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I Préliminaires

Q 1. Soit x ∈ F⊥. Montrons u(x) ∈ F⊥.
Soit alors y ∈ F. Il su�t d'établir que u(x) ⊥ y.
Comme u(y) ∈ F, on a :

⟨u(x), y⟩ = ⟨x, u(y)⟩ = 0

On a bien montré que l'orthogonal F⊥ de F est stable par u

Q 2. Soit t ∈ R. On a : φ(t) = ⟨cos(t)u(x0) + sin(t)u(y), cos(t)x0 + sin(t)y⟩ donc

φ(t) = cos2(t)⟨u(x0), x0⟩+ sin2(t)⟨u(y), y⟩+ cos(t) sin(t) (⟨u(x0), y⟩+ ⟨u(y), x0⟩)

Ainsi φ est de classe C1 par théorèmes généraux.

Q 3. Je note G = Vect(x0, y).
Ainsi (x0, y) est génératrice de G et orthonormale, il s'agit donc d'une base orthonormée de G.

Par calcul dans une base orthonormée : on a ∥γ(t)∥ =
√
cos2(t) + sin2(t) = 1

Ainsi par dé�nition de x0 et comme γ(0) = x0, on a :

∀t ∈ R, φ(t) ⩽ ⟨u(x0), x0⟩ = φ(0)

Ainsi φ admet un maximum sur R en 0 donc φ′(0) = 0

Q 4. D'après Q2, on a, en remarquant que 2 sin(t) cos(t) = sin(2t),

φ′ : t 7→ 2 cos(t) sin(t) (⟨u(y), y⟩ − ⟨u(x0), x0⟩) + cos(2t) (⟨u(x0), y⟩+ ⟨u(y), x0⟩)

Ainsi, par propriété de u et de ⟨·, ·⟩, on a :

0 = φ′(0) = ⟨u(x0), y⟩+ ⟨u(y), x0⟩ = 2⟨u(x0), y⟩

donc u(x0) est orthogonal à y

Q 5. On se place dans F muni de la structure préhilbertienne induite par ⟨·, ·⟩.
Or on vient de voir en Q4 que : u(x0) ∈

(
Vect(x0)⊥

)⊥
(les sous-espaces orthogonaux sont pris dans F)

Comme Vect(x0) est de dimension �nie,

on a u(x0) ∈ Vect(x0) or x0 ̸= 0, alors x0 est vecteur propre de u

II Étude d'un opérateur

Q 6. La fonction ks est a�ne sur [0, s[ et sur [s, 1] et lim
t→s−

= ks(s)

Ainsi ks est continue sur [0, 1] et croissante sur [0, s] et décroissante sur [s, 1].

La courbe représentative de ks est le triangle de sommets (0, 0), (1, 0) et (s, s(1− s)) privé de [0, 1]× {0}
Q 7. Méthode 1 : Soit (s, t) ∈ [0, 1]× [0, 1].

Premier cas : si s ⩽ t, alors 0 ⩽ s ⩽ t et 0 ⩽ 1− t ⩽ 1− s.
D'où s(1− t) ⩽ t(1− s). Ainsi K(s, t) = min (s(1− t), t(1− s)).
Deuxième cas : si s > t, alors K(s, t) = min (s(1− t), t(1− s)) de manière analogue.
Or la fonction (s, t) ∈ [0, 1]× [0, 1] 7→ (s(1− t), t(1− s)) est continue.

Et il en est de même pour (x, y) ∈ R2 7→ min(x, y) =
x+ y − |x− y|

2

D'où K est continue sur [0, 1]× [0, 1] par composition
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Méthode 2 : Je note : Ω1 =
{
(s, t) ∈ [0, 1]2 | s < t

}
,F1 =

{
(s, t) ∈ [0, 1]2 | s ⩽ t

}
,Ω2 =

{
(s, t) ∈ [0, 1]2 | s > t

}
,

F1 = {(s, t) ∈ [0, 1] | s ⩾ t} et ∆ =
{
(s, t) ∈ [0, 1]2 | s = t

}
.

On a ∀(s, t) ∈ ∆, K(s, t) = s(1− t) = s(1− s) = t(1− s) Donc

∀(s, t) ∈ F1, K(s, t) = s(1− t) et ∀(s, t) ∈ F2, K(s, t) = t(1− s)

Ainsi K est continue sur F1 (c'est-à-dire que la restriction de K à F1 est continue) et K est continue sur
Ω1

or Ω1 est un ouvert relatif de [0, 1]2 en tant qu'image réciproque par l'application (x, y) ∈ [0, 1]2 7−→
y − x ∈ R de l'ouvert ]0,+∞[

donc K est continue en tout point de Ω1.

