
Formulaire (non exhaustif)

1 Inégalités triangulaires et caractère lipschitzien

Pour (x, y) ∈ K2, on a

|x+ y| ⩽ |x|+ |y| |x− y| ⩽ |x|+ |y| ||x| − |y|| ⩽ |x− y|

Pour z ∈ C, on a |Re (z)| ⩽ |z| |Im (z)| ⩽ |z|

d'où pour (u, v) ∈ C2

|Re (u)− Re (v)| = |Re (u− v)| ⩽ |u− v| |Im (u)− Im (v)| = |Im (u− v)| ⩽ |u− v|

2 Nombres complexes

Soit θ réel et n entier. On a

e iθ = cos(θ) + i sin(θ) cos(θ) =
e iθ + e−iθ

2
sin(θ) =

e iθ − e−iθ

2i(
e iθ
)n

= (cos(θ) + i sin(θ))n = cos(nθ) + i sin(nθ) = e inθ

Soit n entier non nul. On a Un =
¶
e

2ikπ
n , k ∈ [[ 0 ; n− 1 ]]

©
On a

∏
ω∈Un

(X− ω) = Xn − 1
∑

ω∈Un

ω = δn,1 et
∏

ω∈Un

ω = (−1)n−1

3 Croissances comparées

Théorème 1. Soient α, β > 0. On a

eαx

xβ
−−−−→
x→+∞

+∞ xβe−αx −−−−→
x→+∞

0 xα ln(x)β −−→
x→0

0
ln(x)β

xα
−−−−→
x→+∞

0

4 Trigonométrie

Soient t, a, b réels.

1. cos(t) =
e it + e−it

2
;

2. sin(t) =
e it − e−it

2i
;

3. cos(t)2 + sin(t)2 = 1 ;

4. cos(a+b) = cos(a) cos(b)− sin(a) sin(b) ;

5. cos(a−b) = cos(a) cos(b)+sin(a) sin(b) ;

6. sin(a+ b) = sin(a) cos(b)+ sin(b) cos(a) ;

7. sin(a− b) = sin(a) cos(b)− sin(b) cos(a) ;

8. tan(a+ b) =
tan(a) + tan(b)

1− tan(a) tan(b)
;

9. tan(a− b) =
tan(a)− tan(b)

1 + tan(a) tan(b)
;

10. cos(t)2 =
1 + cos(2t)

2
;

11. sin(t)2 =
1− cos(2t)

2
;

12. cos(p)+cos(q) = 2 cos
(p+ q

2

)
cos
(p− q

2

)
;

13. cos(p)−cos(q) = −2 sin
(p+ q

2

)
sin
(p− q

2

)
;

14. sin(p)+sin(q) = 2 sin
(p+ q

2

)
cos
(p− q

2

)
;

15. sin(p)−sin(q) = 2 sin
(p− q

2

)
cos
(p+ q

2

)
;

16. cos(a) cos(b) =
1

2
[cos(a+ b) + cos(a− b)] ;

17. sin(a) sin(b) =
1

2
[cos(a− b)− cos(a+ b)] ;

18. sin(a) cos(b) =
1

2
[sin(a+ b) + sin(a− b)].
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5 Trigonométrie hyperbolique

Soit t réel.

1. ch (t) =
e t + e−t

2
;

2. sh (t) =
e t − e−t

2
;

3. ch (t)2 − sh (t)2 = 1 ;

4. etc.

