Formulaire (non exhaustif)

1 Inégalités triangulaires et caracteére lipschitzien
Pour (z,y) € K% on a
[z tyl < lel+lyl e —yl<fal+ 1yl ] =yl <z -yl
Pour z € C, on a |Re (2)] < |7] |Im (2)| < |2]
d’ott pour (u,v) € C?
|Re (u) — Re (v)| = |Re (u —v)| < |u—v| Im (u) — Im (v)| = [Im (v — v)| < |u — v|

2 Nombres complexes
Soit @ réel et n entier. On a

i0 —if i0 —if
e’ +e e —e

L in@)= ——
5 sin(0) 51

(1) = (cos(8) +isin(h))" = cos(nb) + isin(nf) = e’

e'? = cos(f) + isin(f) cos() =

Soit n entier non nul. On a U, = {emvlfw,ke [0; n—l]]}

On a [[(X-0)=X"=1  Sw=du et [ w= (1)

wel, wely, welUy,

3 Croissances comparées

Théoréme 1. Soient a, > 0. On a

e” 5 —an N 5 In(z)”
—— +00 Pe ™ —— 0 z*In(z)”? — 0
[Eﬁ T—+00 T—+00 z—0 xre T—+00

4 Trigonométrie

Soient t, a, b réels.

1. cos(t) = #; 11. sin(t)? = FCT()S(%);
2. sin(t) = %S 12. cos(p)+cos(q) = 2 cos (p ; q) Ccos <]%) ;
3. cos(t)” + Sil(t)2 =1; L 13 cos(p)—cos(q) = ~2sin (p;q) sin (p 3 q) :
4. cos(a+b) = cos(a) cos(b) —sin(a) sin(b) ; ‘ . e P
5. cos(a—b) = cos(a) cos(b) +sin(a) sin(b) ; 14. sin(p)+sin(q) = 2sin ( 5 ) oS <T) :
6. sin(a+b) = sin(a) cos(b) +sin(b) cos(a) ; . . L /p—q p+ay
7. sin(a —b) = sin(a) cos(b) — sin(b) cos(a) ; 15. sin(p)—sin(g) = 2sin ( 2 ) o8 <T> ’
8. tan(a + b) = ;inEZI)l(—;)t?;é?z) : 16. cos(a) cos(b) = % [cos(a + b) + cos(a — b)];

— tan sin(a) sin zlcosa— — cos(a ;

10. cos(t)? = 1+ C;)S(Zt) ; 18. sin(a) cos(b) = 5 [sin(a + b) + sin(a — b)].



5 Trigonométrie hyperbolique

Soit t réel.
t
1 och(n) =S 3. ch (£)2 —sh ()% = 1;
t 2 —t 4. etc.
el —e

6 Calcul de sommes

Soient n entier, ¢ complexe, (u; ;)1<ij<n €t (%;)1<i<n des familles de complexes.

n n n 2
Zk:n(n—kl) Z]{:2:n(n—kl)(?n—i—l) Zk3:<n(n+1))
f=1 2 f=1 6 k=1 2
. n 1— gt ¢ — q"+!
Sigq#1, Y=t v —q”XZq —
=0 l—q f=p l—gq
n n j—1 n—1 n
> Uig = ZZuw Zzum DL Ui =) Zum =D > Ui
1<i<j<n Jj=li= i=1j=1 1<i<j<n Jj=2i= i=1j5=i+1
Si Ui = Ujq 2 Z Us5 = Z U, j + Zuzz

1<i<g<n 1<i,5<n

(i_ilxi)Qz (éx,) (jéxj) = Y wmz;= Zx +2 > oz

1<4,5<n 1<i<y<n
7 Formule du binéme

V(abn) €KIx N (atb) =3 (7)akbt

8 Identité de Bernoulli

V(z,y,n) €K x N " —y" = (z—y) Ya" 1My

9 Suites arithmético-géométriques

Soit (uy,), suite vérifiant u,, = au, +b pour n entier avec (a,b) € K2 et a # 1. On pose a point
fixe de 'équation de récurrence, i.e. « = aa+ b. On a

Uy, =au, +b
+ = Uy —a=a(u, —a)
« =aa+b

Le suite (u, — ), est donc géométrique de raison a.