De même, K est continue en tout point de Ω2.

Je munis R2 d'une norme notée N ; le choix importe peu ; toutes les normes sont équivalentes sur un espace
de dimension �nie. Soit X ∈ ∆.

Soit ε > 0. Comme K est continue sur F1 et ∆ ⊂ F1, ceci nous fournit α1 > 0 tel que

∀Y ∈ F1, N(X−Y) ⩽ α1 =⇒ |K(X)−K(Y)| ⩽ ε

De même, on trouve α2 > 0 tel que

∀Y ∈ F2, N(X−Y) ⩽ α2 =⇒ |K(X)−K(Y)| ⩽ ε

En prenant α = min(α1, α2), on prouve que :

∀ε > 0, ∀Y ∈ [0, 1]2, N(X−Y) ⩽ α =⇒ |K(X)−K(Y)| ⩽ ε

Ainsi K est continue en tout point de ∆

Alors K est continue en tout point de [0, 1]× [0, 1] = Ω1
⋃
Ω2

⋃
∆.

Ce qui permet de conclure.

Q 8. Il s'agit de montrer que T : E −→ E est bien dé�nie, linéaire et continue.

Soit f, g ∈ E. Soit λ ∈ R.

T est dé�nie sur E : Soit s ∈ [0, 1]. L'application t 7→ ks(t)f(t) = K(s, t)f(t) est continue sur [0, 1].

Donc T(f)(s) =

∫ 1

0
ks(t)f(t)dt est un réel bien dé�ni.

Donc T(f) est une application bien dé�nie [0, 1] −→ R.
T est à valeurs dans E : Soit s ∈ [0, 1]. On a, d'après Chasles :

T(f)(s) =

∫ s

0
ks(t)f(t)dt+

∫ 1

s
ks(t)f(t)dt = (1− s)

∫ s

0
tf(t)dt+ s

∫ 1

s
(1− t)f(t)dt

L'application t 7→ tf(t) est continue sur l'intervalle [0, 1], ainsi selon le théorème fondamental de l'analyse

la fonction s 7→
∫ s

0
tf(t)dt en est une primitive sur [0, 1] donc dérivable donc continue.

Il en est de même pour s 7→
∫ 1

s
(1− t)f(t)dt.

Ainsi T(f) est continue par somme et produit.

D'où T(f) ∈ E

On vient de prouver que T : E −→ E est bien dé�nie.
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Linéarité Par linéarité de l'intégrale, on a :

∀s ∈ [0, 1], T(λf + g)(s) = λT(f)(s) + T(g)(s)

d'où T(λf + g) = λT(f) + T(g). T est bien linéaire.

Continuité : D'après 6, ks est continue donc ks ∈ E.

Ainsi pour s ∈ [0, 1], en utilisant l'inégalité de Cauchy-Schwarz :

∀s ∈ [0, 1], |T(f)(s)| = |⟨ks, f⟩| ⩽ ∥ks∥ · ∥f∥

L'application K est continue sur le compact [0, 1]2 (produit de deux compacts), le théorème des bornes
atteintes nous fournit M ∈ R+ tel que

∀(s, t) ∈ [0, 1]2, |ks(t)| = |K(s, t)| ⩽ M

d'où ∀s ∈ [0, 1], ∥ks∥ =

√∫ 1

0
K(s, t)2dt ⩽ M puis

∀s ∈ [0, 1], (T(f)(s))2 ⩽ M2 ∥f∥2

En intégrant sur [0, 1] et en prenant la racine carrée, on obtient

∥T(f)∥ ⩽ M ∥f∥

d'où T est continue par caractérisation des applications linéaires continues.

Conclusion : T est un endomorphisme continu de E

Q 9. Soit k ∈ N. Soit s ∈ [0, 1]. En réutilisant Chasles comme en 8 :

T(pk)(s) = (1− s)

∫ s

0
tPk(t)dt+ s

∫ 1

s
(1− t)pk(t)dt = (1− s)

∫ s

0
tk+1dt+ s

∫ 1

s

(
tk − tk+1

)
dt

donc

T(pk)(s) = (1− s)

[
tk+2

k + 2

]t=s

t=0

+ s

[
tk+1

k + 1
− tk+2

k + 2

]t=1

t=s

=
sk+2 − sk+3

k + 2
+

s− sk+2

k + 1
− s− sk+3

k + 2

ainsi

T(pk)(s) =
s− sk+2

(k + 1)(k + 2)

Pour tout k ∈ N, on a donc T(pk) =
1

(k + 1)(k + 2)
(p1 − pk+2) ∈ F

Comme T linéaire et F = Vect
(
(pk)k∈N

)
, on a T(F) = Vect

(
(T(pk))k∈N

)
⊂ F et F est stable par T

Q 10. On a d'après 9 :

∀k ∈ N, (T(pk))
′′ =

[
1

(k + 1)(k + 2)
(p1 − pk+2)

]′′
=

[
1

(k + 1)(k + 2)
(p0 − (k + 2)pk+1)

]′
= pk

Par composition, l'application p ∈ F 7→ (T(p))′′ ∈ F est un endomorphisme de F.

