
ISM MP, Mathématiques
Année 2025/2026

Feuille d'exercices n°56

Exercice 1 (**)

Soit E euclidien et f ∈ L (E).

1. Montrer Ker f = Im f =⇒ f + f ∗ ∈ GL(E)

2. Montrer la réciproque si f 2 = 0.

Corrigé : 1. Soit x ∈ Ker (f + f ∗). On a f(x) = −f ∗(x) ∈ Im f ∩ Im f ∗. Or, on a Im f ∗ =
(Ker f)⊥ et Im f = Ker f d'où f(x) ∈ Ker f ∩ (Ker f)⊥ ce qui prouve f(x) = f ∗(x) = 0E puis
x ∈ Ker f ∩ Ker f ∗. Or, on a Ker f ∗ = (Im f)⊥ et Ker f = Im f d'où x ∈ Im f ∩ (Im f)⊥ ce
qui prouve x = 0E. Comme il s'agit d'un endomorphisme en dimension �nie, on conclut

Ker f = Im f =⇒ f + f ∗ ∈ GL(E)

2. On suppose f 2 = 0 d'où Im f ⊂ Ker f et f + f ∗ ∈ GL(E). Puis, on a les inclusions

E = Im (f + f ∗) ⊂ Im f + Im f ∗︸ ︷︷ ︸
=(Ker f)⊥

⊂ Ker f + (Ker f)⊥ = E

d'où E ⊂ Im f
⊥
⊕(Ker f)⊥ ⊂ Ker f

⊥
⊕(Ker f)⊥ = E

Passant aux dimensions, il en résulte rg f = dimKer f et on conclut

f 2 = 0 et f + f ∗ ∈ GL(E) =⇒ Ker f = Im f

Exercice 2 (***)

Soit E euclidien et a, b vecteurs non nuls de E. Déterminer les bornes inférieures et supérieures
de φ sur E∖ {0E} avec

∀x ∈ E∖ {0E} φ(x) =
⟨a, x⟩ ⟨b, x⟩

∥x∥2

Corrigé : On pose u =
a

∥a∥
et v =

b

∥b∥
. Pour x ∈ E∖ {0E}, on a

φ(x) =
∥a∥∥b∥
∥x∥2

⟨u, x⟩ ⟨v, x⟩ = ∥a∥∥b∥
4∥x∥2

Ä
⟨u+ v, x⟩2 − ⟨u− v, x⟩2

ä
Puis ∀x ∈ E∖ {0E} − ∥a∥∥b∥

4∥x∥2
⟨u− v, x⟩2 ⩽ φ(x) ⩽

∥a∥∥b∥
4∥x∥2

⟨u+ v, x⟩2

et avec l'inégalité de Cauchy-Schwarz

∀x ∈ E∖ {0E} − ∥a∥∥b∥
4

∥u− v∥2 ⩽ φ(x) ⩽
∥a∥∥b∥

4
∥u+ v∥2

Supposons u+v et u−v non nuls. En observant que ⟨u+ v, u− v⟩ = 0, on obtient en considérant
x = u+ v et x = u− v que le majorant et minorant sont atteints. Si u− v = 0E, on a

∀x ∈ E∖ {0E} 0 ⩽ φ(x) ⩽
∥a∥∥b∥
∥x∥2

⟨u, x⟩2
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Le majorant est atteint pour x = u et le minorant est atteint pour x⊥u. On procède de même
si u+ v = 0E. On conclut

Sup
x∈E∖{0E}

φ(x) =
⟨a, b⟩+ ∥a∥∥b∥

2
et Inf

x∈E∖{0E}
φ(x) =

⟨a, b⟩ − ∥a∥∥b∥
2

Variante : D'après l'inégalité de Cauchy-Schwarz, on a pour x ∈ E∖ {0E}

|φ(x)| ⩽ ∥a∥∥b∥

ce qui justi�e que φ admet une borne supérieure et inférieure �nie sur E∖ {0E}. On a

∀x ∈ E∖ {0E} φ(x) = φ

Å
x

∥x∥

ã
Ainsi Sup

x∈E∖{0E}
φ(x) = Sup

x∈S(0,1)
φ(x) et Inf

x∈E∖{0E}
φ(x) = Inf

x∈S(0,1)
φ(x)

Soit P un plan vectoriel contenant a et b. On a clairement

Sup
x∈S(0,1)

φ(x) ⩾ Sup
x∈P∩S(0,1)