6 Calcul de sommes

Soient n entier, q complexe, (ui,j)1⩽i,j⩽n et (xi)1⩽i⩽n des familles de complexes.

n∑
k=1

k =
n(n+ 1)

2

n∑
k=1

k2 =
n(n+ 1)(2n+ 1)

6

n∑
k=1

k3 =

Å
n(n+ 1)

2

ã2
Si q ̸= 1,

n∑
k=0

qk =
1− qn+1

1− q
,

n∑
k=p

qk = qp ×
n−p∑
k=0

qk =
qp − qn+1

1− q

∑
1⩽i⩽j⩽n

ui,j =
n∑

j=1

j∑
i=1

ui,j =
n∑

i=1

n∑
j=i

ui,j

∑
1⩽i<j⩽n

ui,j =
n∑

j=2

j−1∑
i=1

ui,j =
n−1∑
i=1

n∑
j=i+1

ui,j

Si ui,j = uj,i 2
∑

1⩽i⩽j⩽n

ui,j =
∑

1⩽i,j⩽n

ui,j +
n∑

i=1

ui,iÅ
n∑

i=1

xi

ã2
=

Å
n∑

i=1

xi

ãÇ
n∑

j=1

xj

å
=

∑
1⩽i,j⩽n

xixj =
n∑

i=1

x2
i + 2

∑
1⩽i<j⩽n

xixj

7 Formule du binôme

∀(a, b, n) ∈ K2 × N (a+ b)n =
n∑

k=0

(
n
k

)
akbn−k

8 Identité de Bernoulli

∀(x, y, n) ∈ K2 × N∗ xn − yn = (x− y)
n−1∑
k=0

xn−1−kyk

9 Suites arithmético-géométriques

Soit (un)n suite véri�ant un+1 = aun+ b pour n entier avec (a, b) ∈ K2 et a ̸= 1. On pose α point

�xe de l'équation de récurrence, i.e. α = aα + b. On a®
un+1 = aun + b

α = aα + b
=⇒ un+1 − α = a(un − α)

Le suite (un − α)n est donc géométrique de raison a.
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10 Suites récurrentes linéaires d'ordre 2

Théorème 2. Soit (un)n une suite récurrente linéaire d'ordre deux véri�ant

∀n ∈ N un+2 = aun+1 + bun (H)

avec (a, b) ∈ K×K∗. L'équation caractéristique (R) est

r2 − ar − b = 0

• Si (R) admet deux racines α, β distinctes, alors

(un)n ∈ SH ⇐⇒ ∃(λ, µ) ∈ K2 | ∀n ∈ N un = λαn + µβn

• Si (R) admet une racine double α, alors

(un)n ∈ SH ⇐⇒ ∃(λ, µ) ∈ K2 | ∀n ∈ N un = (λ+ µn)αn

• Si (a, b) ∈ R× R∗ et (R) admet deux racines complexes conjuguées ρe iθ et ρe−iθ, alors

(un)n ∈ SH ⇐⇒ ∃(λ, µ) ∈ R2 | ∀n ∈ N un = ρn(λ cos(nθ) + µ sin(nθ))

11 Théorème des accroissements �nis

Théorème 3. Soit f ∈ C 0([ a ; b ] ,R) et f dérivable sur ] a ; b [. Alors

∃c ∈ ] a ; b [ | f ′(c) =
f(b)− f(a)

b− a

Corollaire 1 (IAF). Soit f ∈ C 0([ a ; b ] ,R), f dérivable sur ] a ; b [ avec Sup
t∈] a ;b [

|f ′(t)| ⩽ M.

Alors |f(b)− f(a)| ⩽ M |b− a|

On propose une autre version de l'inégalité des accroissements �nis, plus utilisée en pratique :

Corollaire 2 (IAF). Soit f dérivable sur I avec f ′ bornée sur I. Pour (a, b) ∈ I2, on a

|f(b)− f(a)| ⩽ ∥f ′∥∞ |b− a|

Application : Les fonctions sin et cos sont 1-lipschitziennes.

12 Théorème de Taylor-Young

Théorème 4. Soit f ∈ C n(I,R) avec a ∈ I intervalle de R. On a

f(x) =
n∑

k=0

f (k)(a)

k!
(x− a)k + o((x− a)n)

13 Formule de Taylor avec reste intégral

Théorème 5. Soit f ∈ C n+1(I,R). Pour (a, b) ∈ I2, on a

f(b) =
n∑

k=0

f (k)(a)

k!
(b− a)k +

1

n!

