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Pb 1 : L’équation de Klein—Gordon

Dans le langage général, le sens usuel du mot impulsion désigne 1’élan initial qu’on peut donner a
une particule élémentaire ou a un projectile macroscopique qui poursuit ensuite son mouvement.
Le méme mot a un sens plus spécifique en physique ; I'impulsion, d’abord définie en mécanique
classique comme la quantité de mouvement dans de trés nombreux cas, se retrouve en meécanique
quantigue comme en mécanique relativiste avec un sens étendu.

Nous admettrons dans tout ce qui suit que 'impulsion 7 d’une particule ponctuelle libre (non
engagée dans une liaison), de masse m et d’énergie £ est, dans le cadre général de la théorie
d’EINSTEIN (1905), donnée par la relation dite du triangle relativiste :

E? = p* +m?ct (1)
ou p = ||7]| et ¢ = 3,0x10°m - 57! est la célérité de la lumiére dans le vide ; par ailleurs, cette

méme impulsion 7 est, dans la description ondulatoire des particules, associée & la longueur
d’onde A de I'onde associée & la particule par la relation de DE BROGLIE (1924) :

A= » (2)

olt h = 6,6x1073J . Hz™! est la constante de PLANCK (1900).

I.  Impulsion de particules élémentaires

1 — 1. Quel est, a votre avis, la nature du « triangle relativiste » évoqué par la relation (1)?
Représenter celui-ci.

Quelle est I'unité usuelle, dans le systéme international, de I'impulsion p 7 du produit pc?

L’énergie des systémes macroscopiques s’exprime usuellement en joule (J) ou en kilowatt-heure
(1kW - h = 3,6 MJ). Dans toute la suite de la partie I, I’énergie des particules élémentaires sera
donnée en MeV (méga-électron volt) o 1 MeV = 10%eV et 1eV = 1,6x1071% J. Les masses des
particules seront données en MeV/c? et leurs impulsions en MeV/c. Par exemple la masse de
électron vaut m. = 0,51 MeV/c? et celle du proton vaut m, = 940 MeV/c? (ou, si on préfere,
mec? = 0,51 MeV et my,c® = 940 MeV).

1 — 2. On appelle énergie de repos d’une particule la valeur Iy de I’énergie de celle-ci lorsque
son impulsion est nulle. Exprimer Ey pour un proton et calculer sa valeur numérique.

Pour une particule en mouvement, le supplément d’énergie F. = F — Ey porte le nom d’énergie
cinétique.

d — 3. On s’intéresse d’abord aux particules vérifiant la relation (1) dans le cas de la limite
classique, lorsque E, < Ey. En vous limitant au premier ordre non nul, donner dans ce
cas une expression de F, en fonction de 'impulsion p et de la masse m de la particule.
Quelle est alors la relation entre I'impulsion p' et la vitesse ¢ d’une particule?

Quelle vitesse maximale peut-on donner a un proton pour rester dans la limite classique
telle que E./Ey < 1% 7 Méme question pour un électron.
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Si on ne se limite pas aux faibles vitesses, on peut montrer, et on ’admettra, la relation générale
entre la masse m, la vitesse ¢ de norme v = |||, 'impulsion p'de la particule et la célérité ¢ de
la lumiére :

mu
= 3
1=/ ®)
0 — 4. En déduire expression générale de 1’énergie totale £ = f(FEy,v,c) d’'une particule de

masse 1m.

(1 — 5. Un photon est une particule associée & une onde électromagnétique dans le vide et dont
la vitesse est donc égale & c. (Que peut-on en déduire, pour sa masse, de la relation
E = f(FEy,v,c) établie a la question précédente ?
Déduire de (2) Pexpression de 1’énergie £ d'un photon en fonction de la longueur d’onde
A puis de la fréquence v de 'onde. Faire I'application numérique dans les cas des ondes
lumineuses des domaines bleu (A ~ 400 nm) puis rouge (A ~ 600 nm). On pourra exploiter
le fait que he >~ 1,2eV xum et on exprimera £ en eV.

