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Feuille d’exercices n°56

Exercice 1 (**)

Soit E euclidien et f € Z(E).

1. Montrer Ker f=Im f = f+ f* € GL(E)
2. Montrer la réciproque si f? = 0.

Corrigé : 1. Soit x € Ker (f + f*). On a f(z) = —f*(z) € Im fNIm f* Or, on a Im f* =
(Ker f)* et Im f = Ker f d’ott f(x) € Ker fN (Ker f)* ce qui prouve f(z) = f*(x) = Og puis
x € Ker fNKer f*. Or, on a Ker f* = (Im f)* et Ker f =Im f dott z € Im f N (Im f)* ce
qui prouve x = Og. Comme il s’agit d’'un endomorphisme en dimension finie, on conclut

‘Kerf:Imf = f—l—f*EGL(E)‘
2. On suppose f2=0dou Im f C Ker f et f+ f* € GL(E). Puis, on a les inclusions
E=Im(f+ f*) CIm f+ Im f* CKer f+ (Ker f)* =E
——

—(Ker f)*

1 1
d’ou E CIm f&(Ker f)* C Ker f&(Ker f)r =E
Passant aux dimensions, il en résulte rg f = dim Ker f et on conclut

f2=0 et f+f€GLE) = Ker f=Im/f

Exercice 2 (**%*)

Soit E euclidien et a, b vecteurs non nuls de E. Déterminer les bornes inférieures et supérieures
de ¢ sur E ~\ {0g} avec

b
Vo € EX {0g} o(z) = (a,7) (b, z) ﬁ>x|<|2’ 7)
. a b
Corrigé : On pose u = Tal et v = o Pour x € E X {Og}, on a
a
lal[l[ol lallllo] 2 2
SD(CC) = <U,I> <’U,I> = <u + ’U,.I') - <u - ’U,Q?)
|2 Al ||? ( )
: lall[o] 2 lel[l[ol 2
Puis Vr € EX {0g} ———(u—v,z)" <pr) < (u+v,z)
Al Al]?
et avec I'inégalité de Cauchy-Schwarz
b b
voebs oy — A e <o < BRI,

Supposons u+v et uw—wv non nuls. En observant que (u 4+ v, u — v) = 0, on obtient en considérant
r=u-+vetr=u—0v quele majorant et minorant sont atteints. Si v — v = Og, on a

b
Ve € E~ {05}  0< o)< ”ﬁ“H?” (u, z)?
a




Le majorant est atteint pour x = u et le minorant est atteint pour xLu. On procéde de méme
si u + v = Og. On conclut

(a,b) + [|al[|b]] (a,b) — [a][||b]]
Su T) = et Inf r) =
er\E]E} SO( ) 2 z€E~{Og} 90( ) 2

Variante : D’aprés l'inégalité de Cauchy-Schwarz, on a pour z € E \ {0g}

|o(@)| < lalll|b]

ce qui justifie que ¢ admet une borne supérieure et inférieure finie sur E \ {Og}. On a

Ve e EX{0g} o(r) = (i)

]

Ainsi Su z) = Su z) et Inf z) = Inf T
IGE\gE}s@( ) mes(gl)so( ) er\{oE}“@( ) mes(o,l)so( )

Soit P un plan vectoriel contenant a et b. On a clairement

Sup p(x) > Sup ()
2€S(0,1) 2€PNS(0,1)

L
Comme E = P®PL, pour z € S(0,1) qu'on décompose en x = u + v avec (u,v) € P x P+ on a
[ul| < [z =1 et

u,a) (u,b U
P(w) = (2,0} (2,0) = () ) < D o (L0 < Sup i
] ] tePNS(0,1)
On en déduit Sup ¢(z) = Sup ¢(z)
z€S(0,1) z€PNS(0,1)

et de méme pour la borne inférieure. Dans le plan P euclidien orienté, pour z € P N S(0,1), on

—_—

note 6 = (a,b), o = (a,z) et = (x,b).

b/I|b] x

L o/l

FIGURE 1 — Vue dans le plan P

On a pour z € S(0,1) NP

[lalll[]
2

p(x) = llal[[b]| cos arcos 5 = [cos(a + ) + cos(o — B)]

Onaa+f=0eta—p=2a—0don

o(z) = (a,b) + ||a|||!l;|| cos(2a — 6)




Le choix de a étant quelconque puisqu’on peut choisir n’importe quel z € S(0,1)NP, on retrouve
le résultat précédent a savoir

