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Feuille d’exercices n°55

Exercice 1 (**)
Soit E euclidien et u € Z(E). Etablir
Im v* = (Ker u)" et Ker u* = (Im u)"
Corrigé : On a
r € Keru* <= u*(z) eEt <= VyeE (u'(z),y)=0
—WeE (r,uy)=0 <= ze(Imu)"

En appliquant cette relation & u* au lieu de u puis en passant a l'orthogonal, on conclut

Im v* = (Ker u)" et Ker u* = (Im u)"

Exercice 2 (*)

Soit E = R™ avec n entier non nul nul et a un vecteur normé de E. Déterminer la matrice dans
la base canonique de Sy ()L -
Corrigé : Soit z € E. Notons S = matey Syec (a)1; A = matga et X = matyz. On a
SVect (a)+ (33) =T — 2(1’, a>a
Matriciellement, en exploitant 1’associativité du produit matriciel, on trouve

VX € M1 (R)  SX = X — 2A(A, X)
= X — 2A(ATX) = X — 2(AAT)X = (I, — 2AAT)X

Ainsi S=1,—2AAT

Exercice 3 (*)

Soit A = (a;;) € O,(R) avec n entier non nul. Montrer :

> laiil <nyn

1<,5<n

Corrigé : 1. Soit E = ,(R) muni du produit scalaire canonique. En considérant B =
(bivj)lgi,jgn € E avec

1 sia;; >0

V(i j) € [1; n]? bm:{ i

—1 sinon
il vient
(ABy= 3 layl JAP=Tx(ATA)=Tr(L,)=n [BIP= >} b= > l=n’

1<ij<n 1<ij<n 1<ij<n

Avec l'inégalité de Cauchy-Schwarz, on conclut



> laisl = (A B) < [A[[IB] = nyv/n

1<i,g<n

n
Variante : On peut aussi majorer > |a; ;| < v/n en invoquant l'inégalité de Cauchy-Schwarz
i=1
dans R™ et en utilisant le fait que les colonnes de A forment une base orthonormée de R™ puis
sommer en j.

Exercice 4 (*)

Soit E euclidien. Soient F et G des sev orthogonaux de E. Montrer que
SF O 8g = 8G O SF = S(paG)L
Corrigé : On a la somme directe
E=FaGaFaG)*t
Pour z € E, on décompose x = a + b+ ¢ avec (a,b,¢) € F x G x (F @ G)*. Puis
sposg(z) =sp(—a+b—c)=—-a—b+c et SgpggL(r)=—a—-b+c

La derniére égalité vient par symétrie des roéles et on conclut

’SFOSG = Sg O Sfp = S(F@G)L‘

Exercice 5 (**)

Soit E = ., (R) avec n entier non nul nul muni du produit scalaire canonique. On pose
WMEE (M) =M— %Tr (DI
1. Montrer que ¢ € O(E). Calculer ¢? puis décrire ¢.
2. Soit 1) € O(E). Décrire 1) o p o p~ 1.
Corrigé : 1. On a ¢ € Z(E) sans difficulté puis on vérifie
VOM,N) € B2 (p(M),¢(N)) = (M,N)

Ainsi v € O(E)

On trouve e*=id et p(I,) = -1,

Ainsi, Papplication ¢ est une symétrie et une isométrie donc une symétrie orthogonale. Pour
M € E, il vient

(M) =M <= M € Ker Tr
d’ott Ker (¢ —id) = Ker Tr. On a Vect (I,,) C Ker (¢ +id) et on sait que pour une symétrie
orthogonale
1
E = Ker (¢ —id )@ Ker (¢ + id )

Comme Ker (¢ —id ) est un hyperplan, son supplémentaire Ker (¢ —id ) est une droite vectorielle
et on conclut

L’application ¢ est la symétrie orthogonale par rapport & Ker Tr parallélement & Vect (I,,).




Ce résultat est en fait flagrant sur Pécriture de (M) pour M € E. Posant U = I,,/||1,|| = L./v/n,
on a

VMeEE  oM)=M-—2(MU)U

On reconnait alors ’ © = Svect (U)X = SVect (I,)+ ‘

2. Soit M € E. On a
Yooy I (M) =4 (¢~ (M) — 2(¢p (M), U)U) = M — 2(zp~ (M), U)y(U)

Par conservation du produit scalaire ou en observant 1~ = 9*, on a
(v~1 (M), U) = (M, 4(U))

Ainsi Yooy (M) =M —2(M, (U))y(U)

D’ou w cpo ¢ ! = SVect (I,)+

Exercice 6 (**)

Dans E euclidien, soit v € O(E) et v = id —u.