Il. L’équation de Klein—Gordon

Lors du développement de la mécanique quantique (ou mécanique ondulatoire), 'onde de ma-
tiere W(7,t) a d’abord été considérée comme solution de I’équation de SCHRODINGER (4) :

K2 o ;
VAT VAUFED = ih oih= - etit=—1 (4)
2m ot 2

m

pour une particule de masse m repérée par sa positon 7 et soumise a l'interaction décrite par
la fonction potentiel scalaire V(7). En 1926, KLEIN et GORDON en ont proposé une version
modifiée qu’on écrira :

2
R*GAT + (lhaat — V(’F)) U(rt) = m2ctW(rt) (5)

Dans la suite on s’intéressera exclusivement aux solutions de I'une ou l'autre équation, de la
forme :

W(rt) =y | (B = p(E))

oll yﬂ est une certaine constante complexe, x est I'une des coordonnées cartésiennes de 7, I > 0
est 'énergie de la particule et p(£) > 0 son impulsion.

d — 20. L’état associé & cette fonction d’onde est-il stationnaire 7
Dans quel sens le mouvement de la particule décrite par cette onde a-t-il lieu?
Exprimer les vitesses de phase v, et de groupe v, en fonction de E, de p(£) et de sa
dérivée.

1 — 21. Exprimer p(E) et v,(£) dans le cas d’une particule vérifiant ’équation de SCHRODINGER

dans un domaine ot V' est constant. En déduire le caractére relativiste ou non du modéle
associé a I’équation de SCHRODINGER.

1 — 22. Répondre aux mémes questions dans le cas d’une particule vérifiant I’équation de KLEIN—
GORDON (5).
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On s’intéresse enfin & la résolution du probléme physique suivant : la particule étudiée est
libre (V = 0) pour z < 0 et z > a et pourvue d’une énergie E, tandis que, dans l'intervalle
x € [0,a], elle est soumise & une interaction caractérisée par V = Vy > E (figure 5) et méme
Vo — E > mc®. Les solutions de 'équation (de SCHRODINGER ou de KLEIN-GORDON) seront
donc écrites, pour x < 0 et x > @, sous les formes respectives :

U(z < 0,t) = ¢ exp [_; (Bt — pm)] + R exp [_; (Bt + pg;)]
U(z > at) = T, exp [_fll (Bt — pa:)]
ou 1" et R sont deux constantes complexes.
V(x)
W— -~
IS =Vo— F > mc®
E' ______________________________
T = %e—l t—pa + Rwoe_iEthm = I_Oe_lEt?m
> T
0 a

FIGURE 5 — Barriére de potentiel

On se place d’abord dans le cas de ’équation de SCHRODINGER.

1 — 23. Quelle est la nature de 'onde dans le domaine z € [0,a] ?
Quelles relations permettent de calculer R et T'7? On ne demande pas de les exprimer ici!
Quel phénomeéne physique peut-on mettre ainsi en évidence ?
Quelle est I'interprétation physique de |T??
On se place maintenant dans le cas de I’équation de KLEIN-(GORDON.
1 — 24. Quelle est la nature de Ponde dans le domaine z € [0,a] 7 On notera qu’en introduisant

(e — mc?)(e + mc?)

> > 0.

e=F—-Vy,onag® =

c
Les mémes relations que dans I’étude de la barriére de potentiel dans le cadre de I’équation de
SCHRODINGER conduisent, pour onde de KLEIN-GORDON, & la relation (que 'on admettra) :

1 1

TP = avec o = — E+§ et (p:@
. - 2

|cos p — iarsin | 2\q¢ p h

d — 25. Déterminer la valeur maximale de |T|%>. Commenter.
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Pb 2 : Réflexion totale frustrée et effet tunnel

Les deux parties I et II de ce sujet sont indépendantes.
Je vous conseille de commencer par la partie II.
Certaines valeurs numériques sont regroupées en fin d’énoncé.

