⟨Pn,Pn⟩ =

2n+ 1

2

Ç(
2n
n

)
2n

⟨Pn,X
n⟩+ ⟨Pn,Rn⟩

å
= 1

Comme degUn = n pour tout n entier, on a R[X] = Vect (Un)n. Soit f ∈ E. D'après le théorème
d'approximation de Weierstrass, pour ε > 0, on dispose de P ∈ R[X] = Vect (Un)n tel que
∥f − P∥∞,[−1 ;1 ] ⩽ ε d'où

∥f − P∥ =

 ∫ 1

−1

[f(t)− P(t)]2 dt ⩽ ε
√
2

Ainsi La famille (Un)n est une famille orthonormale de E et Vect (Un)n = E.

Exercice 7 (***)

Soit E l'espace des fonctions continues de R dans R, paires et 2π-périodiques. On pose :

∀(f, g) ∈ E2 ⟨f, g⟩ = 1

π

∫ π

0

f(t)g(t) dt

On pose c0 : t 7→ 1 et ∀n ⩾ 1 cn : t 7→
√
2 cos(nt)

1. Véri�er que (f, g) 7→ ⟨f, g⟩ est un produit scalaire sur E.

2. Soit f ∈ E. Montrer

∀ε > 0 ∃P ∈ R[X] : ∥f − P ◦ cos ∥∞,[ 0 ;π ] ⩽ ε

3. Montrer que (cn)n est une famille orthonormale de E et que Vect (cn)n = E.

Corrigé : 1. Soit (f, g) ∈ E2. L'intégrale dé�nissant ⟨f, g⟩ existe comme intégrale de fonction
continue sur un segment. L'application (f, g) 7→ ⟨f, g⟩ est symétrique, linéaire en la première
variable par linéarité de l'intégrale et du produit, positive par positivité de l'intégrale. Soit f ∈ E

telle que ⟨f, f⟩ = 1

π

∫ π

0

f(t)2 dt = 0. L'application f 2 est continue positive d'où, par séparation

de l'intégrale

∀t ∈ [ 0 ; π ] f(t) = 0

Par parité ∀t ∈ [−π ; 0 ] f(t) = f(−t) = 0

En�n, par 2π-périodicité,

∀t ∈ R f(t) = f(t− 2nπ︸ ︷︷ ︸
∈[−π ;π [

) = 0 avec n =

õ
1

2

Å
t

π
+ 1

ãû
L'application (f, g) 7→ ⟨f, g⟩ est un produit scalaire sur E.

2. On a f ◦ Arccos ∈ C 0([−1 ; 1 ] ,R). D'après le théorème de Weierstrass, il vient

∀ε > 0 ∃P ∈ R[X] : ∥f ◦ Arccos −P∥∞,[−1 ;1 ] ⩽ ε
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Comme la fonction Arccos réalise une bijection de [−1 ; 1 ] sur [ 0 ; π ], on conclut

∀ε > 0 ∃P ∈ R[X] : ∥f − P ◦ cos ∥∞,[ 0 ;π ] ⩽ ε

3. Sans di�culté, on a P ◦ cos ∈ E pour tout P ∈ R[X]. D'après ce qui précède, on a

∀ε > 0 ∃P ∈ R[X] : ∥f − P ◦ cos ∥ =

 
1

π

∫ π

0

[f(t)− P ◦ cos(t)]2 dt ⩽

 
1

π

∫ π

0

ε2 dt = ε

or {P ◦ cos, P ∈ R[X]} = Vect (cosn)n

ce qui prouve donc Vect (cosn)n = E. Montrons l'inclusion Vect (cosn)n ⊂ Vect (cn)n. Soit n
entier et t réel. D'après l'identité d'Euler, il vient

cos(t)n =

Å
e it + e−it

2

ãn

=
1

2n

n∑
k=0

(
n
k

)
e ikte−i(n−k)t =

1

2n

n∑
k=0

(
n
k

)
e i(2k−n)t

Comme il s'agit d'un réel, il vient en considérant la partie réelle du membre de droite et la parité
de cos

cos(t)n =
1

2n

n∑
k=0

(
n
k

)
cos(|2k − n| t)

Par suite Vect (cosn)n ⊂ Vect (cn)n =⇒ E = Vect (cosn)n ⊂ Vect (cn)n ⊂ E

En�n, on trouve

⟨c0, c0⟩ = 1 ⟨∀n ⩾ 1 ⟨c0, cn⟩ =
1

π

∫ π

0

√
2 cos(nt) dt =

√
2

nπ
[sin(nt)]π0 = 0

∀n ∈ N∗ ⟨cn, cn⟩ =
1

π

∫ π

0

2 cos2(nt) dt =
1

π

∫ π

0

(1 + cos(2nt)) dt = 1

et pour m,n des entiers non nuls et distincts

⟨cn, cm⟩ =
1

π

∫ π

0

2 cos(nt) cos(mt) dt =
1

π

∫ π

0

[cos((n−m)t) + cos((n+m)t)] dt

=
1

π

ï
sin((n−m)t)

n−m
+

sin((n+m)t)

n+m

òπ
0

= 0

les dénominateurs étant bien non nuls puisque m ̸= n et m+ n > 0. On conclut donc

La famille (cn)n est une famille orthonormale de E et Vect (cn)n = E.

Exercice 8 (***)

Soit E espace préhilbertien, (e1, . . . , en) une famille libre de E. On suppose

∀x ∈ E ∥x∥2 =
n∑

i=1

⟨ei, x⟩2

1. Montrer que (e1, . . . , en) est une base de E.

2. Montrer que les ei sont unitaires.

3. Montrer que (e1, . . . , en) est une base orthonormée de E.
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Corrigé : 1. Posons F = Vect (e1, . . . , en). On a clairement F⊥ = {0E} d'où F = E et par
conséquent

La famille (e1, . . . , en) est une base de E.

2. Soit k ∈ [[ 1 ; n ]]. On a

∥ek∥2 = ∥ek∥4 +
∑

i∈[[ 1 ;n ]]∖{k}
⟨ei, ek⟩2 ⩾ ∥ek∥4 =⇒ ∥ek∥ ⩽ 1

Supposons qu'il existe k ∈ [[ 1 ; n ]] tel que ∥ek∥ < 1. Pour x ∈ Vect (ei)
⊥
i∈[[ 1 ;n ]]∖{k} avec x ̸= 0E

(choix possible dans un hyperplan), on a

∥x∥2 = ⟨x, ek⟩2 ⩽ ∥x∥2∥ek∥2 < ∥x∥2

ce qui est absurde. Il s'ensuit que ∥ek∥ ⩾ 1 pour tout k ∈ [[ 1 ; n ]] d'où

∀i ∈ [[ 1 ; n ]] ∥ei∥ = 1

3. Soit k ∈ [[ 1 ; n ]]. On a

∥ek∥2 = ∥ek∥4 +
∑

i∈[[ 1 ;n ]]∖{k}
⟨ei, ek⟩2 ⩾ ∥ek∥4 =⇒

∑
i∈[[ 1 ;n ]]∖{k}

⟨ei, ek⟩2 = 0

On conclut La famille (e1, . . . , en) est une base orthonormée de E.
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