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Feuille d'exercices n°55

Exercice 1 (**)

Soit E euclidien et u ∈ L (E). Établir

Im u∗ = (Ker u)⊥ et Ker u∗ = (Im u)⊥

Corrigé : On a

x ∈ Ker u∗ ⇐⇒ u∗(x) ∈ E⊥ ⇐⇒ ∀y ∈ E ⟨u∗(x), y⟩ = 0

⇐⇒ ∀y ∈ E ⟨x, u(y)⟩ = 0 ⇐⇒ x ∈ (Im u)⊥

En appliquant cette relation à u∗ au lieu de u puis en passant à l'orthogonal, on conclut

Im u∗ = (Ker u)⊥ et Ker u∗ = (Im u)⊥

Exercice 2 (*)

Soit E = Rn avec n entier non nul nul et a un vecteur normé de E. Déterminer la matrice dans
la base canonique de sVect (a)⊥ .

Corrigé : Soit x ∈ E. Notons S = matC sVect (a)⊥ , A = matC a et X = matCx. On a

sVect (a)⊥(x) = x− 2⟨x, a⟩a

Matriciellement, en exploitant l'associativité du produit matriciel, on trouve

∀X ∈ Mn,1(R) SX = X− 2A⟨A,X⟩

= X− 2A(A⊤X) = X− 2(AA⊤)X = (In − 2AA⊤)X

Ainsi S = In − 2AA⊤

Exercice 3 (*)

Soit A = (ai,j) ∈ On(R) avec n entier non nul. Montrer :∑
1⩽i,j⩽n

|ai,j| ⩽ n
√
n

Corrigé : 1. Soit E = Mn(R) muni du produit scalaire canonique. En considérant B =(
bi,j

)
1⩽i,j⩽n

∈ E avec

∀(i, j) ∈ [[ 1 ; n ]]2 bi,j =

®
1 si ai,j > 0

−1 sinon

il vient

⟨A,B⟩ =
∑

1⩽i,j⩽n

|ai,j| ∥A∥2 = Tr (A⊤A) = Tr (In) = n ∥B∥2 =
∑

1⩽i,j⩽n

b2i,j =
∑

1⩽i,j⩽n

1 = n2

Avec l'inégalité de Cauchy-Schwarz, on conclut
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∑
1⩽i,j⩽n

|ai,j| = ⟨A,B⟩ ⩽ ∥A∥∥B∥ = n
√
n

Variante : On peut aussi majorer
n∑

i=1

|ai,j| ⩽
√
n en invoquant l'inégalité de Cauchy-Schwarz

dans Rn et en utilisant le fait que les colonnes de A forment une base orthonormée de Rn puis
sommer en j.

Exercice 4 (*)

Soit E euclidien. Soient F et G des sev orthogonaux de E. Montrer que

sF ◦ sG = sG ◦ sF = s(F⊕G)⊥

Corrigé : On a la somme directe

E = F⊕G⊕ (F⊕G)⊥

Pour x ∈ E, on décompose x = a+ b+ c avec (a, b, c) ∈ F×G× (F⊕G)⊥. Puis

sF ◦ sG(x) = sF(−a+ b− c) = −a− b+ c et s(F⊕G)⊥(x) = −a− b+ c

La dernière égalité vient par symétrie des rôles et on conclut

sF ◦ sG = sG ◦ sF = s(F⊕G)⊥

Exercice 5 (**)

Soit E = Mn(R) avec n entier non nul nul muni du produit scalaire canonique. On pose

∀M ∈ E φ(M) = M− 2

n
Tr (M)In

1. Montrer que φ ∈ O(E). Calculer φ2 puis décrire φ.

2. Soit ψ ∈ O(E). Décrire ψ ◦ φ ◦ ψ−1.

Corrigé : 1. On a φ ∈ L (E) sans di�culté puis on véri�e

∀(M,N) ∈ E2 ⟨φ(M), φ(N)⟩ = ⟨M,N⟩

Ainsi φ ∈ O(E)

On trouve φ2 = id et φ(In) = −In

Ainsi, l'application φ est une symétrie et une isométrie donc une symétrie orthogonale. Pour
M ∈ E, il vient

φ(M) = M ⇐⇒ M ∈ Ker Tr

d'où Ker (φ − id ) = Ker Tr . On a Vect (In) ⊂ Ker (φ + id ) et on sait que pour une symétrie
orthogonale

E = Ker (φ− id )
⊥
⊕Ker (φ+ id )

Comme Ker (φ− id ) est un hyperplan, son supplémentaire Ker (φ− id ) est une droite vectorielle
et on conclut