Certaines questions peu ou pas guidées, demandent de I’initiative de la part du candidat. Leur
énoncé est repéré par une barre en marge. Il est alors demand¢ d’expliciter clairement la démarche,
les choix et de les illustrer, le cas échéant, par un schéma. Toute démarche engagée, méme non
aboutie, et toute prise d’initiative seront valorisées. Le baréme prend en compte le temps nécessaire
a la résolution de ces questions.

I Capture d’empreintes digitales par réflexion totale frustrée

La sous-partie I.A. introduit le phénoméne ¢étudié. Les sous-parties I.B et I.C sont liées par une
analogie qu’on souhaite établir entre deux situations, I’une se présentant en physique quantique et
I’autre en optique ondulatoire. Néanmoins, en dehors des questions développant 1’analogie, les
sous-parties sont congues de manicre relativement autonomes.

Il existe différentes technologies de capteurs d’empreinte digitale,
c’est-a-dire de dispositifs permettant d’obtenir une image numérisée
d’une empreinte digitale, le plus souvent & des fins d’identification.
Certaines de ces technologies sont embarquées dans des smartphones.
La technologie dite « capteur optique d’empreinte digitale » est trés
employée, elle repose sur le phénomene de réflexion totale frustrée qui
est I’objet de cette étude.

Le doigt est posé a plat sur I’hypoténuse d’un prisme droit isocéle taillé
dans un verre d’indice optique noté n. Il est éclairé par une diode laser
de longueur d’onde Ao dans le vide. L’image de I’empreinte digitale a
travers un systéme optique est formée sur un capteur CCD puis
numérisée. La figure 2 décrit le schéma de principe de ce dispositif.

a

Figure 1 Capteur d’empreinte digitale
(Wikimedia, Rachmaninof, 2009-10-21)

Systéme optique b

st oo
I N

LED
Figure 2 Principe d’un capteur optique d’empreinte digitale

CCD

Port série

En premicre approche, le systéme optique se résume a la traversée d’un dioptre (D) et d’une lentille
convergente (L) (figure 3). Si 4 est un point objet de I’empreinte digitale, alors on note 4; I’image de 4 a
travers le dioptre (D) et A’ celle de 4, a travers la lentille (£) :

A2 sp —E 5
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(£) CCD

axe optique

écran

Figure 3 Schéma optique
IL.A. Réflexion totale

Q9. Enoncer soigneusement les lois de Snell-Descartes.
Q 10. Définir la réflexion totale et en donner les conditions.

Q 11. Etant donné la position de I’empreinte digitale, si on s’en tient strictement & 1’énoncé des lois de
Descartes, peut-on éclairer le doigt, afin de former son image sur le capteur CCD ? On rappelle que n = 1,5.
(1l faut montrer ici qu’il y a réflexion totale du faisceau d’éclairage !).

Dans le montage proposé, la lentille permettra d’obtenir I’image du doigt sur I’écran du CCD. Néanmoins,
il faut aborder I’optique ondulatoire pour comprendre comment le doigt est éclairé au travers du prisme.

L.B — Passage d’une onde électromagnétique sur un dioptre
I.B.1) Relation de dispersion

Q 12. Rappeler les équations de Maxwell dans une région vide de courant et de charge. En déduire
I’équation de propagation d’une onde électromagnétique, sa relation de dispersion, sa vitesse de phase. Le
vide est-il dispersif ?

Q 13. On admet que dans un milieu linéaire, homogene, isotrope et parfaitement transparent, tout se passe
comme si I’on remplagait dans la relation de dispersion précédente la permittivité du vide &, par la grandeur
n*eo, appelée permittivité du milieu, ou 7 est I’indice optique du milieu (n est un réel supérieur a 1). On
rappelle que la valeur de I’indice optique d’un matériau varie avec la longueur d’onde A dans le vide. En
déduire la nouvelle relation de dispersion et I’expression de la vitesse de phase. Le milieu est-il dispersif ?