∫ b

a

(b− t)nf (n+1)(t) dt
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14 Inégalité de Taylor-Lagrange

Théorème 6. Soit f ∈ C n+1(I,R) et f (n+1) bornée sur I. Pour (a, b) ∈ I2, on a∣∣∣∣∣f(b)− n∑
k=0

f (k)(a)

k!
(b− a)k

∣∣∣∣∣ ⩽ ∥f (n+1)∥∞
|b− a|n+1

(n+ 1)!

15 Sommes de Riemann

Théorème 7. Soit f ∈ Cpm([ a ; b ] ,R), alors

lim
n→+∞

b− a

n

n−1∑
k=0

f

Å
a+ k

b− a

n

ã
= lim

n→+∞

b− a

n

n∑
k=1

f

Å
a+ k

b− a

n

ã
=

∫ b

a

f(t) dt

16 Algèbre linéaire

On note K(I) l'ensemble des familles presque nulles de scalaires de K.

Soit (xi)i∈I famille de vecteurs de E un K-ev. On a

Vect (xi)i∈I =

ß∑
i∈I

αixi, (αi)i∈I ∈ K(I)

™
En particulier, pour x ∈ E, on a

Vect (x) = {αx, α ∈ K}
et pour (x1, . . . , xn) ∈ En, on a

Vect (x1, . . . , xn) =

ß
n∑

i=1

αixi, (αi)1⩽i⩽n ∈ Kn

™
Soit E un K-ev. Une famille libre et génératrice est une base de E.

17 Projections, projecteurs

Soit E un K-ev et F,G des sev supplémentaires de E. On appelle projection sur F parallèlement

à G l'application notée pF,G dé�nie par

pF,G : E → E, x = a+ b 7→ a avec (a, b) ∈ F×G

Dé�nition 1. Soit E un K-ev et p ∈ L (E). On dit que p est un projecteur si p2 = p.

Théorème 8. Soit E un K-ev. Une projection de E est un projecteur. Réciproquement, un
projecteur p est la projection sur Im p parallèlement à Ker p.

18 Involutions linéaires, symétries

Soit F et G deux sev supplémentaires de E. On appelle symétrie par rapport à F parallèment à

G l'application notée sF,G dé�nie par

sF,G : E → E, x = u+ v 7→ u− v avec (u, v) ∈ F×G

Dé�nition 2. Soit E un K-ev et s ∈ L (E). On dit que s est une involution linéaire si s2 = id .

Théorème 9. Soit E un K-ev. Une symétrie de E est une involution linéaire. Réciproquement,
une involution linéaire est la symétrie par rapport à Ker (s− id ) parallèlement à Ker (s+ id ).
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19 Forme linéaire, hyperplan

Soit E un K-ev. Un élément de L (E,K) est une forme linéaire.

Dé�nition 3. Un hyperplan est le noyau d'une forme linéaire non nulle.

Théorème 10. Soit H sev de E un K-ev. On a

H hyperplan de E ⇐⇒ ∃x ∈ E∖ H | E = Vect (x)⊕ H

20 Algèbre linéaire en dimension �nie

Théorème 11. Soit E un K-ev avec dimE = n. Une famille de vecteurs de E est une base si
et seulement si elle libre et constituée de n vecteurs ou si et seulement si elle est génératrice et
constituée de n vecteurs.

Théorème 12 (Formule de Grassmann). Soient F,G sev de dimensions �nies de E un K-ev.
On a

dim(F + G) = dimF + dimG− dimF ∩G

Proposition 1. Soit E un K-ev de dimension �nie, F et G deux sev de E. On a l'équivalence®
F ⊂ G

dimF = dimG
⇐⇒ F = G

Théorème 13. Soit E un K-ev de dimension �nie et F, G des sev de E. On a

E = F⊕G ⇐⇒
®
dimF + dimG = dimE

F ∩G = {0E}
⇐⇒

®
dimF + dimG = dimE

F + G = E

⇐⇒ ∃BF,BG bases respectives de F,G | BF ∪ BG base de E

Théorème 14 (Théorème du rang). Soit f ∈ L (E,F) avec E un K-ev de dimension �nie et
F un K-ev.

