ISM MP, Informatique
Année 2025/2026

Corrigé du TP Informatique 12

Exercice 1

La fonction principale est :

def nim_alea(N):
tas,fini,J_i=N,N==1,1
while not fini:
[...]
else:
la machine joue (mal)
retrait=rd.randint (1,min(3,tas-1)+1)
print ("Retire= ", ,retrait)
tas-=retrait
fini=(tas==1)
print ("J_"+str(J_i)+" gagne")

On constate que la machine réalise un retrait d’'un nombre aléatoire de batonnets suivant une loi
uniforme dans I’ensemble des retraits possibles avec I'instruction rd.randint (1,min(3,tas-1)+1).
La machine n’a donc pas de stratégie et n’importe quel joueur peut la battre aisément.

Exercice 2

On saisit :

def nim_expert (N):
tas,fini,J_i=N,N==1,1
while not fini:
J_i=adversaire(J_i)
print ("J_"+str(J_i)+"=",tas)
if J_i==0:
valide=False
while not valide:
retrait=int (input ("Retire="))
valide=coup_valide(tas,retrait)
if not valide:
print ("Coup invalide")

else:
r=task4
if r==1:
retrait=1
else:
retrait=(r-1)%4
print ("Retire= ",retrait)

tas-=retrait
fini=(tas==1)
print("J_"+str(J_i)+" gagne")

Exercice 3

La fonction principale est :

def morpion_alea():
"""Partie de morpion contre la machine
J_0 : joueur
J_1 : machine"""
tab=[[Nonel*3 for k in range(3)]
libres=[(i,j) for i in range(3) for j in range(3)]
nb,fini,J_i=0,False,1
J_0 commence (bascule de joueur en début de boucle)
while not fini:
J_i=adversaire(J_i)
print (’Coup=’,nb)

nb+=1

aff (tab)

if J_i==0:
[...]

else:

ind=rd.randint (len(libres))
i,j=libres[ind]
tab[i] [j]=J_i
libres.remove((i,j))
[...]
if align_o or align_x:
print("J_"+str(J_i)+" gagne")
else:
print ("Match nul")
aff (tab)

La variable libres recense, au cours de la partie, les positions disponibles pour les prochains
coups. La machine, quand c’est son tour, tire aléatoirement suivant une loi uniforme une position
parmi l’ensemble des positions disponibles avec l'instruction rd.randint(len(libres)). La
machine n’a donc pas de stratégie et il est aisé de la battre.

Exercice 4

On recherche un danger potentiel (s’il y en a plusieurs, on ne peut en éviter qu’un). On saisit :

def rech_danger(tab,libres,J_i):
adverse=adversaire(J_i)
for (i,j) in libres:
tab[i] [j]1=adverse
test_alignement=alignement (tab,adverse)
tab[i] [jl=None
if test_alignement:
return (i,j)

puis

def morpion_danger():
tab=[[None]*3 for k in range(3)]
libres=[(i,j) for i in range(3) for j in range(3)]
nb,fini,J_i=0,False,1
while not fini:
J_i=adversaire(J_i)
print (’Coup="’,nb)
nb+=1
aff (tab)
if J_i==0:
valide=False
while not valide:
saisie=input("J_"+str(J_i)+" : x,y =")
coords=saisie.split(",")
i, j=int(coords[0]) ,int (coords[1])
valide=coup_valide(tab,i,j)
if not valide:
print ("Coup invalide")
else:
danger=rech_danger (tab,libres,J_i)
if danger!=None:
i, j=danger
else:
ind=rd.randint (len(libres))
i,j=libres[ind]
tab[i] [j1=J_i
libres.remove((i,j))
align_o=alignement (tab,0)
align_x=alignement (tab,1)
fini=align_o or align_x or nb==9
print ()
if align_o or align_x:
print("J_"+str(J_i)+" gagne")
else:
print ("Match nul")
aff (tab)

Exercice 5

On cherche la possibilité d’une victoire. On saisit :

def rech_victoire(tab,libres,J_i):
for (i,j) in libres:
tab[i] [j1=J_i
test_alignement=alignement (tab,J_i)
tab[i] [j]=None
if test_alignement:
return (i,j)

puis

def morpion_victoire():
tab=[[None]*3 for k in range(3)]
libres=[(i,j) for i in range(3) for j in range(3)]
nb,fini,J_i=0,False,1
while not fini:
J_i=adversaire(J_i)
print (’Coup="’,nb)
nb+=1
aff (tab)
if J_i==0:
valide=False
while not valide:
saisie=input ("J_"+str(J_i)+" : x,y =")
coords=saisie.split(",")
i, j=int(coords[0]) ,int (coords[1])
valide=coup_valide(tab,1i,j)
if not valide:
print ("Coup invalide")
else:
victoire=rech_victoire(tab,libres,J_1i)
1f victoire!=None:
i,j=victoire
else:
danger=rech_danger(tab,libres,J_i)
if danger!=None:
i, j=danger
else:
ind=rd.randint (len(libres))
i,j=libres[ind]
tab[i] [j1=J_i
libres.remove((i,j))
align_o=alignement (tab,0)
align_x=alignement (tab,1)
fini=align o or align_x or nb==9
print ()
if align_o or align_x:
print ("J_"+str(J_i)+" gagne")
else:
print("Match nul")
aff (tab)