L'application φ est la symétrie orthogonale par rapport à Ker Tr parallèlement à Vect (In).
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Ce résultat est en fait �agrant sur l'écriture de φ(M) pour M ∈ E. Posant U = In/∥In∥ = In/
√
n,

on a

∀M ∈ E φ(M) = M− 2⟨M,U⟩U

On reconnaît alors φ = sVect (U)⊥ = sVect (In)⊥

2. Soit M ∈ E. On a

ψ ◦ φ ◦ ψ−1(M) = ψ (ψ−1(M)− 2⟨ψ−1(M),U⟩U) = M− 2⟨ψ−1(M),U⟩ψ(U)

Par conservation du produit scalaire ou en observant ψ−1 = ψ∗, on a

⟨ψ−1(M),U⟩ = ⟨M, ψ(U)⟩

Ainsi ψ ◦ φ ◦ ψ−1(M) = M− 2⟨M, ψ(U)⟩ψ(U)

D'où ψ ◦ φ ◦ ψ−1 = sVect (In)⊥

Exercice 6 (**)

Dans E euclidien, soit u ∈ O(E) et v = id −u.

1. Montrer que Ker v = (Im v)⊥.

2. Montrer que pour x ∈ E, lim
n→+∞

∥ 1
n

n−1∑
k=0

uk(x)− pKer v(x)∥ = 0

Corrigé : 1. Soit (x, y) ∈ Ker v × E. On a

⟨x, v(y)⟩ = ⟨x, y⟩ − ⟨x, u(y)⟩︸ ︷︷ ︸
=⟨u(x),u(y)⟩

= 0

D'où Ker v ⊂ Im v⊥ et par égalité des dimensions avec le théorème du rang, on conclut

Ker v = (Im v)⊥

2. On a E = Im v
⊥
⊕ Ker v

Soit x ∈ E. On décompose x = (b− u(b)) + a avec (b, a) ∈ E×Ker v. On a

1

n

n−1∑
k=0

uk(x) =
1

n

n−1∑
k=0

[
uk(b)− uk+1(b)

]
+

1

n

n−1∑
k=0

a =
1

n
(b− un(b)) + a

Comme u ∈ O(E), on a également un ∈ O(E) puis

∥ 1
n

n−1∑
k=0

uk(x)− pKer v(x)∥ ⩽
1

n
(∥b∥+ ∥un(b)∥) = 2∥b∥

n

On conclut ∥ 1
n

n−1∑
k=0

uk(x)− pKer v(x)∥ −−−→
n→∞

0
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Exercice 7 (**)

Soit a vecteur unitaire d'un espace euclidien E, α un réel et fα dé�nie par

∀x ∈ E fα(x) = x+ α⟨x, a⟩a
1. Justi�er que fα ∈ L (E).

2. Montrer que fα ∈ GL(E) ⇐⇒ α ̸= −1. Décrire f−1.

3. Déterminer une condition nécessaire et su�sante sur α pour avoir fα ∈ O(E). Quand la
condition est réalisée, décrire fα.

Corrigé : 1. L'application fα est clairement à valeurs dans E, linéaire par linéarité du produit
scalaire en la première variable. Ainsi

fα ∈ L (E)

2. On complète la famille (a) en B base orthonormée de E. Par suite, on a matBfα = diag(1 +
α, 1, . . . , 1). On en déduit det fα = 1 + α et

∀x ∈ E f−1(x) = x− ⟨x, a⟩a = (id −pVect (a))(x) = pVect (a)⊥(x)

Ainsi fα ∈ GL(E) ⇐⇒ α ̸= −1 et f−1 = pVect (a)⊥

3. On a fα ∈ O(E) ⇐⇒ matBfα ∈ O(n)

et clairement matBfα ∈ O(n) ⇐⇒ (1 + α)2 = 1 ⇐⇒ α ∈ {0,−2}

On conclut fα ∈ O(E) ⇐⇒ α ∈ {0,−2} et f0 = id , f−2 = sVect (a)⊥

Exercice 8 (**)

Soit E euclidien et F, G des sev de E.

1. Déterminer (F + G)⊥.

2. En déduire (F ∩G)⊥.

3. On suppose F⊥⊥G⊥. Montrer

pF + pG − pF∩G = id et pF ◦ pG = pG ◦ pF = pF∩G

Corrigé : 1. On a F ⊂ F + G et G ⊂ F + G d'où (F + G)⊥ ⊂ F⊥ et (F + G)⊥ ⊂ G⊥. Ainsi, on
a (F + G)⊥ ⊂ F⊥ ∩G⊥. Réciproquement, soit x ∈ F⊥ ∩G⊥ et (u, v) ∈ F×G. On a

