
 

 

Page 1/11 

 

Spé MP ISM         2025-2026 

 

DD-DM 11 de Physique 17/01/25 

 

 

Pb 1 : L’équation de Klein–Gordon 
 

 

 

I. Impulsion de particules élémentaires 
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II. L’équation de Klein–Gordon 
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Pb 2 : Réflexion totale frustrée et effet tunnel 
 

Les deux parties I et II de ce sujet sont indépendantes.  

Je vous conseille de commencer par la partie II. 

Certaines valeurs numériques sont regroupées en fin d’énoncé.  

Certaines questions peu ou pas guidées, demandent de l’initiative de la part du candidat. Leur 

énoncé est repéré par une barre en marge. Il est alors demandé d’expliciter clairement la démarche, 

les choix et de les illustrer, le cas échéant, par un schéma. Toute démarche engagée, même non 

aboutie, et toute prise d’initiative seront valorisées. Le barème prend en compte le temps nécessaire 

à la résolution de ces questions. 

I Capture d’empreintes digitales par réflexion totale frustrée  

La sous-partie I.A. introduit le phénomène étudié. Les sous-parties I.B et I.C sont liées par une 

analogie qu’on souhaite établir entre deux situations, l’une se présentant en physique quantique et 

l’autre en optique ondulatoire. Néanmoins, en dehors des questions développant l’analogie, les 

sous-parties sont conçues de manière relativement autonomes. 

 

Il existe différentes technologies de capteurs d’empreinte digitale, 

c’est-à-dire de dispositifs permettant d’obtenir une image numérisée 

d’une empreinte digitale, le plus souvent à des fins d’identification. 

Certaines de ces technologies sont embarquées dans des smartphones. 

La technologie dite « capteur optique d’empreinte digitale » est très 

employée, elle repose sur le phénomène de réflexion totale frustrée qui 

est l’objet de cette étude. 

Le doigt est posé à plat sur l’hypoténuse d’un prisme droit isocèle taillé 

dans un verre d’indice optique noté n. Il est éclairé par une diode laser 

de longueur d’onde λ0 dans le vide. L’image de l’empreinte digitale à 

travers un système optique est formée sur un capteur CCD puis 

numérisée. La figure 2 décrit le schéma de principe de ce dispositif. 

 

 

 
Figure 2 Principe d’un capteur optique d’empreinte digitale 

 

 

 

En première approche, le système optique se résume à la traversée d’un dioptre (D) et d’une lentille 

convergente (L) (figure 3). Si A est un point objet de l’empreinte digitale, alors on note A1 l’image de A à 

travers le dioptre (D) et A1’ celle de A1 à travers la lentille (L) : 

'11 AAA ⎯→⎯⎯→⎯
(L)(D)

. 

Figure 1 Capteur d’empreinte digitale 

(Wikimedia, Rachmaninof, 2009-10-21) 
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Figure 3 Schéma optique 

I.A. Réflexion totale 

Q 9. Énoncer soigneusement les lois de Snell-Descartes. 

Q 10. Définir la réflexion totale et en donner les conditions. 

Q 11. Étant donné la position de l’empreinte digitale, si on s’en tient strictement à l’énoncé des lois de 

Descartes, peut-on éclairer le doigt, afin de former son image sur le capteur CCD ? On rappelle que n = 1,5. 

(Il faut montrer ici qu’il y a réflexion totale du faisceau d’éclairage !). 

Dans le montage proposé, la lentille permettra d’obtenir l’image du doigt sur l’écran du CCD. Néanmoins, 

il faut aborder l’optique ondulatoire pour comprendre comment le doigt est éclairé au travers du prisme. 

 

I.B – Passage d’une onde électromagnétique sur un dioptre  

I.B.1) Relation de dispersion  

Q 12. Rappeler les équations de Maxwell dans une région vide de courant et de charge. En déduire 

l’équation de propagation d’une onde électromagnétique, sa relation de dispersion, sa vitesse de phase. Le 

vide est-il dispersif ? 

Q 13. On admet que dans un milieu linéaire, homogène, isotrope et parfaitement transparent, tout se passe 

comme si l’on remplaçait dans la relation de dispersion précédente la permittivité du vide ε0 par la grandeur 

n2ε0, appelée permittivité du milieu, où n est l’indice optique du milieu (n est un réel supérieur à 1). On 

rappelle que la valeur de l’indice optique d’un matériau varie avec la longueur d’onde λ0 dans le vide. En 

déduire la nouvelle relation de dispersion et l’expression de la vitesse de phase. Le milieu est-il dispersif ? 

