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Feuille d'exercices n°63

Exercice 1 (**)

Soit (Ω,A ,P) espace probabilisé et X1, . . . ,Xn variables aléatoires indépendantes de loi U{−1,1}.

1. Montrer ∀(t, ε) ∈ ] 0 ; +∞ [2 P
Å
1

n

n∑
i=1

Xi ⩾ ε

ã
⩽ e−tnε ch (t)n

2. Pour t > 0, comparer e
t2

2 et ch (t).

3. En déduire ∀ε > 0 P
Å
1

n

n∑
i=1

Xi ⩾ ε

ã
⩽ e−nε2/2

Corrigé : 1. Soit t, ε > 0. Par croissance stricte de u 7→ e tu, on aß
1

n

n∑
i=1

Xi ⩾ ε

™
=

ß
n∑

i=1

Xi ⩾ nε

™
=

ß
exp

Å
t

n∑
i=1

Xi

ã
⩾ e tnε

™
D'après l'inégalité de Markov appliquée à la variable aléatoire �nie positive exp

Å
t

n∑
i=1

Xi

ã
, il vient

P
Å
1

n

n∑
i=1

Xi ⩾ ε

ã
⩽ e−tnεE

Å
exp

Å
t

n∑
i=1

Xi

ãã
Or E

Å
exp

Å
t

n∑
i=1

Xi

ãã
= E
Å

n∏
i=1

e tXi

ã
et par indépendance puis égalité en loi des Xi, il vient

E
Å

n∏
i=1

e tXi

ã
=

n∏
i=1

E(e tXi) =
(
E(e tX1)

)n
Par transfert E(e tX1) = e tP(X1 = 1) + e−tP(X1 = −1) = ch t

On conclut ∀(t, ε) ∈ ] 0 ; +∞ [2 P
Å
1

n

n∑
i=1

Xi ⩾ ε

ã
⩽ e−tnε ch n t

2. D'après les développements en série entière usuels, on a

∀t ∈ R ch (t) =
+∞∑
n=0

t2n

(2n)!
et e

t2

2 =
+∞∑
n=0

t2n

2nn!

Une récurrence immédiate permet de prouver que 2nn! ⩽ (2n)! pour tout n entier d'où

∀t ∈ R ch (t) ⩽ e
t2

2

Variante : On peut éviter une récurrence avec

(2n)! =
2n∏
k=1

k =
n∏

k=1

(2k)×
n∏

k=1

(2k − 1) = 2nn!
n∏

k=1

(2k − 1)

3. Soient t, ε > 0. On obtient P
Å
1

n

n∑
i=1

Xi ⩾ ε

ã
⩽ e−tnε+n t2

2

1



En choisissant t = ε, il vient

∀ε > 0 P
Å
1

n

n∑
i=1

Xi ⩾ ε

ã
⩽ e−nε2/2

Remarque : Le choix t = ε est optimal sur la dernière égalité puisqu'il s'agit de la valeur de t
qui minimise le trinôme dans l'exponentielle.

Exercice 2 (**)

Soit (Ω,A ,P) un espace probabilisé, (Xn)n⩾1 une suite de variables aléatoires indépendantes de
loi B(p) avec p ∈ ] 0 ; 1 [ et Yn = Xn +Xn+1 +Xn+2 pour tout n ⩾ 1. Montrer

∀ε > 0 P
Å∣∣∣∣ 1n n∑

k=1

Yk − 3p

∣∣∣∣ ⩾ ε

ã
−−−→
n→∞

0

Corrigé : Les Yn ne sont pas indépendantes ! En e�et, on a

∀n ⩾ 1 P(Yn = 3,Yn+1 = 0) = 0 ̸= P(Yn = 3)× P(Yn+1 = 0)