⟨x, u+ v⟩ = ⟨x, u⟩+ ⟨x, v⟩ = 0

d'où l'inclusion F⊥ ∩G⊥ ⊂ (F + G)⊥ et par conséquent

F⊥ ∩G⊥ = (F + G)⊥

2. En appliquant le résultat antérieur à F⊥ et G⊥, il vient

F ∩G = (F⊥ +G⊥)⊥

Passant à l'orthogonal, on obtient (F ∩G)⊥ = F⊥ +G⊥

3. On a E = F⊥ ⊕G⊥ ⊕ (F⊥ ⊕G⊥)⊥ = F⊥ ⊕G⊥ ⊕ (F ∩G)

Soit x ∈ E. On décompose
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x = a+ b+ c avec (a, b, c) ∈ F⊥ ×G⊥ × (F ∩G)

Il vient pF(x) = b+ c pG(x) = a+ c pF∩G(x) = c

d'où (pF + pG − pF∩G)(x) = a+ b+ c = x

et pF ◦ pG(x) = pF(a+ c) = c = pF∩G(x)

et l'autre égalité suit par symétrie des rôles. Ainsi

pF + pG − pF∩G = id et pF ◦ pG = pG ◦ pF = pF∩G

Variante : Avec la décomposition en somme directe

E = F⊥ ⊕G⊥ ⊕ (F⊥ ⊕G⊥)⊥ = F⊥ ⊕G⊥ ⊕ (F ∩G)

en considérant la famille de projecteurs associés, il vient

pF⊥ + pG⊥ + pF∩G = id

autrement dit id −pF + id −pG + pF∩G = id

et on retrouve la première égalité. En composant celle-ci par pF à droite ou gauche, il vient

pF = pF ◦ id = pF ◦ (pF + pG − pF∩G) = pF + pF ◦ pG − pF ◦ pF∩G︸ ︷︷ ︸ = pF∩G

et de même avec pG pour les dernières égalités.

Exercice 9 (**)

Soit E euclidien de dimension n entier non nul, B une base orthonormée de E et (x1, . . . , xn) ∈
En. Montrer

|detB(x1, . . . , xn)| ⩽
n∏

k=1

∥xk∥

Corrigé : Si (x1, . . . , xn) est liée, l'inégalité est vraie. Supposons (x1, . . . , xn) libre et soit
L = (v1, . . . , vn) la base orthonormée obtenue par l'algorithme de Gram-Schmidt appliqué à
(x1, . . . , xn). On note P = matBL . On a

matB(x1, . . . , xn) = matBL ×matL (x1, . . . , xn)

La matrice P est matrice de passage entre deux bases orthonormées de E d'où P ∈ On(R). Par
suite

detB(x1, . . . , xn) = det(P) detL (x1, . . . , xn) = +− detL (x1, . . . , xn)

et matL (x1, . . . , xn) =
(
⟨xj, vi⟩

)
(i,j)∈[[ 1 ;n ]]2

Or, on a ∀k ∈ [[ 1 ; n ]] Vect (x1, . . . , xk) = Vect (v1, . . . , vk)

d'où ∀i > j ⟨xj, vi⟩ = 0

en le voyant soit par orthogonalité, soit parce que xj est combinaison linéaire de (v1, . . . , vj) d'où
la nullité des coe�cients en vi pour i > j. Ainsi

matL (x1, . . . , xn) =

à
⟨x1, v1⟩ . . . . . . ⟨xn, v1⟩

0
. . .

...
...

. . .
. . .

...
0 . . . 0 ⟨xn, vn⟩

í
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Ainsi |detB(x1, . . . , xn)| =
n∏

k=1

|⟨xk, vk⟩|

et ∀k ∈ [[ 1 ; n ]] ∥xk∥ =

 
n∑

i=1

⟨xk, vi⟩2 ⩾ |⟨xk, vk⟩|

Finalement |detB(x1, . . . , xn)| ⩽
n∏

k=1

∥xk∥

Remarque : Il s'agit de l'inégalité d'Hadamard.

Exercice 10 (**)

Soit E euclidien de dimension n entier non nul et (u1, . . . , un) ∈ En. On pose

∀x ∈ E f(x) =
n∑

i=1

⟨x, ui⟩ui

1. Montrer que f ∈ L (E).

2. Si (u1, . . . , un) est une base orthonormée de E, déterminer f .

3. On suppose f ∈ O(E).

(a) Montrer que (u1, . . . , un) est une base de E.
(b) Pour i ∈ [[ 1 ; n ]], calculer ⟨f(ui), ui⟩ et en déduire que ∥ui∥ ∈ ] 0 ; 1 ].

(c) Pour i ∈ [[ 1 ; n ]], en considérant x ∈ Vect
(
(uk)k∈[[ 1 ;n ]]∖{i}

)⊥ ∖ {0E}, montrer que
(u1, . . . , un) est une base orthonormée.

Corrigé : 1. Immédiat.

2. On trouve f = pVect (u1,...,un) = id

3.(a) On a E = Im f ⊂ Vect (u1, . . . , un) ⊂ E

La famille (u1, . . . , un) est génératrice et de cardinal dimE d'où

La famille (u1, . . . , un) est une base de E.