10 Suites récurrentes linéaires d’ordre 2

Théoréme 2. Soit (u,), une suite récurrente linéaire d’ordre deux vérifiant
Vn e N Upio = QUpyq + DUy, (H)
avec (a,b) € K x K*. L’équation caractéristique (R) est
r?—ar—b=0
e Si (R) admet deux racines o,  distinctes, alors
(up)n €Su <= I\, ) eK?® | YneN  wu, ="+ ps"
e Si (R) admet une racine double o, alors
(up)n €Sy <= I\, p) €K® | YneN  wu,= A+ pun)a”
—~i0

e Si(a,b) € R x R* et (R) admet deuz racines complezes conjuguées pe' et pe = alors

(un)n €Sy <= I\, u) €R? | VneN  wu, = p*(Acos(nf) + usin(nd))

11 Théoréme des accroissements finis

Théoréme 3. Soit f € €°([a;b],R) et f dérivable sur]a;b[. Alors

f(b) = f(a)

Jeelab] | flo =10

Corollaire 1 (IAF). Soit f € €°([a;b],R), [ dérivable sur]a;b| avec Sup |f'(t)] <M.

t€]ash|

Alors f(b) — f(a)] < M|b—a

On propose une autre version de l'inégalité des accroissements finis, plus utilisée en pratique :

Corollaire 2 (IAF). Soit f dérivable sur 1 avec f' bornée sur 1. Pour (a,b) € I?, on a
£ () = f(@)] < [l [ — a

Application : Les fonctions sin et cos sont 1-lipschitziennes.

12 Théoréme de Taylor-Young

Théoréme 4. Soit f € €"(I,R) avec a € I intervalle de R. On a
n f(k) a
370

im0 K!

f(x) (. —a)* + o((z —a)")

13 Formule de Taylor avec reste intégral

Théoréme 5. Soit f € €""(I,R). Pour (a,b) €I, on a

n f) 1
_Of 2Dy L / (b— £y fr D (t) dt

fb) =

k




14 Inégalité de Taylor-Lagrange

Théoréme 6. Soit f € €"'(I,R) et f™+Y bornée sur 1. Pour (a,b) € 12, on a

|b . a|n+1

(n+1)!

]
£ — 32 L@ g gy

< |f(n+1) |oo
2 | |

15 Sommes de Riemann

Théoréme 7. Soit f € (Kpm([a;b] ,R), alors

. b— b— . b—ay
5 () - /
n—-+o0o n—-+00 n k=1

/f

16 Algébre linéaire

On note KU ’ensemble des familles presque nulles de scalaires de K.
Soit (x;);er famille de vecteurs de E un K-ev. On a

Vect (xi)iEI = {Zaiazi, (ai)iel € K(I)}
i€l
En particulier, pour x € E, on a
Vect (z) = {ax,a € K}
et pour (z1,...,x,) € E" on a
Vect (zq,...,x,) = {Zozixi, () 1<i<n € K"}
i=1

Soit E un K-ev. Une famille libre et génératrice est une base de E.

17 Projections, projecteurs

Soit E un K-ev et F, G des sev supplémentaires de E. On appelle projection sur F parallélement

a G l'application notée pp ¢ définie par

prc:E—E z=a+b—a avec (a,b) €F xG

Définition 1. Soit E un K-cv et p € Z(E). On dit que p est un projecteur si p> = p.

Théoréme 8. Soit E un K-ev. Une projection de E est un projecteur. Réciproquement, un

projecteur p est la projection sur Im p parallélement a Ker p.

18 Involutions linéaires, symétries

Soit F et G deux sev supplémentaires de E. On appelle symétrie par rapport a F paralléement &

G l'application notée sy ¢ définie par

s, E—=E r=ut+v—u—v avec (u,v)€F xG

Définition 2. Soit E un K-ev et s € Z(E). On dit que s est une involution linéaire si s* =

Théoréme 9. Soit E un K-ev. Une symétrie de E est une involution linéaire. Réciproquement,
une involution linéaire est la symétrie par rapport a Ker (s — id) parallélement ¢ Ker (s +1id ).

4




19 Forme linéaire, hyperplan

Soit E un K-ev. Un élément de Z(E, K) est une forme linéaire.

’Déﬁnition 3. Un hyperplan est le noyau d’une forme linéaire non nulle.

Théoréme 10. Soit H sev de E un K-ev. On a
H hyperplan de E <— Jx e EXH | E = Vect(z)®H

20 Algébre linéaire en dimension finie

Théoréme 11. Soit E un K-ev avec dim E = n. Une famille de vecteurs de E est une base si
et seulement si elle libre et constituée de n vecteurs ou si et seulement si elle est génératrice et
constituée de n vecteurs.

Théoréme 12 (Formule de Grassmann). Soient F, G sev de dimensions finies de E un K-ev.
On a

dim(F+G) =dimF +dim G —dimF NG

Proposition 1. Soit E un K-ev de dimension finie, F et G deuz sev de E. On a [’équivalence

F
.CG . — F=G
dimF = dim G

Théoréme 13. Soit E un K-ev de dimension finie et F, G des sev de E. On a

dimF +dim G =dimE dimF 4+dim G =dimE
E=FpG <=

FNG={0g} F+G=E
< d%PBr, B bases respectives de F, G | Brp U B base de E

Théoréme 14 (Théoréme du rang). Soit f € L (E,F) avec E un K-ev de dimension finie et
F un K-ew.