φ(x)

Comme E = P
⊥
⊕P⊥, pour x ∈ S(0, 1) qu'on décompose en x = u+ v avec (u, v) ∈ P× P⊥, on a

∥u∥ ⩽ ∥x∥ = 1 et

φ(x) = ⟨x, a⟩ ⟨x, b⟩ = ⟨u, a⟩ ⟨u, b⟩ ⩽ ⟨u, a⟩ ⟨u, b⟩
∥u∥2

= φ

Å
u

∥u∥

ã
⩽ Sup

t∈P∩S(0,1)
φ(t)

On en déduit Sup
x∈S(0,1)

φ(x) = Sup
x∈P∩S(0,1)

φ(x)

et de même pour la borne inférieure. Dans le plan P euclidien orienté, pour x ∈ P ∩ S(0, 1), on

note θ =’(a, b), α =’(a, x) et β =’(x, b).

a/∥a∥

b/∥b∥

θ

α

x

β

Figure 1 � Vue dans le plan P

On a pour x ∈ S(0, 1) ∩ P

φ(x) = ∥a∥∥b∥ cosα cos β =
∥a∥∥b∥

2
[cos(α + β) + cos(α− β)]

On a α + β = θ et α− β = 2α− θ d'où

φ(x) =
⟨a, b⟩+ ∥a∥∥b∥ cos(2α− θ)

2
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Le choix de α étant quelconque puisqu'on peut choisir n'importe quel x ∈ S(0, 1)∩P, on retrouve
le résultat précédent à savoir

Sup
x∈E∖{0E}

φ(x) =
⟨a, b⟩+ ∥a∥∥b∥

2
et Inf

x∈E∖{0E}
φ(x) =

⟨a, b⟩ − ∥a∥∥b∥
2

Exercice 3 (***)

Soit E euclidien de dimension n entier non nul. Pour une famille u = (u1, . . . , up) ∈ Ep, on note
Gu =

(
⟨ui, uj⟩

)
(i,j)∈[[ 1 ; p ]]2 ∈ Mp(R). Soient u = (u1, . . . , up) ∈ Ep et v = (v1, . . . , vp) ∈ Ep telles

que Gu = Gv. On pourra utiliser librement les résultats déjà rencontrés sur les matrices de Gram.

1. On suppose u libre. Montrer qu'il existe f ∈ O(E) tel que f(ui) = vi pour i ∈ [[ 1 ; p ]].

2. Généraliser le résultat précédent pour u quelconque.

Corrigé : 1. On a rg (u) = rg (Gu) = rg (Gv) = rg (v) d'où v libre (on pourrait aussi utiliser la
caractérisation u libre ⇐⇒ Gu ∈ S ++

n (R)). Si p < n, on note U = Vect (u) et V = Vect (v)
et (up+1, . . . , un), (vp+1, . . . , vn) des bases orthonormées respectives de U⊥ et V⊥. On dé�nit

f ∈ L (E) par f(ui) = vi pour i ∈ [[ 1 ; n ]]. Soit x =
n∑

i=1

xiui et y =
n∑

i=1

yiui des vecteurs de E. On

a

⟨f(x), f(y)⟩ =
∑

1⩽i,j⩽n

xiyj ⟨f(ui), f(uj)⟩ =
∑

1⩽i,j⩽n

xiyj ⟨vi, vj⟩

Par hypothèse, on a ∀(i, j) ∈ [[ 1 ; p ]]2 ⟨vi, vj⟩ = ⟨ui, uj⟩

puis par construction ∀(i, j) ∈ [[ p+ 1 ; n ]]2 ⟨vi, vj⟩ = δi,j = ⟨ui, uj⟩

et ∀(i, j) ∈ [[ 1 ; p ]]× [[ p+ 1 ; n ]] ⟨vi, vj⟩ = 0 = ⟨ui, uj⟩

Ainsi ⟨f(x), f(y)⟩ =
∑

1⩽i,j⩽n

xiyj ⟨ui, uj⟩ = ⟨x, y⟩

Ainsi, l'application f conserve le produit scalaire et par conséquent

Si u libre, il existe f ∈ O(E) tel que f(ui) = vi pour tout i ∈ [[ 1 ; p ]].