I.B.2) Coefficients de réflexion et de transmission  

On considère une onde électromagnétique monochromatique incidente polarisée rectilignement selon la 

direction ye


 et se propageant dans la direction donnée par son vecteur d’onde 𝑘⃗ 𝑖 = 𝑘𝑖𝑥𝑒 𝑥 + 𝑘𝑖𝑧𝑒 𝑧. On note 

( )iz kei


,1 =  l’angle d’incidence de cette onde sur le dioptre plan d’équation z = 0. Le champ électrique 

s’écrit : 

)).(exp(0 OMktjeEE iyi


−−=   

On note k0 = ω/c, le module de son vecteur d’onde dans le vide. Au passage du dioptre, cette onde donne 

naissance : 

— à une onde réfléchie )).(exp(0 OMktjeErE ryr


−−=  , 

— à une onde transmise (onde réfractée) )).(exp(0 OMktjeEtE tyt


−−=  , 

où r et t sont des nombres complexes appelées coefficients de réflexion et de transmission en amplitude. 
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Figure 7 Réflexion et réfraction d’une onde électromagnétique sur un dioptre 

 

De même, on note 𝑘⃗ 𝑟 = 𝑘𝑟𝑥𝑒 𝑥 + 𝑘𝑟𝑧𝑒 𝑧   (avec krz < 0)  et 𝑘⃗ 𝑡 = 𝑘𝑡𝑥𝑒 𝑥 + 𝑘𝑡𝑧𝑒 𝑧 

Enfin, on admet que les champs électriques et magnétiques sont continus à la traversée de ce dioptre. 

Q 14. Montrer que, en tout point du dioptre, 𝑒𝑥𝑝( 𝑗𝑘𝑖𝑥𝑥) + 𝑟 𝑒𝑥𝑝( 𝑗𝑘𝑟𝑥𝑥) = 𝑡 𝑒𝑥𝑝( 𝑗𝑘𝑡𝑥𝑥))     (Relation 

(I.1)). 

Q 15. En déduire une relation notée (I.2) entre r et t. 

Q 16. On admet que (I.1) conduit à l’égalité kix = krx = ktx. En déduire les deux relations de Descartes portant 

sur les angles i1, i’1 et i2. 

Q 17. À partir de l’étude du champ magnétique, trouver une deuxième équation notée (I.3) reliant r et t. 

La solution du système d’équation conduit à 




+

−
=

1

1
r  et 

+
=

1

2
t , où l’on a posé 𝜐 =

𝑘𝑡𝑧

𝑘𝑖𝑧
, qui est 

éventuellement un nombre complexe. Nous reviendrons sur ces coefficients dans la sous-partie I.C. 

Néanmoins, on remarque immédiatement qu’on n’a jamais t = 0, même dans le cas d’une réflexion totale. 

Il y a toujours une onde électromagnétique transmise. Dans la suite de cette sous-partie, nous nous 

intéressons à la forme que prend cette onde transmise. 

Q 18. Expliciter les composantes du vecteur d’onde ik


 en fonction de n, k0 et i1. 

Q 19. En remarquant que 
22

0

2

txtz kkk −= , exprimer 
2

tzk  en fonction de n, k0 et i1. En déduire l’expression 

de ktz (on distinguera deux cas). Écrire le champ électrique transmis complexe dans les deux cas (sans 

chercher à expliciter t). 

Q 20. Quelle est la forme de l’onde transmise dans le cas d’une réflexion totale ? Comment la qualifie-t-

on ? Exprimer la longueur typique, notée δ, de pénétration de cette onde dans la direction ze


. Expliquer 

qualitativement pourquoi il n’y pas, en moyenne, de puissance propagée dans la direction ze


. 

 

I.C – Barrière de potentiel et effet tunnel en physique quantique. Analogie avec la 

réflexion totale frustrée 

En physique quantique, c’est la description ondulatoire de la matière qui permet d’expliquer l’effet tunnel. 