I.B.2) Coefficients de réflexion et de transmission

On considére une onde électromagnétique monochromatique incidente polarisée rectilignement selon la
direction € y etse propageant dans la direction donnée par son vecteur d’onde k; = kix€y + ki,€,. On note

I, = (éz , lZi ) I’angle d’incidence de cette onde sur le dioptre plan d’équation z = 0. Le champ électrique

s’écrit :
E, = E8, exp(— (ot — k, OM))

On note kg = w/c, le module de son vecteur d’onde dans le vide. Au passage du dioptre, cette onde donne
naissance :

— a une onde réfléchie Er =TIE.€, exp(—j(awt - IZ, W)) ,

— a une onde transmise (onde réfractée) Et =1E,€, exp(-j(at - |Zt m)) ,

ou r et ¢ sont des nombres complexes appelées coefficients de réflexion et de transmission en amplitude.
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Figure 7 Réflexion et réfraction d’une onde électromagnétique sur un dioptre

De méme, on note k, = k€, + k,,€, (avec k. <0) etk; = ki€, + k¢,
Enfin, on admet que les champs électriques et magnétiques sont continus a la traversée de ce dioptre.

Q 14. Montrer que, en tout point du dioptre, exp(jkiyx) + 1rexp(jk,»x) = texp(jkeex))  (Relation
(L1)).

Q 15. En déduire une relation notée (1.2) entre r et .

Q 16. On admet que (I.1) conduit a I’égalité k. = k.« = kx. En déduire les deux relations de Descartes portant
sur les angles i1, i’1 et i.

Q 17. A partir de I’étude du champ magnétique, trouver une deuxiéme équation notée (I.3) reliant r et .

La solution du systéme d’équation conduit a8 '=—— et t = , ou l’on a posé v = @, qui est

1+v 1+v Kiz
éventuellement un nombre complexe. Nous reviendrons sur ces coefficients dans la sous-partie 1.C.
Néanmoins, on remarque immeédiatement qu’on n’a jamais ¢ = 0, méme dans le cas d’une réflexion totale.
Il y a toujours une onde électromagnétique transmise. Dans la suite de cette sous-partie, nous nous
intéressons a la forme que prend cette onde transmise.

Q 18. Expliciter les composantes du vecteur d’onde Izi en fonction de n, ko et i.

Q 19. En remarquant que ké = ko2 - kti, exprimer ké en fonction de n, ko et i1. En déduire I’expression
de k. (on distinguera deux cas). Ecrire le champ électrique transmis complexe dans les deux cas (sans

chercher a expliciter f).

Q 20. Quelle est la forme de I’onde transmise dans le cas d’une réflexion totale ? Comment la qualifie-t-
on ? Exprimer la longueur typique, notée o, de pénétration de cette onde dans la direction €,. Expliquer

qualitativement pourquoi il n’y pas, en moyenne, de puissance propagée dans la direction €, .

I.C — Barriere de potentiel et effet tunnel en physique quantique. Analogie avec la
réflexion totale frustrée

En physique quantique, c’est la description ondulatoire de la mati¢re qui permet d’expliquer I’effet tunnel.
En effet, 1a ou une particule décrite dans le cadre de la mécanique classique est arrétée au pied d’une barriére
de potentiel, une particule décrite dans le cadre de la physique quantique voit sa fonction d’onde «déborder»
légérement dans la barriere de potentiel sous forme d’onde évanescente. De la méme manicre, 1a ou
I’optique géométrique interdit & un rayon lumineux de franchir un dioptre en situation de réflexion totale,
I’optique ondulatoire montre que I’onde électromagnétique «débordex» 1égérement du dioptre sous la forme
d’une onde évanescente.

L’objectif de cette sous-partie est donc de construire une analogie entre le comportement d’une onde de de
Broglie devant une barriére de potentiel, rencontré en physique quantique, et celui d’une onde
électromagnétique dans le cas d’une réflexion totale.

On rappelle que dans le cas d’un état stationnaire la fonction d’onde associée a une particule de masse m
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vérifie I’équation de Schrodinger indépendante du temps : dans une modélisation a une dimension spatiale,
on écrit sa fonction d’onde W(x,t) = ®(x) exp(—jwt) ou O(x) vérifie I’équation

2

—h—ACD(X) +V (X)P(x) = ED(X)
2m

ou £ = E. + V(x) est ’énergie totale de la particule, E. étant son énergie cinétique.