{a,b) + [|al][b] (a,b) — ||all][o]
Su x) = et Inf xr) =
er\{%E} p(z) 5 et o(z) 5
Exercice 3 (**%*)
Soit E euclidien de dimension n entier non nul. Pour une famille v = (u4, ..., u,) € EP, on note

G, = (<ui7uj>)(i,j)e[[1;p]2 € M,(R). Soient u = (uq,...,uy) € EP et v = (v1,...,v,) € EP telles
que G, = G,. On pourra utiliser librement les résultats déja rencontrés sur les matrices de Gram.
1. On suppose u libre. Montrer qu’il existe f € O(E) tel que f(u;) =v; pouri € [1; p].
2. Généraliser le résultat précédent pour u quelconque.
Corrigé : 1. On a rg (u) =rg(G,) = rg(G,) = rg(v) d’on v libre (on pourrait aussi utiliser la

caractérisation u libre <— G, € .7 (R)). Si p < n, on note U = Vect (u) et V = Vect (v)
et (Upsty- -+ Un); (Vpr1,...,v,) des bases orthonormées respectives de Ut et V4. On définit

feZE)par f(u;) =v; pouri € [1; n]. Soit xz = ix,uz et y =
=1

7

n
y;u; des vecteurs de E. On
i=1

a

(fx), fw) = > way; (f(w), f(ug)) = Do way; (v, v5)

1<ij<n 1<ij<n
Par hypothése, on a V(i,j) € [1; p]? (Vi v;) = (ui, uy)

puis par construction V(i,j) € [p+1; n]? (Vi,v;) = 01 = (ui, uy)

et V(i,j) e [1ip] x[p+1sn]  (vi,vj) = 0= (ui, u;)
Ainsi F@) fy) = 2wy (us,v) = (@,y)

Ainsi, application f conserve le produit scalaire et par conséquent

Si w libre, il existe f € O(E) tel que f(u;) = v; pour tout i € [1; p].

2. Soit I C [1; p] tel que rg (u;)ier = rg u. On note v’ = (u;)ier et v/ = (v;)ier. On a Gy = Gy
D’aprés le résultat précédent, il existe f € O(E) tel que f(u;) = v; pour tout ¢ € I. Montrons que
'égalité vaut aussi hors de L. Soit j € [1; p] L Il existe (o )ier des réels tels que u; = > oyu,.

el
On a f(u;) = > aif(w;) => av; € V. Puis, pour k € [1; p], il vient
i€l i€l
(f(uy) —vj,vp) = <Zlozif(ui) — Uj>Uk> = Z;ai (vi, vg) — (v, Vk)
i€ 1€
= >y (ug, up) — (uj, ug) = <Zaiui — uj,uk> = (Og,ug) =0
i€l i€l
Ainsi f(uj) — Uy evn VJ' = {OE}

ce qui prouve f(u;) = v; et ce pour tout j € [1; p] \ 1. On conclut

Il existe f € O(E) tel que f(u;) = v; pour tout i € [1; p].




Exercice 4 (***)

Soit E = .#,(R). On pose VM e E eM)= > m,,

1<i,5<n

Justifier que ¢ atteint ses bornes sur O, (R) et SO, (R) et les préciser.

Corrigé : L’application ¢ est linéaire sur E de dimension finie donc ¢ est continue. L’ensemble
O,n(R) est un compact de E et SO,,(R) est un fermé relatif de O, (R) donc un compact de E.

Ainsi L’application ¢ atteint ses bornes sur O, (R) et SO, (R).

Considérons F = ., ;(R) muni du produit scalaire (X,Y) = XY pour (X,Y) € F2. Notant U
la colonne de F constituée de 1, on a
VMeE  ¢oM)=(MU,U)
D’aprés U'inégalité de Cauchy-Schwarz, en observant que ||MU|| = ||U|| pour M € O,(R), il vient
vM € O,(R) p(=L,) = —n < pM) <n=pl,)

Seule la borne inférieure sur SO,,(R) mérite un effort supplémentaire. Soit V € Vect (U)* puis
M matrice de la symétrie orthogonale par rapport & Vect (U, V)L, Ainsi, la matrice M est or-
thogonalement semblable a diag(—1,—1,1,...,1) donc dans SO,(R) et p(M) = (MU, U) =
(—=U,U) = —n. On conclut

Inf o = Inf =-n et Su = Su =n
On(R)(’D SOn(R)QO on(g)sp son&f

Variante : On peut aussi interpréter pour M € E la quantité (M) par
p(M) = Tr (MJ)

avec J € E constituée de 1 puis réduire orthogonalement J.