3.(b) Soit i ∈ [[ 1 ; n ]]. On a

⟨f(ui), ui⟩ = ∥ui∥4 +
∑

k∈[[ 1 ;n ]]∖{i}
⟨uk, ui⟩2

et d'après l'inégalité de Cauchy-Schwarz

⟨f(ui), ui⟩ ⩽ ∥f(ui)∥∥ui∥ = ∥ui∥2

Ainsi ∥ui∥4 ⩽ ∥ui∥2

D'où ∀i ∈ [[ 1 ; n ]] ∥ui∥ ∈ ] 0 ; 1 ]

3.(c) Soit i ∈ [[ 1 ; n ]] et x ∈ Vect
(
(uk)k∈[[ 1 ;n ]]∖{i}

)⊥ ∖ {0E}. Un tel choix est possible puisque

dimVect
(
(uk)k∈[[ 1 ;n ]]∖{i}

)⊥
= dimE− dimVect

(
(uk)k∈[[ 1 ;n ]]∖{i}

)
= 1

On a f(x) =
n∑

k=1

⟨x, uk⟩uk = ⟨x, ui⟩ui
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Puis, avec l'inégalité de Cauchy-Schwarz

∥x∥ = ∥f(x)∥ ⩽ ∥x∥∥ui∥2 ⩽ ∥x∥
d'où ∥ui∥ = 1 puis en reprenant l'inégalité de la question 3.(b)

⟨f(ui), ui⟩ = ∥ui∥4 +
∑
k ̸=i

⟨uk, ui⟩2 ⩽ ∥ui∥2 ⇐⇒
∑
k ̸=i

⟨uk, ui⟩2 = 0

On conclut La famille (u1, . . . , un) est une base orthonormée.

Variante : Avec l'inégalité de Cauchy-Schwarz, on peut raisonner ainsi

∥x∥ = ∥f(x)∥ = ∥ ⟨x, ui⟩ui∥ ⩽ |⟨x, ui⟩| ∥ui∥ ⩽ ∥x∥∥ui∥2 ⩽ ∥x∥
Les inégalités ci-dessus sont des égalités et d'après le cas d'égalité de Cauchy-Schwarz, il s'ensuit
que x ∈ Vect (ui). On a donc

Vect
(
(uk)k∈[[ 1 ;n ]]∖{i}

)⊥ ⊂ Vect (ui)

avec égalité des dimensions d'où

∀i ∈ [[ 1 ; n ]] Vect
(
(uk)k∈[[ 1 ;n ]]∖{i}

)⊥
= Vect (ui)

d'où le caractère orthogonal de (u1, . . . , un).

Exercice 11 (**)

Soit E euclidien et G un sous-groupe �ni de GL(E).

1. Soit f ∈ O(E). Montrer que tout sev stable par f admet un supplémentaire stable.

2. Montrer que (x, y) 7→
∑
g∈G

⟨g(x), g(y)⟩ dé�nit un produit scalaire sur E.

3. Soit F sev stable par tous les éléments de G. Montrer que F admet un supplémentaire
stable par tous les éléments de G.

Corrigé : 1. D'après le cours, on sait

Pour tout sev stable par f , son orthogonal est stable par f .

2. On note ⟨x, y⟩G =
∑
g∈G

⟨g(x), g(y)⟩ pour (x, y) ∈ E2. C'est une application symétrique, linéaire

en la première variable, positive puisque

∀x ∈ E ⟨x, x⟩G =
∑
g∈G

⟨g(x), g(x)⟩ ⩾ 0

et dé�nie. En e�et, pour x ∈ E, il vient

⟨x, x⟩G = 0 ⇐⇒ ⟨x, x⟩+
∑

g∈G∖{id }
⟨g(x), g(x)⟩︸ ︷︷ ︸

⩽0

= 0 =⇒ ⟨x, x⟩ = 0 =⇒ x = 0E

Ainsi L'application ⟨·, ·⟩G est un produit scalaire sur E.

3. Soit f ∈ G. L'application g 7→ g ◦ f réalise une permutation de G. Ainsi, pour (x, y) ∈ E2, on
obtient

⟨f(x), f(y)⟩G =
∑
g∈G

⟨g ◦ f(x), g ◦ f(y)⟩ =
∑
g∈G

⟨g(x), g(y)⟩ = ⟨x, y⟩G

Ainsi, dans E muni du produit scalaire ⟨·, ·⟩G, l'application f conserve ce produit scalaire ce qui
prouve qu'il s'agit d'une isométrie. D'après le résultat de la première question, le sev F⊥G est
stable par f et ceci vaut pour tout f ∈ G. On conclut

Le sev F admet un supplémentaire stable par tous les éléments de G.
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