En effet, là où une particule décrite dans le cadre de la mécanique classique est arrêtée au pied d’une barrière 

de potentiel, une particule décrite dans le cadre de la physique quantique voit sa fonction d’onde «déborder» 

légèrement dans la barrière de potentiel sous forme d’onde évanescente. De la même manière, là où 

l’optique géométrique interdit à un rayon lumineux de franchir un dioptre en situation de réflexion totale, 

l’optique ondulatoire montre que l’onde électromagnétique «déborde» légèrement du dioptre sous la forme 

d’une onde évanescente. 

L’objectif de cette sous-partie est donc de construire une analogie entre le comportement d’une onde de de 

Broglie devant une barrière de potentiel, rencontré en physique quantique, et celui d’une onde 

électromagnétique dans le cas d’une réflexion totale. 

On rappelle que dans le cas d’un état stationnaire la fonction d’onde associée à une particule de masse m 
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vérifie l’équation de Schrödinger indépendante du temps : dans une modélisation à une dimension spatiale, 

on écrit sa fonction d’onde Ψ(x,t) = Φ(x) exp(−jωt) où Φ(x) vérifie l’équation  

)()()()(
2

2

xExxVx
m

=+−


 

où E = Ec + V(x) est l’énergie totale de la particule, Ec étant son énergie cinétique. 

 

I.C.1) Marche de potentiel 

On rappelle que la fonction d’onde ainsi que sa dérivée spatiale sont continues en un point qui connaît une 

variation finie de potentiel. On considère le profil de potentiel suivant, qui présente une marche en x = 0, 

V(x) = 0 si x  <0 et V(x) = V0 > 0 si x ≥ 0 

et une particule d’énergie E qui, provenant de la région des x négatifs, arrive sur la «marche» de potentiel 

de hauteur V0. 

Q 21. Montrer que dans la région x < 0 où V(x) = 0, la solution générale est de la forme  

ΦG(x) = A.exp(jkx) + B.exp(−jkx) 

où k est choisi positif. Exprimer k en fonction de E et de la masse m de la particule. 

Q 22. Exprimer de même la solution générale de la fonction d’onde dans la région x > 0 sous la forme 

ΦD(x) = C.exp(jqx) + D.exp(−jqx). 

La grandeur q, éventuellement complexe, est choisie avec ℜ(q) ≥ 0 et, si ℜ(q) = 0, avec ℑ(q) > 0. En 

distinguant les situations E > V0 et E < V0, exprimer q en fonction de E, V0 et m. Que peut-on dire de D ? 

Q 23. Exprimer les coefficients complexes r et t de réflexion et de transmission en amplitude en fonction 

de la grandeur υ = q/k. 

Q 24. Dans cette question, on se place dans le cas E > V0. Rappeler pour une onde plane harmonique 

l’expression du vecteur densité de courant de probabilité, noté J


, en fonction du vecteur d’onde et de la 

fonction d’onde. Donner la définition des coefficients réels R et T de réflexion et de transmission en 

probabilité en fonction des vecteurs densité de courant de probabilité incident, réfléchi et transmis iJ


, rJ


 

et tJ


 . En déduire l’expression de R et T en fonction de υ, r, t, puis de υ seulement. Vérifier alors R + T = 

1 et interpréter. 

Q 25. Dans cette question, on se place dans le cas E < V0. Expliquer qualitativement pourquoi T = 0. 
 

I.C.2) Synthèse I.B.2 et I.C.1 

Le tableau ci-dessous met en analogie la barrière de potentiel en physique quantique et le franchissement 

d’un dioptre en optique ondulatoire. 

Barrière de potentiel V0 > E Réflexion totale n.sini1 >1 

EV
m

q
=+ 0

2

2


 

2

0

22 kkk txtz =+  

V0 > 0   q2 < 0 et q  j   2

0

2 kk tx  ?1 

Onde évanescente : atténuation au lieu de 

propagation 
Onde évanescente : selon ze


, atténuation au lieu de 

propagation 

==
k

q
v  ?2 et r = ?3  ==

iz

tz

k

k
v  ?4 et r =





+

−

1

1
 

Existence d’une amplitude de probabilité non nulle 

au delà de la marche de potentiel (sur une petite 

profondeur δ) 

Existence de ?5 non nul au delà du dioptre (sur une 

petite profondeur δ) 
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Q 26. Donner le contenu des cinq masques ?i du tableau. 