Exercice 5 (***)
Soient E euclidien et f : E — E vérifiant

fOp) =0 et V(z,y)€E? |f(z) = fW)l ==yl
Montrer que f € O(E).

Corrigé : On a clairement ||f(z)|| = ||z| pour tout z € E. Puis
Viz,y) € B2z —yl? = llz|* = 2(z, ) + y]?

d’ou l'identité de polarisation

Viz,y) e B2 (z,y) = 5 (2l + lyll* = lz = yl*)

N | —

Ainsi, pour (z,y) € E?

(f@), f W) = 5 @I+ IO = 1z = )I?)
= 5 (el + Myl = lle = y1I*) = (z,y)
Puis, soit & = (e;)1<i<n une base orthonormée de E. Par conservation du produit scalaire, la
famille (f(e;)) est une base orthonormée de E. Ainsi, on a

el R

1<i<n



VieE  fla) = ; (f(x), flei)) fles) = 2 (z,e:) f(e:)
Cette derniére écriture prouve que f est une application linéaire. On conclut

feO(E)

Remarque : Le résultat peut étre généralisé pour f : E — F avec E et F préhilbertiens et f
vérifiant les mémes contraintes. On montre que f est linéaire en établissant 1’égalité

V(z,y,\) EE2 xR [|f(z+ Ay) — f(z) = Af()|* =0

Il s’agit d’un cas particulier du théoreme de Mazur-Ulam.

Exercice 6 (***)
Soit E euclidien et f € Z(E) conservant 'orthogonalité, i.e.
Viz,y) B2 (zy) =0 = (f(z),f(y))=0

1. Pour u et v dans E unitaires, calculer (u + v, u — v).

2. Montrer qu’il existe a > 0 tel que
VeeE  [If(2)] = oz
3. Conclure qu’il existe g € O(E) tel que f = ag.

Corrigé : 1. Soient u, v vecteurs unitaires de E. On a

(utv,u—v) = lul* —|jv]|* =

2. Soit v vecteur unitaire de E. Pour x € E \ {0g}, posant u = , on a d’aprés le résultat de

la question précédente

(u+v,u—v)y=0
Par hypothése sur f, il s’ensuit (flu+v), flu—v))=0
etona  (f(utv), flu—v))=(f(u)+fv),f(u) = f))=[fI* = f ()|
don veeBs (o} If () 1=

Ainsi veeE  f@)l = l[f @)«

'égalité étant trivialement vérifice pour x = Og. Notant a = || f(v)||, on conclut

‘Il existe a > 0 tel que || f(z)|| = «||z| pour tout = € E. ‘

Remarque : On peut aussi considérer & = (e;)1<i<n une base orthonormée de E, établir que
| f(e:)|l ne dépend pas du choix de i € [1; n] et étendre a tout = € E.

1
3.Sia=0,alors f =0 et on peut choisir g = id par exemple. Sinon, si & > 0, on pose g = — f.

D’aprés le résultat de la question précédente, 'application g est une isométrie. On conclut

Il existe g € O(E) tel que f = ag.

Remarque : L’application f est appelée similitude.



Exercice 7 (***)
1. Soit A € 47,(R). Montrer I, + A e GL,(R)

puis B=(I,—-A)(L,+A)'€O,R) et —1¢Sp(B)
2. On définit ¢ sur o7, (R) par
VAeA([R) @A) = (I - A) I, +A)~
Montrer que ¢ réalise une bijection de «7,(R) sur {B € O,(R) | — 1 ¢ Sp(B)}.
Corrigé : 1. Soit X € #,,1(R) tel que (I, + A)X = 0. 1l vient
0={(T,+A)X,X)=[X]*+ (AX,X) = |X|?! = X=0

Ainsi I, + A € GL,(R)

Puis B'B= (L, —A)" (L + A)(L, — A)(I, + A) ' =1,

N J/
-~

On observe B+1L)I,+A) =1, —-A+1,+A=2],
ce qui prouve l'inversibilité de B + I,, et par conséquent
B=([,—A)IL,+A)'€0,(R) et —1¢Sp(B)