On a dimE = dim Ker f +rg(f)

Théoréme 15. Soit f € Z(E,F) avec E et F des K-ev de méme dimension finie. On a
f bijective <= [ injective <= [ surjective
En particulier, si E=F, on a

feGLE) < Ker f ={0g} <= rg(f) =dimE <= det(f) #0

Théoréme 16. Soit f € L(E,F) et g € L(F,G) avec E et F des K-ev de dimensions finies.
On a

rg (g o f) < min(rg (f),1g(9))




21 Produit matriciel
Soient A € A,,(K) et B € 4,,(K). On définit AB € 4, ,(K) par AB = (¢;;) oil ¢;; =
p

> ai kb pour tout (4,5) € [1;n] x[1;¢q]-
k=1

Proposition 2. Soit (E; ;)i e[1;n]2 la base canonique de 4, (K). On a la relation
V(i j, k. 0) € [1;n]* Eij x Epe =01 Ei¢

Proposition 3. Pour tout (A,B) € M, ,(K) x M, ,(K), on a (AB) = BTAT.

22 Trace
Soit A = (a;;)1<ij<n € #,(K). La trace de la matrice A notée Tr (A) est définie par

Tr (A) = iam‘
i=1

(Théoréme 17. Soit (A, B) € 4, ,(K) x M, ,(K). On a Tr (AB) = Tr (BA).

23 Déterminants
Soit A = (a;;) € #,(K). On a

det(A) = > e(o) zlill @i o (i)

O'GSn

1<i,j<n

On appelle comatrice de A notée Com(A) la matrice des cofacteurs de A, i.e.

Com(A) = ((=1)"* det(A;))

1<i j<n

avec A; ; la matrice extraite de A par suppression de sa i-éme ligne et j-éme colonne.

Proposition 4. Soit (A,B) € #,(K)? et A€ K. On a :

1. det(AT) = det(A)

2. det(AA) = A" det(A)

3. A € GL,(K) <= det(A) #£0

/. det(AB) = det(A) det(B)

5. ACom(A)" = Com(A)"A = det(A)L,

Théoréme 18. Soit (;)1<i<n € K" et V = (2771)
de Vandermonde vaut

ian € M,,(K). Le déterminant det(V) dit

det(V) = I (zj—z)




24 Matrices et rang

’Théoréme 19. Soit A € M, ,(K). On a rg(A) < min(n, p).

Théoréme 20. Soit A € #,(K) avec rg (A) = r. Il existe P, Q dans GL,(K) telles que A =
PJ.Q avec J, = diag(1,,0).

25 Equations différentielles linéaires

Théoréme 21. Soit a € €°(I,K). On a

t
7' =a(t)r < x € Vect () avec @:trs et et A(t) = / a(s) ds

Théoréme 22. Soient a, b dans €°(1,K) el (to, o) € I x K. Il existe une unique solution au
probléeme de Cauchy

{x’ =a(t)x+0b(t) (L)
$(t()) =X (CI)

et celle-ci est donnée par

t ¢
Vtel z(t) = e (:E() + / e ~ABp(s) ds) avec  A(t) = / a(s) ds
to

to

Théoréme 23. Soit (a,b) € K? et l'équation différentielle linéaire homogéne d’ordre 2
' +ar' +br=0 (H)
Soit © € Sy, solution de I’équation homogéne (H), on a :

1. Si équation (R) admet deux racines distinctes « et 3,
r €Sy == I\ ek® | VteR  x(t) = e + peft
2. Si 'équation (R) admet une racine double a,
reSy = I\ ek | VteR  x(t)= A+ pue™
3. Si (a,b) € R? et ’équation (R) admet deuz racines complezes conjuguées r +is (s #0)

r€Sy < I\ ueR* | VteR z(t) = e [Acos(st) + psin(st)]

Proposition 5. Soit (a,b) € K%, P € K[X] et m € K. L’équation
2" + axr’ + bx = P(t)e™ (L)
admet une solution particuliere de la forme
1. xo(t) = Q(t)e™ sim pas racine de (R)
2. xo(t) = tQ(t)e™ sim racine simple de (R)
3. xo(t) = t2Q(t)e™ si m racine double de (R)
avec Q € K[X] et deg Q = degP.




26 Polynoémes

T

Définition 4. Un polynome P € K[X] est dit scindé s’il peut s’écrire P = AN [[(X — «;) avec
i=1

A € K et les o des scalaires (non nécessairement distincts).