2. Soit I ⊂ [[ 1 ; p ]] tel que rg (ui)i∈I = rg u. On note u′ = (ui)i∈I et v
′ = (vi)i∈I. On a Gu′ = Gv′ .

D'après le résultat précédent, il existe f ∈ O(E) tel que f(ui) = vi pour tout i ∈ I. Montrons que

l'égalité vaut aussi hors de I. Soit j ∈ [[ 1 ; p ]]∖ I. Il existe (αi)i∈I des réels tels que uj =
∑
i∈I

αiui.

On a f(uj) =
∑
i∈I

αif(ui) =
∑
i∈I

αivi ∈ V. Puis, pour k ∈ [[ 1 ; p ]], il vient

⟨f(uj)− vj, vk⟩ =
≠∑

i∈I
αif(ui)− vj, vk

∑
=

∑
i∈I

αi ⟨vi, vk⟩ − ⟨vj, vk⟩

=
∑
i∈I

αi ⟨ui, uk⟩ − ⟨uj, uk⟩ =
≠∑

i∈I
αiui − uj, uk

∑
= ⟨0E, uk⟩ = 0

Ainsi f(uj)− vj ∈ V ∩ V⊥ = {0E}

ce qui prouve f(uj) = vj et ce pour tout j ∈ [[ 1 ; p ]]∖ I. On conclut

Il existe f ∈ O(E) tel que f(ui) = vi pour tout i ∈ [[ 1 ; p ]].
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Exercice 4 (***)

Soit E = Mn(R). On pose ∀M ∈ E φ(M) =
∑

1⩽i,j⩽n

mi,j

Justi�er que φ atteint ses bornes sur On(R) et SOn(R) et les préciser.

Corrigé : L'application φ est linéaire sur E de dimension �nie donc φ est continue. L'ensemble
On(R) est un compact de E et SOn(R) est un fermé relatif de On(R) donc un compact de E.

Ainsi L'application φ atteint ses bornes sur On(R) et SOn(R).

Considérons F = Mn,1(R) muni du produit scalaire ⟨X,Y⟩ = X⊤Y pour (X,Y) ∈ F2. Notant U
la colonne de F constituée de 1, on a

∀M ∈ E φ(M) = ⟨MU,U⟩

D'après l'inégalité de Cauchy-Schwarz, en observant que ∥MU∥ = ∥U∥ pour M ∈ On(R), il vient

∀M ∈ On(R) φ(−In) = −n ⩽ φ(M) ⩽ n = φ(In)

Seule la borne inférieure sur SOn(R) mérite un e�ort supplémentaire. Soit V ∈ Vect (U)⊥ puis
M matrice de la symétrie orthogonale par rapport à Vect (U,V)⊥. Ainsi, la matrice M est or-
thogonalement semblable à diag(−1,−1, 1, . . . , 1) donc dans SOn(R) et φ(M) = ⟨MU,U⟩ =
⟨−U,U⟩ = −n. On conclut

Inf
On(R)

φ = Inf
SOn(R)

φ = −n et Sup
On(R)

φ = Sup
SOn(R)

φ = n

Variante : On peut aussi interpréter pour M ∈ E la quantité φ(M) par

φ(M) = Tr (MJ)

avec J ∈ E constituée de 1 puis réduire orthogonalement J.

Exercice 5 (***)

Soient E euclidien et f : E → E véri�ant

f(0E) = 0E et ∀(x, y) ∈ E2 ∥f(x)− f(y)∥ = ∥x− y∥

Montrer que f ∈ O(E).

Corrigé : On a clairement ∥f(x)∥ = ∥x∥ pour tout x ∈ E. Puis

∀(x, y) ∈ E2 ∥x− y∥2 = ∥x∥2 − 2 ⟨x, y⟩+ ∥y∥2

d'où l'identité de polarisation

∀(x, y) ∈ E2 ⟨x, y⟩ = 1

2
(∥x∥2 + ∥y∥2 − ∥x− y∥2)

Ainsi, pour (x, y) ∈ E2

⟨f(x), f(y)⟩ = 1

2
(∥f(x)∥2 + ∥f(y)∥2 − ∥f(x− y)∥2)

=
1

2
(∥x∥2 + ∥y∥2 − ∥x− y∥2) = ⟨x, y⟩

Puis, soit B = (ei)1⩽i⩽n une base orthonormée de E. Par conservation du produit scalaire, la
famille (f(ei))1⩽i⩽n est une base orthonormée de E. Ainsi, on a
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∀x ∈ E f(x) =
n∑

i=1

⟨f(x), f(ei)⟩ f(ei) =
n∑

i=1

⟨x, ei⟩ f(ei)

Cette dernière écriture prouve que f est une application linéaire. On conclut

f ∈ O(E)

Remarque : Le résultat peut être généralisé pour f : E → F avec E et F préhilbertiens et f
véri�ant les mêmes contraintes. On montre que f est linéaire en établissant l'égalité

∀(x, y, λ) ∈ E2 × R ∥f(x+ λy)− f(x)− λf(y)∥2 = 0

Il s'agit d'un cas particulier du théorème de Mazur-Ulam.