I.C.1) Marche de potentiel

On rappelle que la fonction d’onde ainsi que sa dérivée spatiale sont continues en un point qui connait une
variation finie de potentiel. On considére le profil de potentiel suivant, qui présente une marche en x =0,

Vx)=0six <Oet V(x)=Vo>0six>0

et une particule d’énergie £ qui, provenant de la région des x négatifs, arrive sur la «marche» de potentiel
de hauteur V.

Q 21. Montrer que dans la région x < 0 ou V(x) = 0, la solution générale est de la forme
Dg(x) = A.exp(jkx) + B.exp(—jkx)

ou k est choisi positif. Exprimer & en fonction de E et de la masse m de la particule.

Q 22. Exprimer de méme la solution générale de la fonction d’onde dans la région x > 0 sous la forme
Dp(x) = C.exp(jgx) + D.exp(—jgx).

La grandeur ¢, éventuellement complexe, est choisie avec R(g) > 0 et, si F(g) = 0, avec I(g) > 0. En
distinguant les situations £ > ¥V et E < Vj, exprimer g en fonction de E, Vy et m. Que peut-on dire de D ?

Q 23. Exprimer les coefficients complexes r et ¢ de réflexion et de transmission en amplitude en fonction
de la grandeur v = g/k.

Q 24. Dans cette question, on se place dans le cas £ > V4. Rappeler pour une onde plane harmonique

I’expression du vecteur densité de courant de probabilité, noté J , en fonction du vecteur d’onde et de la
fonction d’onde. Donner la définition des coefficients réels R et T de réflexion et de transmission en

probabilité en fonction des vecteurs densité de courant de probabilité incident, réfléchi et transmis J N

et J . - En déduire I’expression de R et T en fonction de v, r, ¢, puis de v seulement. Vérifier alors R + T'=

1 et interpréter.

Q 25. Dans cette question, on se place dans le cas £ < Vj. Expliquer qualitativement pourquoi 7'= 0.

I.C.2) Synthése 1.B.2 et 1.C.1

Le tableau ci-dessous met en analogie la barriére de potentiel en physique quantique et le franchissement
d’un dioptre en optique ondulatoire.

Barriére de potentiel Vo> E Réflexion totale n.sini; >1
hq? k2 +k2=k2

q +V0 — E tz X 0
2m

2 i 2 2
Vo>0 = ¢’<0etg € JR ktx>k0:>
Onde ¢évanescente : atténuation au lieu de | Onde évanescente : selon €, , atténuation au lieu de
propagation propagation
q K, 1-v

V=== [etr=? \_/2_—=et§=——
- k B kiz . 1 + Q

Existence d’une amplitude de probabilité non nulle | Existence de [?s non nul au dela du dioptre (sur une
au dela de la marche de potentiel (sur une petite | petite profondeur )
profondeur &)
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Q 26. Donner le contenu des cing masques [?j du tableau.

1.C.3) Effet tunnel et réflexion totale frustrée
Soit le profil de potentiel
Vx)=0six<0etx>L et V(X) =Vp>0si0<x<L

Jam, - E) K . v 2mE

On suppose E < Vyet on pose kK = ——————— et V=— ou K =
h k h

On considere une particule d’énergie E qui provient de la région des x négatifs. La figure 8 donne sa fonction

d’onde dans les trois régions du potentiel. On montre alors que le coefficient 7" de transmission en

probabilité s’écrit T =~ exp(—2«L).

V(x)

Région 1 Région 2 Région 3

Vo

¢ (x) = Aexp(jkr) + rAexp(—jkz) | dy(2) = ud exp(—rz) + vAexp(—r(L — z)) | ¢y(z) = tAexp(jk(z — L))
El
0 L I

Figure 8 Formes d’une onde de de Broglie dans une barri¢re de potentiel

L’effet tunnel est associé au fait que I’onde évanescente dans la barriére « déborde » légérement au-dela de
la barriére pour transmettre dans la Région 3 une onde a nouveau progressive. De maniére analogue, dans
la situation de la réflexion totale, I’onde électromagnétique « déborde » 1égerement au-dela du dioptre dans
la situation d’une réflexion totale si bien qu’en approchant un deuxiéme dioptre, on peut permettre la
transmission d’une onde progressive, ce qui est la réflexion totale frustrée. Cette sous-partie propose
d’étudier cette configuration en développant 1’analogie avec I’effet tunnel.