Théoréme 24. Soit (A, B) € K[X]? avec B # Ogxj. On a :
F(Q,R) eK[X]? | A=BQ+R et degR <degB

Le polynome Q est appelé quotient et R le reste de la division euclidienne de A par B.

Proposition 6. Soit P € K[X] et a € K. On a
a racine de P d’ordre m <= 3Q e K[X] | P=(X—a)"Q et Qa)#0
P(a) =P'(a) =...=P"(a) =0
P (a) # 0

Proposition 7. Soit P € K[X] et a € K. On a

a racine de P d’ordre au moins m <= 3Q € K[X] | P = (X — a)™Q
<= Pa)=P'(a)=...=P™ V(a) =0

Théoréme 25 (Formules de Taylor). Soit P € K[X]. On a

VaceK P= ioP(k)(a)( X —a)*

Théoréme 26 (Polynémes de Lagrange). Soient xy,...,z, réels distincts. Il eciste une
unique famille de polynémes (Lo, ...,L,) de R,[X] telle que Li(x;) = 0,; pour tout (i,j) €
[0;n]* et ona

X —
Vie[0:n] Li= T[] ( 9“"’“>
ke[0;n]~{i} “Ti — Lk

27 Probabilités

Le cadre considéré est celui vu en MPSI avec €2 un univers fini.

Théoréme 27 (Formules des probabilités totales). Soit (Q2,IP) un espace probabilisé fini et
(Ai)ic[1;n] un systéme complet d’événements tels que P(A;) > 0 pour touti € [1;n]. On a

VBeP(Q)  B(B) = SP(BIA)B(A)

Soit (€2,IP) un espace probabilisé fini et X une variable aléatoire réelle.

e On dit que X suit une loi uniforme sur [1; p] si X(Q2) =[1; p] et
VE e [1;p] PX=k)=-

e On dit que X suit une loi de Bernoulli de paramétre p € [0;1] si X(2) ={0,1} et




PX=1)=p, PX=0)=1-p

e On dit que X suit une loi binomiale de paramétre (n,p) avec n entier et p € [0;1] si X(Q) =
[0;n] et

vke[0in]  PX=k)=()p(1-p)

Proposition 8. Soit (Q2,P) un espace probabilisé fini. Les variables aléatoires X1, ..., X, sont
idépendantes si et seulement si

V<Ai>i6[[1;n}] € lﬁlP(Xz(Q)) P (ﬂ {Xie Az}) = iﬁlP(Xi € A))

autrement dit si et seulement si les événements {X; € A;} sont indépendants.

i€]1;n]

Théoréme 28. Soit (2, P) un espace probabilisé fini. Si Xy,...,X,, sont des variables aléatoires

indépendantes de méme loi HB(p) avec p € [0;1], alors > X; suit une loi binomiale AB(n,p).
=1

Soit (€2, P) un espace probabilisé fini et X une variable aléatoire réelle. On définit [’espérance de
X notée E(X) par

EX)= > zP(X=x)

zeX(Q)
On définit la variance de X notée V(X) par
V(X) = E[(X - E(X))?]

Théoréme 29 (Théoréme de transfert). Soit (2, P) un espace probabilisé fini, X une variable
aléatoire réelle et f:1— R avec X(2) C 1. On a

E(f(X) = 2 f@)P(X=x)

zeX(Q)

Proposition 9 (Relation de Ko6nig-Huygens). Soit (Q,P) un espace probabilisé fini et X
une variable aléatoire réelle. On a

V(X) = E(X?) — E(X)?

Proposition 10. Soit (2, P) un espace probabilisé fini et X ~ B(p) avec p € [0;1]. On a
EX)=p V(X)=p(-p)

Proposition 11. Soit (2, P) un espace probabilisé fini et X ~ HB(n,p) avec (n,p) € Nx[0;1].
On a E(X) =np V(X) =np(1 —p)

Théoréme 30 (Inégalité de Markov). Soit (2, P) un espace probabilisé fini et X une variable
aléatoire réelle positive. On a
EX)

Ve>0 P(X>¢)< E

Théoréme 31 (Inégalité de Bienaymé-Tchebychev). Soit (2,P) un espace probabilisé fini
et X une variable aléatoire réelle. On a
V(X)

Ve>0  P(X-EX)|>e) < —;




Théoréme 32 (Loi faible des grands nombres). Soit (2, P) un espace probabilisé fini et Xy,

...y Xy, des variables aléatoires indépendantes de méme loi. Notant m = E(X;) et S, = > X,
i=1

on a

Ve >0 IP’(

Sn
——m| =) ——0
n n—o00

10
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