1. Montrer que Ker v = (Im v)".

2. Montrer que pour z € E,  lim ||— Zu () = prero(z)]| =0

n—+oo M 2
Corrigé : 1. Soit (z,y) € Ker v Xx E. On a
(z,0(y)) = (z,y) — (z,uly)) =0
—_— —
=(u(z),u(y))

D’ott Ker v C Im v+ et par égalité des dimensions avec le théoréme du rang, on conclut

Ker v = (Im v) "

1
2.0n a E=Imv® Kerv

Soit € E. On décompose = (b — u(b)) + a avec (b,a) € E x Ker v. On a
1n=1 1n=1 1n=1

— Y ut(e) = — 30 [ut(0) =)+~ Fa =~ (b — (b)) +

k=0 " k=0 " k=0 n
Comme u € O(E), on a également u™ € O(E) puis

||1”21u (7) = Per o(@)[] < %(||b|| + |lun®)|) = 2bll

1n 1
On conclut H—Zu () = PKer o(T)|| —— 0

n—o0




Exercice 7 (**)

Soit a vecteur unitaire d’un espace euclidien E, o un réel et f, définie par
Ve e E fo(z) =2+ a(z,a)a
1. Justifier que f, € Z(E).
2. Montrer que f, € GL(E) <= « # —1. Décrire f_;.

3. Déterminer une condition nécessaire et suffisante sur « pour avoir f, € O(E). Quand la
condition est réalisée, décrire f,.

Corrigé : 1. [’application f, est clairement a valeurs dans E, linéaire par linéarité du produit
scalaire en la premiére variable. Ainsi

fo € Z(E)

2. On compléte la famille (a) en # base orthonormée de E. Par suite, on a matgf, = diag(1l +
a,1,...,1). On en déduit det f, =1+ « et

Vi e E ffl(m) =T — <.T, a>a = (ld —DVect (a))(x) = DVect (@J.(.T)

Ainsi Jo €GLE) <= a# -1 et f_1 = Dvect(a)-
3.0na fo € O(E) <= matgf, € O(n)

et clairement matgfo € O(n) <= (1+a)*=1 < a € {0,-2}
On conclut fa€OE) <= ac{0,-2} et fo=id, fo= Svect(a)

Exercice 8 (**)

Soit E euclidien et F, G des sev de E.

1. Déterminer (F + G)*.
2. En déduire (FNG)*.
3. On suppose F+LG*. Montrer

Pr +pc —prng =1id et ppopg = pg o Pr = Prnc

Corrigé : 1.OnaFCF+Get GCF+G don (F+G)t CcFlet (F+G)t c G Ainsi, on
a (F+ G)* c F+ N Gt. Réciproquement, soit € F- NGt et (u,v) € F x G. On a

(x,u+v) = (r,u) + (x,v) =0
d’out I'inclusion F+ NG+ C (F + G)* et par conséquent
F-NGt=(F+G)*

2. En appliquant le résultat antérieur & F+ et G+, il vient

FNG=(Ft+GH*

Passant a 'orthogonal, on obtient |(FNG)t =F+ + G+t

3.0n a E=FteGteFtoGhHt=FtaeGte (FNG)
Soit z € E. On décompose



r=a+b+c avec (a,bc)eFtxGtx(FNG)

Il vient pr(z) =b+c pg(z)=a+c  prrc(z) =c
d’ou (pr + g — prrg)(x) =a+b+c==x
et pr o pa(z) = pr(a+c¢) = ¢ = prrc(z)

et 'autre égalité suit par symétrie des roles. Ainsi

Pr +Pc —peoc = id_ et pr o pg = pg © pr = prnc|
Variante : Avec la décomposition en somme directe
E=F'oG'o(FtoGHt=FtaGta (FNG)

en considérant la famille de projecteurs associés, il vient

prt + par + prng = id
autrement dit id —pp +id —pg + prng = id
et on retrouve la premiére égalité. En composant celle-ci par pr a droite ou gauche, il vient
pr = pr oid = pr o (pr + pc — Prnc) = PF + PF © Pa — PF © PG, = PFNG
NG

et de méme avec pg pour les derniéres égalités.

Exercice 9 (**)

Soit E euclidien de dimension n entier non nul, % une base orthonormée de E et (zy,...,2,) €
E". Montrer

n
|detg(z, .. 2n)| < TT [l
k=1

Corrigé : Si (x1,...,x,) est liée, I'inégalité est vraie. Supposons (x1,...,x,) libre et soit
Z = (v1,...,v,) la base orthonormée obtenue par I’algorithme de Gram-Schmidt appliqué a
(1,...,2,). On note P = mat4.%. On a

matyg(xy,...,T,) = maty?Z X mate(ry,...,x,)

La matrice P est matrice de passage entre deux bases orthonormées de E d’out P € O,(R). Par
suite

detgy(zy,...,x,) = det(P)det g (xy,...,x,) = £detg(xq,...,2,)
et mat.g(xy,...,2,) = ((xj,vi>)(i7j)€[[1m]]2
Or, on a VEe[1l;n] Vect (z1, ..., x,) = Vect (vq, ..., vx)
d’ou Vi > j (xj,v;) =0

en le voyant soit par orthogonalité, soit parce que z; est combinaison linéaire de (vy,...,v;) d’out
la nullité des coefficients en v; pour ¢ > j. Ainsi

(x1,v1) .. .. {xp,v1)

mat g (z1,...,T,) = 0

0 R R T



Ainsi |detg(x1, ..., 20)| = [ [{@r, vi)]

k=1
n
et VEellin]  llawl = ) 2@k i) = [{on, i)
i=1
n
Finalement |detg(zq, ..., 20| < T |2kl
k=1

Remarque : 1l s’agit de linégalité d’Hadamard.