On a dimE = dimKer f + rg (f)

Théorème 15. Soit f ∈ L (E,F) avec E et F des K-ev de même dimension �nie. On a

f bijective ⇐⇒ f injective ⇐⇒ f surjective

En particulier, si E = F, on a

f ∈ GL(E) ⇐⇒ Ker f = {0E} ⇐⇒ rg (f) = dimE ⇐⇒ det(f) ̸= 0

Théorème 16. Soit f ∈ L (E,F) et g ∈ L (F,G) avec E et F des K-ev de dimensions �nies.
On a

rg (g ◦ f) ⩽ min(rg (f), rg (g))
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21 Produit matriciel

Soient A ∈ Mn,p(K) et B ∈ Mp,q(K). On dé�nit AB ∈ Mn,q(K) par AB = (ci,j) où ci,j =
p∑

k=1

ai,kbk,j pour tout (i, j) ∈ [[ 1 ; n ]]× [[ 1 ; q ]].

Proposition 2. Soit (Ei,j)(i,j)∈[[ 1 ;n ]]2 la base canonique de Mn(K). On a la relation

∀(i, j, k, ℓ) ∈ [[ 1 ; n ]]4 Ei,j × Ek,ℓ = δj,k Ei,ℓ

Proposition 3. Pour tout (A,B) ∈ Mn,p(K)× Mp,q(K), on a (AB)⊤ = B⊤A⊤.

22 Trace

Soit A = (ai,j)1⩽i,j⩽n ∈ Mn(K). La trace de la matrice A notée Tr (A) est dé�nie par

Tr (A) =
n∑

i=1

ai,i

Théorème 17. Soit (A,B) ∈ Mn,p(K)× Mp,n(K). On a Tr (AB) = Tr (BA).

23 Déterminants

Soit A =
(
ai,j
)
1⩽i,j⩽n

∈ Mn(K). On a

det(A) =
∑
σ∈Sn

ε(σ)
n∏

i=1

ai,σ(i)

On appelle comatrice de A notée Com(A) la matrice des cofacteurs de A, i.e.

Com(A) =
(
(−1)i+j det(Ai,j)

)
1⩽i,j⩽n

avec Ai,j la matrice extraite de A par suppression de sa i-ème ligne et j-ème colonne.

Proposition 4. Soit (A,B) ∈ Mn(K)2 et λ ∈ K. On a :

1. det(A⊤) = det(A)

2. det(λA) = λn det(A)

3. A ∈ GLn(K) ⇐⇒ det(A) ̸= 0

4. det(AB) = det(A) det(B)

5. ACom(A)⊤ = Com(A)⊤A = det(A)In

Théorème 18. Soit (xi)1⩽i⩽n ∈ Kn et V =
(
xj−1
i

)
1⩽i,j⩽n

∈ Mn(K). Le déterminant det(V) dit

de Vandermonde vaut

det(V) =
∏

1⩽i<j⩽n

(xj − xi)
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24 Matrices et rang

Théorème 19. Soit A ∈ Mn,p(K). On a rg (A) ⩽ min(n, p).

Théorème 20. Soit A ∈ Mn(K) avec rg (A) = r. Il existe P,Q dans GLn(K) telles que A =
PJrQ avec Jr = diag(Ir, 0).

