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Devoir en temps libre n°13

Problème I

Soit E euclidien. On dé�nit l'ensemble des endomorphismes symétriques dé�nis positifs par

S ++(E) = {f ∈ S (E) | ∀x ∈ E∖ {0E} ⟨f(x), x⟩ > 0}

Aucun résultat sur S ++(E) n'est supposé connu. Soit u ∈ S ++(E).

1. Montrer, sans recours au théorème spectral, que u ∈ GL(E) puis établir u−1 ∈ S ++(E).

2. Justi�er qu'il existe B = (e1, . . . , en) une base orthonormée de vecteurs propres de u et
que Sp (u) ⊂ ] 0 ; +∞ [.
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(a) Étudier les variations de θ.

(b) En déduire ∀λ ∈ Sp (u) θ(λ) ⩽
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4. Établir ∀(a, b) ∈ R2
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En déduire

∀x ∈ E
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5. Pour x ∈ E avec x =
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en fonction des xi, λi et θ.

6. Conclure en montrant l'inégalité de Kantorovich :

∀x ∈ E ⟨u(x), x⟩ ⟨u−1(x), x⟩ ⩽ 1
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Problème II

Montrer que l'application

φ :

®
On(R)× S ++

n (R) −→ GLn(R)

(O, S) 7−→ OS

est un homéomorphisme, i.e. une application bijective, continue dont la réciproque est continue.

On pourra commencer par redémontrer l'existence et unicité d'une racine carrée matricielle dans
S +

n (R).
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