On considére une onde électromagnétique subissant une réflexion totale dans un prisme rectangle isocéle
d’indice n = 1,5. On approche téte-béche un second prisme rectangle isocéle du premier, de sorte que leurs
hypoténuses respectives soient paralleles entre elles, comme indiqué sur la figure 9, et on note L la distance
qui les sépare dans la direction horizontale. Les coefficients 7 et R désignent respectivement les coefficients
de transmission et de réflexion en énergie. Lorsque L tend vers I’infini, on retrouve la situation d’un seul
prisme avec une réflexion totale, a savoir 7= 0 et R = 1. Mais lorsque L devient suffisamment petit, 7'n’est
plus nul : c’est le phénomene de réflexion totale frustrée.

'IF}-i

Figure 9

Q 27. On suppose que la créte d’un sillon est en contact avec le prisme et que le creux d’un sillon en est
distant de e = 30 pm. La diode laser émet a la longueur d’onde 4o = 630 nm. A I’aide de I’analogie
développée, évaluer le coefficient de transmission en puissance du creux du sillon. Conclure 1’étude en
expliquant en quoi le dispositif d’un tel capteur optique d’empreinte digitale repose sur le principe de
réflexion totale frustrée.
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IT Stockage de déchets radioactifs a haute activité

II.A — Energie cinétique des particules o émises et émission thermigue d’un échantillon
radioactif

I1.A.1) Quelques données sur la radioactivité alpha

La radioactivité alpha est le processus de désintégration d’un nucléide radioactif Q X selon le bilan suivant
Ay _ A4 4
;X =7,X +;He

ou le noyau ‘2‘ He est appelé particule alpha, tandis que le noyau Q X' est appelé pére et le noyau Qig X
fils. En pratique, la radioactivité alpha concerne les noyaux lourds, Z ~ 82 =96 et 4 #210 — 250.
La constante radioactive 4 du radionucléide est son taux de désintégration par seconde. En notant N(¢ ) le
nombre de radionucléides dans un échantillon donné,

_dN

__ dt

N (t)
La durée de demi-vie est le temps T = In2/4 pendant lequel la moitié des radionucléides d’un échantillon
donné se désintégrent.

L’activité d’un radionucléide, exprimée en becquerels (Bq), est le nombre de désintégrations par seconde
observées dans un échantillon donné.

La figure 10 met en relation les durées de demi-vie et 1’énergie des particules alpha E,, de quelques isotopes
de I’'uranium (Z = 92) et du polonium (Z = 84). La loi vérifiée empiriquement (courbe passant au milieu des
points expérimentaux) est

C,

JE.

ou, pour un ¢lément chimique donné, C; et C; sont deux constantes.

log,, T =

+C,

3 —— Polonium
10° Uranium
103

=)
=
&~ 10°°
107
%\\Hh
1071 =
4 45 5 5 6 65 7 75 8 85 9

E, (MeV)
Figure 10 Demi-vie fonction de E,
I1.A.2) Modéle de Gamow (1928)

On suppose que la particule alpha préexiste a ’intérieur du noyau ?X et est piégée dans un puits de

potentiel qui modélise I'interaction forte entre nucléons, dont la portée n’excéde pas une dizaine de
femtometres, soit le rayon du noyau, noté¢ R. A I’extérieur du noyau, soit a une distance » > R comptée

depuis son centre, ¢’est I’interaction coulombienne, répulsive, entre la particule alpha ;‘ He (de charge +2e,

ou e est la charge ¢lémentaire) et le noyau fils Qig X (de charge +(Z — 2)e) qui prédomine.
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Désintégration alpha du Polonium-212 (Z=84)