Exercice 6 (***)

Soit E euclidien et f ∈ L (E) conservant l'orthogonalité, i.e.

∀(x, y) ∈ E2 ⟨x, y⟩ = 0 =⇒ ⟨f(x), f(y)⟩ = 0

1. Pour u et v dans E unitaires, calculer ⟨u+ v, u− v⟩.
2. Montrer qu'il existe α ⩾ 0 tel que

∀x ∈ E ∥f(x)∥ = α∥x∥

3. Conclure qu'il existe g ∈ O(E) tel que f = αg.

Corrigé : 1. Soient u, v vecteurs unitaires de E. On a

⟨u+ v, u− v⟩ = ∥u∥2 − ∥v∥2 = 0

2. Soit v vecteur unitaire de E. Pour x ∈ E∖ {0E}, posant u =
x

∥x∥
, on a d'après le résultat de

la question précédente

⟨u+ v, u− v⟩ = 0

Par hypothèse sur f , il s'ensuit ⟨f(u+ v), f(u− v)⟩ = 0

et on a ⟨f(u+ v), f(u− v)⟩ = ⟨f(u) + f(v), f(u)− f(v)⟩ = ∥f(u)∥2 − ∥f(v)∥2

d'où ∀x ∈ E∖ {0E} ∥f
Å

x

∥x∥

ã
∥ = ∥f(v)∥

Ainsi ∀x ∈ E ∥f(x)∥ = ∥f(v)∥∥x∥

l'égalité étant trivialement véri�ée pour x = 0E. Notant α = ∥f(v)∥, on conclut

Il existe α ⩾ 0 tel que ∥f(x)∥ = α∥x∥ pour tout x ∈ E.

Remarque : On peut aussi considérer B = (ei)1⩽i⩽n une base orthonormée de E, établir que
∥f(ei)∥ ne dépend pas du choix de i ∈ [[ 1 ; n ]] et étendre à tout x ∈ E.

3. Si α = 0, alors f = 0 et on peut choisir g = id par exemple. Sinon, si α > 0, on pose g =
1

α
f .

D'après le résultat de la question précédente, l'application g est une isométrie. On conclut

Il existe g ∈ O(E) tel que f = αg.

Remarque : L'application f est appelée similitude.
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Exercice 7 (***)

1. Soit A ∈ An(R). Montrer In +A ∈ GLn(R)

puis B = (In − A)(In +A)−1 ∈ On(R) et − 1 /∈ Sp (B)

2. On dé�nit φ sur An(R) par

∀A ∈ An(R) φ(A) = (In − A)(In +A)−1

Montrer que φ réalise une bijection de An(R) sur {B ∈ On(R) | − 1 /∈ Sp (B)}.

Corrigé : 1. Soit X ∈ Mn,1(R) tel que (In +A)X = 0. Il vient

0 = ⟨(In +A)X,X⟩ = ∥X∥2 + ⟨AX,X⟩ = ∥X∥2 =⇒ X = 0

Ainsi In +A ∈ GLn(R)

Puis B⊤B = (In − A)−1 (In +A)(In − A)︸ ︷︷ ︸
=(In−A)(In+A)

(In +A)−1 = In

On observe (B + In)(In +A) = In − A+ In +A = 2In

ce qui prouve l'inversibilité de B + In et par conséquent

B = (In − A)(In +A)−1 ∈ On(R) et − 1 /∈ Sp (B)

2. L'application φ est à valeurs dans {B ∈ On(R) | − 1 /∈ Sp (B)}. Soit B ∈ On(R) avec −1 /∈
Sp (B). En reprenant la relation (B + In)(In +A) = 2In, il vient

φ(A) = B ⇐⇒ (B + In)A = 2In − In − B = In − B ⇐⇒ A = (In + B)−1(In − B)

et A⊤ = (In − B⊤)(In + B⊤)−1 = (B− In)(B + In)
−1

en multipliant par B dans chaque facteur où apparaissent les B⊤ (multiplications qui se com-
pensent). En�n, les matrices (In + B)−1 et In − B = 2In − (In + B) commutent (on peut aussi
utiliser la commutation de In + B et In − B) et on en déduit A⊤ = −A. On a donc prouvé
l'existence dans An(R) d'un unique antécédent à l'équation φ(A) = B et par conséquent

L'application φ réalise une bijection de An(R) sur {B ∈ On(R) | − 1 /∈ Sp (B)}.