Soit ε > 0 et n ⩾ 1. On aß∣∣∣∣ 1n n∑
k=1

Yk − 3p

∣∣∣∣ ⩾ ε

™
⊂

2⋃
ℓ=0

ß∣∣∣∣ 1n n∑
k=1

Xk+ℓ − p

∣∣∣∣ ⩾ ε

3

™
D'où P

Å∣∣∣∣ 1n n∑
k=1

Yk − 3p

∣∣∣∣ ⩾ ε

ã
⩽

2∑
ℓ=0

P
Å∣∣∣∣ 1n n∑

k=1

Xk+ℓ − p

∣∣∣∣ ⩾ ε

3

ã
Pour ℓ ∈ [[ 0 ; 2 ]], les variables (Xk+ℓ)k sont indépendantes, de même loi, avec des moments
d'ordre deux. D'après la loi faible des grands nombres, il s'ensuit

∀ε > 0 P
Å∣∣∣∣ 1n n∑

k=1

Yk − 3p

∣∣∣∣ ⩾ ε

ã
−−−→
n→∞

0

Exercice 3 (**)

Une urne contient n billes numérotées de 1 à n. On saisit une poignée de billes et on note X
la somme des numéros des billes. En supposant que toutes les poignées sont équiprobables, que
vaut E(X) ?

Corrigé : Soit U∼UP([[ 1 ;n ]]) et X =
∑
x∈U

x. On peut écrire

X =
n∑

k=1

k1k∈U

Par suite E(X) =
n∑

k=1

kP(k ∈ U)

et ∀k ∈ [[ 1 ; n ]] P(k ∈ U) =
Card P([[ 1 ; n ]]∖ {k})

Card P([[ 1 ; n ]])
=

2n−1

2n
=

1

2

On conclut E(X) =
n∑

k=1

k

2
=

n(n+ 1)

4

2



Variante : On peut aussi considérer (X1, . . . ,Xn) des variables i.i.d de loi B(1/2) avec le for-
malisme suivant : Xi vaut 1 si i pioché et 0 sinon. On a

U = {i ∈ [[ 1 ; n ]] | Xi = 1}∼UP([[ 1 ;n ]])

puisque ∀A ∈ P([[ 1 ; n ]]) P(U = A) = P

(⋂
i∈A

{Xi = 1} ∩
⋂
i∈Ā

{Xi = 0}

)
=

1

2n

Puis X =
n∑

k=1

kXk

et on retrouve E(X) =
n∑

k=1

kE(Xk) =
n(n+ 1)

4

Exercice 4 (***)

Soit p ∈ ] 0 ; 1 [ et q = 1 − p. Soit (Xn)n⩾1 une suite de variables aléatoires indépendantes de
même loi de Bernoulli de paramètre p. On pose

∀n ⩾ 1 Sn =
n∑

i=1

Xi Tn =
Sn − np
√
npq

1. Donner la loi et la fonction génératrice de Sn.

2. Déterminer E(Tn), V(Tn).

3. Calculer E(xTn) pour x > 0 puis lim
n→+∞

E(xTn).

Corrigé : 1. Soit n entier non nul. La variable aléatoire Sn est somme de n variables indépen-
dantes de loi de Bernoulli B(p) d'où

Sn∼B(n, p) et ∀t ∈ R GSn(t) = (pt+ 1− p)n

2. Soit n entier non nul. On a par linéarité de l'espérance

E(Tn) =
1
√
npq

n∑
i=1

E(Xi − p) = 0

Puis, par indépendance des Xi, il vient

V(Tn) =
1

npq
V
Å

n∑
i=1

Xi

ã
=

1

nqp

n∑
i=1

V(Xi) =
npq

npq

Ainsi ∀n ∈ N∗ E(Tn) = 0 et V(Tn) = 1

Remarque : La variable aléatoire Tn est dite centrée réduite.