£
y

Désintégration alpha du Polonium-212 (Z=84)

& S -

(A) (B)

30

1
3
Energie particule alpha (MeV)

Energie particule alpha (MeV)

S i
_— _— e 1oy F T wm
895 w sos |V
MeV MeV A AN AR
| L } ! L ! ! 4 | | ! | | L ! 1
40 30 20 10| 10 20 30 40 10 20 30 40

E cinétique

Distance des centres en fermis Distance des centres ('Il_fentli.\‘

Figure 11 D’apres http://www.laradioactivite.com/

Classiquement, la barriére de potentiel assure la stabilité du noyau. Gamow interpréete la radioactivité alpha
par effet tunnel. L’onde de matiére associée a la particule alpha n’est pas strictement localisée si bien qu’il
existe une probabilité de I’observer en dehors du noyau. La particule alpha, a I’intérieur du noyau, possede
une énergie cinétique : elle vient heurter la barriére a une fréquence £, il y a une probabilité P qu’elle traverse
la barriere de potentiel. On montre alors que la constante radioactive s’écrit A = Pf.

Calcul de ’effet tunnel

L’énergie potentielle coulombienne, appelée abusivement « potentiel » selon les habitudes de la physique
quantique, est notée V(r).

V(r)
Vi
Vo= 10 MeV
E| Vm = V(R) avce R = 7,5 — 8,5 fm
R’ tel que M(R’)=E
R R’ r
-
Figure 12

Le calcul de la probabilité de transmission par effet tunnel pour le profil illustré figure 12 a été proposé en
1926 par Brillouin, Kramers et Wentzel (approximation dite BKW) et s’exprime ainsi :

P =exp(—y) avec y = %I\/Zm(\/(r) —E,)dr.

2

. . e . .
En introduisant la constante & = e e appelée constante de structure fine, on obtient :
e hc

~ 2Z - arfame?| o —
A WA

La fréquence de collision de la particule alpha avec la barriére s’obtient par une approche classique :

¢ [2(E, +Vy)
" 2R mc?
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I1.A.3) Questions

Q 28.

Q 29.
Q 30.

Q3l.

Q32.

Ecrire 1’énergie potentielle d’interaction coulombienne, notée ¥(r), entre la particule alpha et le
noyau fils, en fonction de Z, e et de la distance r qui les sépare. On introduira la constante de structure
fine.

Justifier la formule 7' = In2/A.

Exprimer 1’énergie cinétique de la particule alpha, en fonction de son énergie mécanique E,, quand
elle est a I’intérieur du puits. Justifier la formule

c_c [2(E, Vo)
2R mc?

Avec 1 = Pf, et moyennant des approximations qu’on explicitera, justifier la formule empirique pour
un élément chimique

C
l0g10 T = \/Tia + Cz.

On considére un échantillon radioactif alpha d’activité massique 4, = 3 x 10! Bq-g!. Définir la
grandeur intensive « émission thermique massique de 1’échantillon », notée w (W -kg™!). Estimer un
ordre de grandeur de w.

Q 33. Que représente la grandeur pw ou p est la masse volumique de 1’échantillon ?
Données
Célérité de la lumiére dans le vide c=3,00x10m-s!
Constante d’Avogadro N4=6,02 x 102 mol1
Charge élémentaire e=1,6x10"C
Permittivité du vide g =8,85x 10" Fm™'
Electron-volt 1eV=1,6x10"]J
Constante de Planck réduite h =6,582x10"eV s
Constante de structure fine e? 1
“= 47, hc N 137
Masse de la particule alpha m = 3727 MeV/c?
Préfixes du systéme international d’unités

Facteur Nom Symbole Facteur Nom Symbole

10! déca da 10! déci d

10? hecto h 102 centi c

103 kilo k 1073 milli m

108 méga M 106 micro M

10° giga G 10 nano u

102 téra T 10712 pico P

103 péta P 101 femto F

1018 exa E 1018 atto A

107! zetta Z 10 zepto Z

10% yotta Y 10 yocto y
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