25 Équations di�érentielles linéaires

Théorème 21. Soit a ∈ C 0(I,K). On a

x′ = a(t)x ⇐⇒ x ∈ Vect (φ) avec φ : t 7→ eA(t) et A(t) =

∫ t

a(s) ds

Théorème 22. Soient a, b dans C 0(I,K) et (t0, x0) ∈ I × K. Il existe une unique solution au
problème de Cauchy ®

x′ = a(t)x+ b(t) (L)

x(t0) = x0 (CI)

et celle-ci est donnée par

∀t ∈ I x(t) = eA(t)

Å
x0 +

∫ t

t0

e−A(s)b(s) ds

ã
avec A(t) =

∫ t

t0

a(s) ds

Théorème 23. Soit (a, b) ∈ K2 et l'équation di�érentielle linéaire homogène d'ordre 2

x′′ + ax′ + bx = 0 (H)

Soit x ∈ SH, solution de l'équation homogène (H), on a :

1. Si l'équation (R) admet deux racines distinctes α et β,

x ∈ SH ⇐⇒ ∃(λ, µ) ∈ K2 | ∀t ∈ R x(t) = λeαt + µeβt

2. Si l'équation (R) admet une racine double α,

x ∈ SH ⇐⇒ ∃(λ, µ) ∈ K2 | ∀t ∈ R x(t) = (λt+ µ)eαt

3. Si (a, b) ∈ R2 et l'équation (R) admet deux racines complexes conjuguées r +− is (s ̸= 0)

x ∈ SH ⇐⇒ ∃(λ, µ) ∈ R2 | ∀t ∈ R x(t) = e rt [λ cos(st) + µ sin(st)]

Proposition 5. Soit (a, b) ∈ K2, P ∈ K[X] et m ∈ K. L'équation

x′′ + ax′ + bx = P(t)emt (L)

admet une solution particulière de la forme

1. x0(t) = Q(t)emt si m pas racine de (R)

2. x0(t) = tQ(t)emt si m racine simple de (R)

3. x0(t) = t2Q(t)emt si m racine double de (R)

avec Q ∈ K[X] et degQ = deg P.
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26 Polynômes

Dé�nition 4. Un polynôme P ∈ K[X] est dit scindé s'il peut s'écrire P = λ
r∏

i=1

(X − αi) avec

λ ∈ K et les αi des scalaires (non nécessairement distincts).

Théorème 24. Soit (A,B) ∈ K[X]2 avec B ̸= 0K[X]. On a :

∃!(Q,R) ∈ K[X]2 | A = BQ+ R et degR < deg B

Le polynôme Q est appelé quotient et R le reste de la division euclidienne de A par B.

Proposition 6. Soit P ∈ K[X] et a ∈ K. On a

a racine de P d'ordre m ⇐⇒ ∃Q ∈ K[X] | P = (X− a)mQ et Q(a) ̸= 0

⇐⇒
®
P(a) = P′(a) = . . . = P(m−1)(a) = 0

P(m)(a) ̸= 0

Proposition 7. Soit P ∈ K[X] et a ∈ K. On a

a racine de P d'ordre au moins m ⇐⇒ ∃Q ∈ K[X] | P = (X− a)mQ
⇐⇒ P(a) = P′(a) = . . . = P(m−1)(a) = 0

Théorème 25 (Formules de Taylor). Soit P ∈ K[X]. On a

∀a ∈ K P =
+∞∑
k=0

P(k)(a)

k!
(X− a)k

.

Théorème 26 (Polynômes de Lagrange). Soient x0, . . . , xn réels distincts. Il existe une
unique famille de polynômes (L0, . . . ,Ln) de Rn[X] telle que Li(xj) = δi,j pour tout (i, j) ∈
[[ 0 ; n ]]2 et on a

∀i ∈ [[ 0 ; n ]] Li =
∏

k∈[[ 0 ;n ]]∖{i}

Å
X− xk

xi − xk

ã
27 Probabilités

Le cadre considéré est celui vu en MPSI avec Ω un univers �ni.