 

I.C.3) Effet tunnel et réflexion totale frustrée 

Soit le profil de potentiel 

V(x) = 0 si x < 0 et x > L  et V(x) = V0 > 0 si 0 x  L 

On suppose E < V0 et on pose 



)(2 0 EVm −
=  et 

k


 =  où 



mE
k

2
= . 

On considère une particule d’énergie E qui provient de la région des x négatifs. La figure 8 donne sa fonction 

d’onde dans les trois régions du potentiel. On montre alors que le coefficient T de transmission en 

probabilité s’écrit T ≈ exp(−2κL). 

 

Figure 8 Formes d’une onde de de Broglie dans une barrière de potentiel 

L’effet tunnel est associé au fait que l’onde évanescente dans la barrière « déborde » légèrement au-delà de 

la barrière pour transmettre dans la Région 3 une onde à nouveau progressive. De manière analogue, dans 

la situation de la réflexion totale, l’onde électromagnétique « déborde » légèrement au-delà du dioptre dans 

la situation d’une réflexion totale si bien qu’en approchant un deuxième dioptre, on peut permettre la 

transmission d’une onde progressive, ce qui est la réflexion totale frustrée. Cette sous-partie propose 

d’étudier cette configuration en développant l’analogie avec l’effet tunnel. 

On considère une onde électromagnétique subissant une réflexion totale dans un prisme rectangle isocèle 

d’indice n = 1,5. On approche tête-bêche un second prisme rectangle isocèle du premier, de sorte que leurs 

hypoténuses respectives soient parallèles entre elles, comme indiqué sur la figure 9, et on note L la distance 

qui les sépare dans la direction horizontale. Les coefficients T et R désignent respectivement les coefficients 

de transmission et de réflexion en énergie. Lorsque L tend vers l’infini, on retrouve la situation d’un seul 

prisme avec une réflexion totale, à savoir T = 0 et R = 1. Mais lorsque L devient suffisamment petit, T n’est 

plus nul : c’est le phénomène de réflexion totale frustrée. 

 

 

Figure 9 

Q 27. On suppose que la crête d’un sillon est en contact avec le prisme et que le creux d’un sillon en est 

distant de e = 30 µm. La diode laser émet à la longueur d’onde λ0 = 630 nm. À l’aide de l’analogie 

développée, évaluer le coefficient de transmission en puissance du creux du sillon. Conclure l’étude en 

expliquant en quoi le dispositif d’un tel capteur optique d’empreinte digitale repose sur le principe de 

réflexion totale frustrée. 
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II Stockage de déchets radioactifs à haute activité 

II.A – Énergie cinétique des particules α émises et émission thermique d’un échantillon 

radioactif 

II.A.1) Quelques données sur la radioactivité alpha 

La radioactivité alpha est le processus de désintégration d’un nucléide radioactif XA

Z  selon le bilan suivant 

XA

Z = XA

Z

4

2

−

−  + He4

2  

où le noyau He4

2  est appelé particule alpha, tandis que le noyau XA

Z  est appelé père et le noyau XA

Z

4

2

−

−  

fils. En pratique, la radioactivité alpha concerne les noyaux lourds, Z   82 − 96 et A  210 − 250. 

La constante radioactive λ du radionucléide est son taux de désintégration par seconde. En notant N(t ) le 

nombre de radionucléides dans un échantillon donné, 

)(tN

dt

dN
−

= . 

La durée de demi-vie est le temps T = ln2/λ pendant lequel la moitié des radionucléides d’un échantillon 

donné se désintègrent. 

L’activité d’un radionucléide, exprimée en becquerels (Bq), est le nombre de désintégrations par seconde 

observées dans un échantillon donné. 

La figure 10 met en relation les durées de demi-vie et l’énergie des particules alpha Eα de quelques isotopes 

de l’uranium (Z = 92) et du polonium (Z = 84). La loi vérifiée empiriquement (courbe passant au milieu des 

points expérimentaux) est 

2
1

10log C
E

C
T +=



 

où, pour un élément chimique donné, C1 et C2 sont deux constantes. 