3. Soit x > 0. Par indépendance des Xi, on trouve

E
(
xTn
)
= E

Ö
x

1√
npq

n∑
i=1

(Xi − p)
è

= E
Å

n∏
i=1

x
Xi−p√

npq

ã
=

n∏
i=1

E
(
x

Xi−p√
npq

)
Puis par transfert, on obtient

E
(
xTn
)
=
(
px
√

q
np + qx−

√
p
nq

)n
=

ï
p exp

Å…
q

np
ln(x)

ã
+ q exp

Å
−
…

p

nq
ln(x)

ãòn
Avec un développement limité à l'ordre deux, il vient

3



E
(
xTn
)
=

ï
p

Å
1 +

…
q

np
ln(x) +

q

2np
ln(x)2

ã
+ q

Å
1−
…

p

nq
ln(x) +

p

2nq
ln(x)2

ã
+ o
Å
1

n

ãòn
=

ï
p+ q

2n
ln(x)2 + o

Å
1

n

ãòn
= exp

ï
n ln

Å
1 +

ln(x)2

2n
+ o
Å
1

n

ããò
= exp

ï
ln(x)2

2
+ o(1)

ò
On conclut ∀x > 0 E

(
xTn
)
−−−→
n→∞

e
ln(x)2

2

Remarque : Ce résultat est une conséquence du théorème de la limite centrée ou de son corollaire
qu'est le théorème de Moivre-Laplace.

Exercice 5 (***)

Soit (Ω,A ,P) un espace probabilisé et (Xn)n⩾1 une suite de variables aléatoires indépendantes

de même loi B (1/2). On note Sn =
n∑

i=1

Xi pour n entier non nul.

1. Déterminer une expression sommatoire de un = P
(
Sn <

n

2

)
.

2. Pour n ⩾ 1, on note vn = P
(
Sn ⩾

n

2

)
. Établir l'égalité

∀n ⩾ 1 vn = un + P
(
Sn =

n

2

)
3. En déduire le comportement asymptotique de un pour n→ +∞.

Corrigé : 1. On a P
(
Sn <

n

2

)
= P

Ñ ⊔
0⩽k<n

2

{Sn = k}

é
=

∑
0⩽k<n

2

P(Sn = k)

D'où P
(
Sn <

n

2

)
=

1

2n
∑

0⩽k⩽n
2

(
n
k

)

2. On a vn = P

Ñ ⊔
n
2
⩽k⩽n

{Sn = k}

é
=

∑
n
2
⩽k⩽n

P(Sn = k) =
1

2n
∑

n
2
⩽k⩽n

(
n
k

)
Avec le changement d'indice k ←→ n− k, on trouve

vn =
1

2n
∑

0⩽k⩽n
2

(
n

n−k

)
=

∑
0⩽k⩽n

2

P(Sn = k) = P
(
Sn <

n

2

)
+ P

(
Sn =

n

2

)

Autrement dit vn = un + P
(
Sn =

n

2

)
3. Si n est impair, alors P

(
Sn =

n

2

)
= 0.

Supposons n = 2m. On a

P(S2m = m) =

(
2m
m

)
22m

=
(2m)!

22m(m!)2

Avec l'équivalent de Stirling, on obtient

P(S2m = m) ∼
m→+∞

1

22m

( e

m

)2m 1

2πm

Å
2m

e

ã2m
2
√
πm ∼

m→+∞

1√
πm
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Par conséquent, indépendemment de la parité de n, on a

un = vn + o(1)

En�n, les événements
{
Sn <

n

2

}
et
{
Sn ⩾

n

2

}
sont complémentaires donc un et vn véri�ent le

système ®
un + vn = 1

un − vn = o(1)

Ainsi un =
1

2
+ o(1) −−−→

n→∞

1

2

Exercice 6 (***)

Soit (Ω,A ,P) un espace probabilisé et X une variable aléatoire de loi U[[ 0 ;n−1 ]] avec n entier.
On suppose n non premier avec n = ab et a, b des entiers supérieurs ou égaux à 2.

1. Montrer qu'il existe un unique couple de variables aléatoires (Q,R) à valeurs dans N tel
que X = aQ+R avec R(Ω) ⊂ [[ 0 ; a− 1 ]].

2. Préciser la loi de (Q,R) puis de Q et de R.

3. En déduire qu'il existe Y et Z, variables aléatoires indépendantes à valeurs dans N dont
on précisera les lois telles que X∼Y+ Z.