2. L’application ¢ est a valeurs dans {B € O,(R) | —1 ¢ Sp(B)}. Soit B € O,(R) avec —1 ¢
Sp (B). En reprenant la relation (B + I,,)(I, + A) = 21, il vient

o(A)=B < B+I1,)A=2[,-1,-B=1,-B +<— A=(,+B)"'(I, - B)

et AT=(,-BNH1,+BN)'=B-L)B+IL,)!

en multipliant par B dans chaque facteur ot apparaissent les BT (multiplications qui se com-
pensent). Enfin, les matrices (I, + B)™! et [, — B = 2I,, — (I, + B) commutent (on peut aussi
utiliser la commutation de I,, + B et I, — B) et on en déduit AT = —A. On a donc prouvé
'existence dans <7,(R) d’un unique antécédent a I’équation p(A) = B et par conséquent

L’application ¢ réalise une bijection de o7, (R) sur {B € O,,(R) | —1 ¢ Sp(B)}.

Remarque : L’application ¢ est appelée transformation de Cayley.

Variante : Pour B € O, (R) avec —1 ¢ Sp (B), on a
0(A)=B <= B+L)I,+A)=2], < A=-1,+2B+1,)!
d’ou
AT =-1,+2(I,+B )t =-I,+2(I,+B)"'B=-I,+2(I, + B) *(B+1,—I,) = -A

et on conclut comme précédemment.



Exercice 8 (***)

Soit A € GL,(R) avec n entier non nul et vérifiant A2 = AT,
1. Montrer que A% =1, et A € O,(R).
2. Montrer que dim Ker (A% + A +1,,) est paire.
3. Réduire orthogonalement A.

Corrigé : 1. En transposant la relation en A, on obtient (AT)2 = A que l'on injecte dans la
relation initiale pour obtenir A* = A. Comme la matrice A est inversible, on obtient A3 =1, et
multipliant A2 = AT & droite par A, on conclut

AP=1, et A€O,(R)

2. Soit u € Z(R") canoniquement associ¢ & A. Comme u? + u + id et u commutent, on a
Ker (u? + u +id ) stable par u ce qui permet de considérer v I'induit par u sur ce noyau. On a
donc v* +v+id =0et X2+ X+ 1= (X —75)(X —7) d’out Sp (v) vide ce qui prouve que Y, n'a
pas de racine réelle et comme deg y,, = dim Ker (u? + u +id ), on conclut

dim Ker (A% + A +1,,) est paire.

3. Le polynome X? —1 = (X —1)(X?+ X +1) est annulateur de A et (X —1)A (X2 +X+1) =1.
D’aprés le lemme des noyaux, on a

R" = Ker (A —1,,) ® Ker (A2 + A +1,,)
Si dim Ker (A% + A +1,,) = 0, on trouve R" = Ker (A — 1,,) d’'ou A =1,.

Supposons dim Ker (A% + A +1,,) = 2¢ > 2. Soit (X,Y) € Ker (A —1,) x Ker (A2 + A +1,). Tl
vient en utilisant AT = A? et la conservation du produit scalaire par A

(X,Y) = —(X,A2Y) — (X, AY) = —(AX,Y) — (AX,AY) = —2(X,Y)

1
Ainsi R" = Ker (A —1,)® Ker (A + A +1,,)

L’endomorphisme v induit par u sur Ker (u? +u+id ) est une isométrie. Alors, il existe une base
orthonormée de Ker (u? 4+ u +id ) dans laquelle la matrice B de v est formée de blocs diagonaux
(1), (—=1) ou R(0) avec @ réel. Comme B n’admet pas de valeurs propres réelles, les blocs sont
nécessairement des matrices de rotations R(6,),...,R(6,) avec les 6, réels. On a

q
XB = HIXR(HZ-)

X —cosf sin 6

o2 .
—sinf X —cos# = X" —2cosfX +1

et Vo € R XR(0) =

Par ailleurs, les seules racines complexes possibles de yg sont j et j et comme c’est un polynome
de R[X], il s’ensuit que

xp=(X—)!(X—=))=X+X+1)= (XR(iQw/?)))q

Par unicité de la décomposition en facteurs irréductibles unitaires dans R[X], on a en déduit
que 6; = £27/3 [27] pour tout i € [1; ¢q]. Ainsi, quitte a éventuellement réordonner la base de
Ker (u? + u + id ) pour avoir des angles positifs, on conclut

dP € O,(R) | PTAP =diag(1,...,1,R(27/3),...,R(27/3))