Exercice 10 (**)

Soit E euclidien de dimension n entier non nul et (uq,...,u,) € E". On pose
Vr e E flz) => (z,u)u,;
i=1
1. Montrer que f € Z(E).
2. Si (uq,...,u,) est une base orthonormée de E, déterminer f.
3. On suppose f € O(E).
(a) Montrer que (uy,...,u,) est une base de E.
(b) Pour i € [1;n], calculer (f(u;),u;) et en déduire que ||u;]| € ]0;1].

€

(¢) Pour i € [1;n], en considérant 2 € Vect ((ur)re1;n]-i3)” ~ {Or}, montrer que

(uq,...,u,) est une base orthonormée.

Corrigé : 1. Immédiat.

2. On trouve = PVect (ur,..yun) = id
3.(a) On a E=1Im f C Vect (uy,...,u,) CE
La famille (uq,...,u,) est génératrice et de cardinal dim E d’ou

La famille (ug,...,u,) est une base de E.

3.(b) Soit i € [1;n]. On a
(flu),u) = lul*+ X (e, ug)”
ke[ 1;n]~{:}

et d’apres l'inégalité de Cauchy-Schwarz
(f (ua), ) < LS (ua)llflwall = Ilual®

Ainsi luall* < Jlua?

D’ou Vie[l;n] |luil] €1051]

3.(c) Soit i € [1; n] et z € Vect ((uk)keﬂl;nﬂ\{i})L ~ {Og}. Un tel choix est possible puisque

dim Vect ((uk>k€[[l;n]]\{i})J_ = dim E — dim Vect ((uk)ke[[l,n]]\{z}) =1

Ona fla) =

<$7uk> U = <$,Uz> U;
1

n



Puis, avec 'inégalité de Cauchy-Schwarz
lzll = ILf @) < lllllw]* < [l]

d’ou ||u;]| = 1 puis en reprenant U'inégalité de la question 3.(b)

(f (), ui) = [luil|* + Z?; (s us)” < lus|” = 2#: (ur, uz)” =0
ki ki

On conclut La famille (uy,...,u,) est une base orthonormée.

Variante : Avec I'inégalité de Cauchy-Schwarz, on peut raisonner ainsi
lzll = I @) = [ oy e wall < [, uad] sl <l flusl* < ]

Les inégalités ci-dessus sont des égalités et d’aprés le cas d’égalité de Cauchy-Schwarz, il s’ensuit
que = € Vect (u;). On a donc

Vect ((uk)keﬂl;nﬂ\{i})L C Vect (u;)
avec égalité des dimensions d’ou
Vie[l;n] Vect ((uk)ke[[l;nﬂ\{i})L = Vect (u;)

d’out le caractére orthogonal de (uq, ..., u,).

Exercice 11 (**)

Soit E euclidien et G un sous-groupe fini de GL(E).
1. Soit f € O(E). Montrer que tout sev stable par f admet un supplémentaire stable.

2. Montrer que (z,y) — > (g9(x), g(y)) définit un produit scalaire sur E.
geG
3. Soit F sev stable par tous les éléments de G. Montrer que F admet un supplémentaire

stable par tous les éléments de G.

Corrigé : 1. D’aprés le cours, on sait

’Pour tout sev stable par f, son orthogonal est stable par f. ‘

2. On note (z,y)q = Y (9(x), g(y)) pour (z,y) € E?. C’est une application symétrique, linéaire
geG
en la premiére variable, positive puisque

veel  (ra)q =) {9(2),9(x)) >0
geG
et définie. En effet, pour = € E, il vient

(,2)q =0 <= (z, )+ >, (9(2),9(x))=0 = (r,2)=0 = 2=0g

eG~{id
geG~{id } pA

Ainsi L’application (-, ) est un produit scalaire sur E.

3. Soit f € G. L’application g — g o f réalise une permutation de G. Ainsi, pour (z,y) € E?, on
obtient
(f(@), f(¥))g =2 (g0 f(x), 90 f(y)) = X (9(2),9(y)) = (z,9)q
9eG geG
Ainsi, dans E muni du produit scalaire (-, ), 'application f conserve ce produit scalaire ce qui
prouve qu’il s’agit d’une isométrie. D’aprés le résultat de la premiére question, le sev F¢ est
stable par f et ceci vaut pour tout f € G. On conclut

’Le sev F admet un supplémentaire stable par tous les éléments de G.