Corrigé : 1. Soit ω ∈ Ω. D'après le théorème de la division euclidienne il existe un unique couple
(q, r) ∈ N×[[ 0 ; a−1 ]] tel que X(ω) = aq+r. Ceci prouve l'unicité du couple de variables aléatoires
solutions sous réserve d'existence. On dé�nit l'application φ : N → N × [[ 0 ; a − 1 ]], x 7→ (q, r)
qui à x associe son couple quotient-reste. Cette application est bien dé�nie et bijective d'après
le théorème de la division euclidienne et on pose (Q,R) = φ(X). Il s'agit bien d'une variable
aléatoire discrète en tant que fonction d'une variable aléatoire discrète et par construction, on a

X = aQ+R avec R(Ω) ⊂ [[ 0 ; a− 1 ]]

Remarque : On peut expliciter Q et R : on a Q =

õ
X

a

û
et R = X− aQ.

2. Soit (q, r) ∈ [[ 0 ; b−1 ]]×[[ 0 ; a−1 ]]. D'après le théorème de la division euclidienne, l'application
φ précédemment dé�nie est une bijection et par suite

P((Q,R) = (q, r)) = P(φ(X) = φ(x)) = P(X = x) =
1

n

On détermine les lois marginales avec

P(Q = q) =
a−1∑
r=0

P((Q,R) = (q, r)) =
a

n
=

1

b
et P(R = r) =

b−1∑
q=0

P((Q,R) = (q, r)) =
b

n
=

1

a

Ainsi (Q,R)∼U[[ 0 ; a−1 ]]×[[ 0 ; b−1 ]] Q∼U[[ 0 ; b−1 ]] R∼U[[ 0 ; a−1 ]]

3. Soit (q, r) ∈ [[ 0 ; b− 1 ]]× [[ 0 ; a− 1 ]]. On a

P(Q = q,R = r) =
1

n
=

1

b
× 1

a
= P(Q = q)P(R = r)

ce qui prouve que les variables Q et R sont indépendantes et on conclut

X = aQ+R avec aQ et R indépendantes et aQ∼Ua[[ 0 ; b−1 ]], R∼U[[ 0 ; a−1 ]].
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Exercice 7 (***)

Soit (Ω,A ,P) un espace probabilisé et (Xn)n⩾1 une suite de variables aléatoires indépendantes
de même loi B(x) avec x ∈ [ 0 ; 1 ]. Soit f : [ 0 ; 1 ] → R continue par morceaux. Pour n entier

non nul, on note Sn =
n∑

i=1

Xi et on pose

∀x ∈ [ 0 ; 1 ] Bn(f)(x) = E
Å
f

Å
Sn

n

ãã
1. Préciser la loi de Sn puis déterminer une expression sommatoire de E

ï
f

Å
Sn

n

ãò
.

2. Si x est un point de continuité de f , montrer

Bn(f)(x) −−−→
n→∞

f(x)

Corrigé : 1. D'après le cours et par transfert, on a

Sn ∼ B(n, x) et E
Å
f

Å
Sn

n

ãã
=

n∑
k=0

f

Å
k

n

ã
P(Sn = k) =

n∑
k=0

(
n
k

)
f

Å
k

n

ã
xk(1− x)n−k

2. Soit ε > 0. Il existe η > 0 tel que

∀t ∈ [ 0 ; 1 ] |x− t| ⩽ η =⇒ |f(x)− f(t)| ⩽ ε

On a |Bn(f)(x)− f(x)| =
∣∣∣∣EÅf ÅSn

n

ã
− f(x)

ã∣∣∣∣ ⩽ E
Å∣∣∣∣f ÅSn

n

ã
− f(x)

∣∣∣∣ã
Posons An =

ß∣∣∣∣Sn

n
− x

∣∣∣∣ > η

™
. Ainsi

|Bn(f)(x)− f(x)| ⩽ E
Å∣∣∣∣f ÅSn

n

ã
− f(x)

∣∣∣∣1An

ã
+ E
Å∣∣∣∣f ÅSn

n

ã
− f(x)

∣∣∣∣1An

ã
⩽ 2∥f∥∞P(An) + ε

D'après la loi faible des grands nombres, on a P(An) = o(1) et par conséquent

Bn(f)(x) −−−→
n→∞

f(x)
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