Théorème 27 (Formules des probabilités totales). Soit (Ω,P) un espace probabilisé �ni et
(Ai)i∈[[ 1 ;n ]] un système complet d'événements tels que P(Ai) > 0 pour tout i ∈ [[ 1 ; n ]]. On a

∀B ∈ P(Ω) P(B) =
n∑

i=1

P(B|Ai)P(Ai)

Soit (Ω,P) un espace probabilisé �ni et X une variable aléatoire réelle.

• On dit que X suit une loi uniforme sur [[ 1 ; p ]] si X(Ω) = [[ 1 ; p ]] et

∀k ∈ [[ 1 ; p ]] P(X = k) =
1

p

• On dit que X suit une loi de Bernoulli de paramètre p ∈ [ 0 ; 1 ] si X(Ω) = {0, 1} et
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P(X = 1) = p, P(X = 0) = 1− p

• On dit que X suit une loi binomiale de paramètre (n, p) avec n entier et p ∈ [ 0 ; 1 ] si X(Ω) =
[[ 0 ; n ]] et

∀k ∈ [[ 0 ; n ]] P(X = k) =
(
n
k

)
pk(1− p)n−k

Proposition 8. Soit (Ω,P) un espace probabilisé �ni. Les variables aléatoires X1, . . . ,Xn sont
indépendantes si et seulement si

∀(Ai)i∈[[ 1 ;n ]] ∈
n∏

i=1

P(Xi(Ω)) P

(
n⋂

i=1

{Xi ∈ Ai}

)
=

n∏
i=1

P(Xi ∈ Ai)

autrement dit si et seulement si les événements {Xi ∈ Ai}i∈[[ 1 ;n ]] sont indépendants.

Théorème 28. Soit (Ω,P) un espace probabilisé �ni. Si X1, . . . ,Xn sont des variables aléatoires

indépendantes de même loi B(p) avec p ∈ [ 0 ; 1 ], alors
n∑

i=1

Xi suit une loi binomiale B(n, p).

Soit (Ω,P) un espace probabilisé �ni et X une variable aléatoire réelle. On dé�nit l'espérance de

X notée E(X) par

E(X) =
∑

x∈X(Ω)

xP(X = x)

On dé�nit la variance de X notée V(X) par
V(X) = E [(X− E(X))2]

Théorème 29 (Théorème de transfert). Soit (Ω,P) un espace probabilisé �ni, X une variable
aléatoire réelle et f : I → R avec X(Ω) ⊂ I. On a

E(f(X)) =
∑

x∈X(Ω)

f(x)P(X = x)

Proposition 9 (Relation de König-Huygens). Soit (Ω,P) un espace probabilisé �ni et X
une variable aléatoire réelle. On a

V(X) = E(X2)− E(X)2

Proposition 10. Soit (Ω,P) un espace probabilisé �ni et X ∼ B(p) avec p ∈ [ 0 ; 1 ]. On a

E(X) = p V(X) = p(1− p)

Proposition 11. Soit (Ω,P) un espace probabilisé �ni et X ∼ B(n, p) avec (n, p) ∈ N× [ 0 ; 1 ].

On a E(X) = np V(X) = np(1− p)

Théorème 30 (Inégalité de Markov). Soit (Ω,P) un espace probabilisé �ni et X une variable
aléatoire réelle positive. On a

∀ε > 0 P(X ⩾ ε) ⩽
E(X)
ε

Théorème 31 (Inégalité de Bienaymé-Tchebychev). Soit (Ω,P) un espace probabilisé �ni
et X une variable aléatoire réelle. On a

∀ε > 0 P(|X− E(X)| ⩾ ε) ⩽
V(X)
ε2

9



Théorème 32 (Loi faible des grands nombres). Soit (Ω,P) un espace probabilisé �ni et X1,

. . ., Xn des variables aléatoires indépendantes de même loi. Notant m = E(X1) et Sn =
n∑

i=1

Xi,

on a

∀ε > 0 P
Å∣∣∣∣Sn

n
−m

∣∣∣∣ ⩾ ε

ã
−−−→
n→∞

0
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