 

Figure 10 Demi-vie fonction de Eα 

II.A.2) Modèle de Gamow (1928) 

On suppose que la particule alpha préexiste à l’intérieur du noyau XA

Z et est piégée dans un puits de 

potentiel qui modélise l’interaction forte entre nucléons, dont la portée n’excède pas une dizaine de 

femtomètres, soit le rayon du noyau, noté R. À l’extérieur du noyau, soit à une distance r > R comptée 

depuis son centre, c’est l’interaction coulombienne, répulsive, entre la particule alpha He4

2  (de charge +2e, 

où e est la charge élémentaire) et le noyau fils XA

Z

4

2

−

−  (de charge +(Z − 2)e) qui prédomine. 
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Figure 11  D’après http://www.laradioactivite.com/ 

Classiquement, la barrière de potentiel assure la stabilité du noyau. Gamow interprète la radioactivité alpha 

par effet tunnel. L’onde de matière associée à la particule alpha n’est pas strictement localisée si bien qu’il 

existe une probabilité de l’observer en dehors du noyau. La particule alpha, à l’intérieur du noyau, possède 

une énergie cinétique : elle vient heurter la barrière à une fréquence f, il y a une probabilité P qu’elle traverse 

la barrière de potentiel. On montre alors que la constante radioactive s’écrit λ = Pf. 

Calcul de l’effet tunnel 

L’énergie potentielle coulombienne, appelée abusivement « potentiel » selon les habitudes de la physique 

quantique, est notée V(r). 

 

V0  10 MeV 

Vm = V(R) avce R  7,5 – 8,5 fm 

R’ tel que V(R’) = E 

Figure 12 

Le calcul de la probabilité de transmission par effet tunnel pour le profil illustré figure 12 a été proposé en 

1926 par Brillouin, Kramers et Wentzel (approximation dite BKW) et s’exprime ainsi : 

)exp( −=P  avec  −=

'

))((2
2

R

R

drErVm 


. 

En introduisant la constante 
c

e

0

2

4
 =  appelée constante de structure fine, on obtient : 














−−

mVE
mcZ

4
2)2(2 2




  

La fréquence de collision de la particule alpha avec la barrière s’obtient par une approche classique : 

2

0 )(2

2 mc

VE

R

c
f

+
=   
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II.A.3) Questions 

Q 28. Écrire l’énergie potentielle d’interaction coulombienne, notée V(r), entre la particule alpha et le 

noyau fils, en fonction de Z, e et de la distance r qui les sépare. On introduira la constante de structure 

fine. 

Q 29. Justifier la formule T = ln2/λ. 

Q 30. Exprimer l’énergie cinétique de la particule alpha, en fonction de son énergie mécanique Eα, quand 

elle est à l’intérieur du puits. Justifier la formule 

2

0 )(2

2 mc

VE

R

c
f

+
=  . 

Q 31. Avec λ = Pf, et moyennant des approximations qu’on explicitera, justifier la formule empirique pour 

un élément chimique 

𝑙𝑜𝑔10 𝑇 =
𝐶1

√𝐸𝛼
+ 𝐶2. 

Q 32. On considère un échantillon radioactif alpha d’activité massique Am = 3 × 1010 Bq⋅g–1. Définir la 

grandeur intensive « émission thermique massique de l’échantillon », notée w (W⋅kg−1). Estimer un 

ordre de grandeur de w. 

Q 33. Que représente la grandeur ρw où ρ est la masse volumique de l’échantillon ? 

 

Données 

Célérité de la lumière dans le vide c = 3,00 × 108 m⋅s–1 

Constante d’Avogadro NA = 6,02 × 1023 mol–1 

Charge élémentaire e = 1,6 × 10–19 C 

Permittivité du vide ε0 = 8,85 × 10–12 F.m-1 

Électron-volt 1 eV = 1,6 × 10–19 J 

Constante de Planck réduite   = 6,582 × 10–16 eV⋅s 

Constante de structure fine 

137

1

4 0

2

=
c

e


   

Masse de la particule alpha m = 3727 MeV/c2 

 

Préfixes du système international d’unités 

Facteur  Nom  Symbole  Facteur  Nom  Symbole 

101 déca  da 10-1 déci  d 

102 hecto  h 10-2 centi  c 

103 kilo  k 10-3 milli  m 

106 méga M 10-6 micro M 

109 giga  G 10-9 nano  µ 

1012 téra T 10-12 pico P 

1015 péta P 10-15 femto F 

1018 exa E 10-18 atto A 

1021 zetta Z 10-21 zepto Z 

1024 yotta Y 10-24 yocto y 
 

 