Remarque : L'application φ est appelée transformation de Cayley.

Variante : Pour B ∈ On(R) avec −1 /∈ Sp (B), on a

φ(A) = B ⇐⇒ (B + In)(In +A) = 2In ⇐⇒ A = −In + 2(B + In)
−1

d'où

A⊤ = −In + 2(In + B−1)−1 = −In + 2(In + B)−1B = −In + 2(In + B)−1(B + In − In) = −A

et on conclut comme précédemment.
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Exercice 8 (***)

Soit A ∈ GLn(R) avec n entier non nul et véri�ant A2 = A⊤.

1. Montrer que A3 = In et A ∈ On(R).
2. Montrer que dimKer (A2 +A+ In) est paire.

3. Réduire orthogonalement A.

Corrigé : 1. En transposant la relation en A, on obtient
(
A⊤)2 = A que l'on injecte dans la

relation initiale pour obtenir A4 = A. Comme la matrice A est inversible, on obtient A3 = In et
multipliant A2 = A⊤ à droite par A, on conclut

A3 = In et A ∈ On(R)

2. Soit u ∈ L (Rn) canoniquement associé à A. Comme u2 + u + id et u commutent, on a
Ker (u2 + u + id ) stable par u ce qui permet de considérer v l'induit par u sur ce noyau. On a
donc v2 + v + id = 0 et X2 +X+ 1 = (X− j)(X− j̄) d'où Sp (v) vide ce qui prouve que χv n'a
pas de racine réelle et comme degχv = dimKer (u2 + u+ id ), on conclut

dimKer (A2 +A+ In) est paire.

3. Le polynôme X3− 1 = (X− 1)(X2+X+1) est annulateur de A et (X− 1)∧ (X2+X+1) = 1.
D'après le lemme des noyaux, on a

Rn = Ker (A− In)⊕Ker (A2 +A+ In)

Si dimKer (A2 +A+ In) = 0, on trouve Rn = Ker (A− In) d'où A = In.

Supposons dimKer (A2 + A + In) = 2q ⩾ 2. Soit (X,Y) ∈ Ker (A − In) × Ker (A2 + A + In). Il
vient en utilisant A⊤ = A2 et la conservation du produit scalaire par A

⟨X,Y⟩ = −⟨X,A2Y⟩ − ⟨X,AY⟩ = −⟨AX,Y⟩ − ⟨AX,AY⟩ = −2 ⟨X,Y⟩

Ainsi Rn = Ker (A− In)
⊥
⊕Ker (A2 +A+ In)

L'endomorphisme v induit par u sur Ker (u2+u+id ) est une isométrie. Alors, il existe une base
orthonormée de Ker (u2 + u+ id ) dans laquelle la matrice B de v est formée de blocs diagonaux
(1), (−1) ou R(θ) avec θ réel. Comme B n'admet pas de valeurs propres réelles, les blocs sont
nécessairement des matrices de rotations R(θ1), . . . ,R(θq) avec les θi réels. On a

χB =
q∏

i=1

χR(θi)

et ∀θ ∈ R χR(θ) =

∣∣∣∣X− cos θ sin θ
− sin θ X− cos θ

∣∣∣∣ = X2 − 2 cos θX+ 1

Par ailleurs, les seules racines complexes possibles de χB sont j et j̄ et comme c'est un polynôme
de R[X], il s'ensuit que

χB = (X− j)q(X− j̄)q = (X2 +X+ 1)q =
(
χR(+− 2π/3)

)q
Par unicité de la décomposition en facteurs irréductibles unitaires dans R[X], on a en déduit
que θi ≡ +− 2π/3 [2π] pour tout i ∈ [[ 1 ; q ]]. Ainsi, quitte à éventuellement réordonner la base de
Ker (u2 + u+ id ) pour avoir des angles positifs, on conclut

∃P ∈ On(R) | P⊤AP = diag(1, . . . , 1,R(2π/3), . . . ,R(2π/3))
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