Elle coïncide avec l'application linéaire IdF sur (pk)k∈N qui est une base de F.

On en déduit (T(p))′′ = p pour tout p ∈ F
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Q 11. En réutilisant la relation de Chasles de Q8, on a

T(f)(0) = (1− 0)

∫ 0

0
tf(t)dt+ 0

∫ 1

0
(1− t)f(t)dt et T(f)(1) = (1− 1)

∫ 1

0
tf(t)dt+ 1

∫ 1

1
(1− t)f(t)dt

donc T(f)(0) = 0 et T(f)(1) = 0

Q 12. Pour rappel, T(f) : s 7−→ (1− s)

∫ s

0
tf(t)dt+ s

∫ 1

s
(1− t)f(t)dt = (1− s)

∫ s

0
tf(t)dt− s

∫ s

1
(1− t)f(t)dt

Ainsi T(f) est dérivable sur [0, 1], en utilisant le théorème fondamental de l'analyse et

T(f)′ : s 7−→ −
∫ s

0
tf(t)dt+ (1− s)sf(s)−

∫ s

1
(1− t)f(t)dt− s(1− s)f(s) = −

∫ s

0
tf(t)dt−

∫ s

1
(1− t)f(t)dt

puis T(f)′ est dérivable sur [0, 1] et

T(f)′′ : s 7−→ −sf(s)− (1− s)f(s) = −f(s)

Comme f est continue alors T(f) est de classe C2 et T(f)′′ = −f

Q 13. Soit f ∈ Ker(T). On a T(f) = 0E donc en dérivant f = 0E

L'autre implication étant évidente on a : Ker(T) = {0E} ainsi T est injectif

Q 14. On a vu en Q12 et en Q11 que Im(T) ⊂ {f ∈ E | f(0) = f(1) = 0} ∩ C2 ([0, 1],R) où C2 ([0, 1],R) est le sous-
espace vectoriel de E constitué des applications de classe C2.

Soit f ∈ E de classe C2 telle que f(0) = f(1) = 0.

On a f ′′ ∈ E donc T(−f ′′) est de classe C2 et T(−f ′′)′′ = f ′′ d'après Q12.

Je note g = T(−f ′′)− f de sorte que g′′ est identiquement nulle sur [0, 1].

Ainsi g est a�ne or d'après Q11, g(0) = g(1) = 0.

Donc g est identiquement nulle sur [0, 1].

Donc f = T(−f ′′) ∈ Im(T)

L'image de T est l'ensemble des fonctions de classe C2 sur [0, 1] s'annulant en 0 et en 1

Q 15. On T(f) = λf donc f = T

(
1

λ
f

)
Avec 12, f est de classe C2 et f ′′ = − 1

λ
f

donc f est solution de l'équation di�érentielle λf ′′ = −f

Q 16. Analyse : Soit λ une valeur propre de T et f un vecteur propre associé.

On sait que λ ̸= 0 car T injective d'après Q13.

Si λ > 0. Alors d'après la question précédente f ′′ +

(
1√
λ

)2

f = 0

Ceci nous fournit A et B ∈ R tels que f : t 7−→ Asin

(
t√
λ

)
+Bcos

(
t√
λ

)
Comme f(0) = 0 = f(1), on a B = 0 et Asin

(
1√
λ

)
= 0

Ce qui nous fournit k ∈ N tel que
1√
λ
= kπ car

1√
λ
> 0

donc f ∈ Vect (t 7→ sin (kπt)) et λ =
1

k2π2
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ainsi Eλ(T) ⊂ Vect (t 7→ sin (kπt))

Si λ < 0, on a λ = −
(√

−λ
)2

et on trouve A et B ∈ R tels que f : t 7−→ Ash

(
t√
−λ

)
+Bch

(
t√
−λ

)
donc B = 0 puis sh

(
t√
−λ

)
= 0

or ce cas est impossible car ∀t > 0, sh(t) > 0.

Synthèse : Soit λ =
1

k2π2
avec k ∈ N∗ et f : t 7→ sin (kπt)

Je note g = T(f) d'après 12, on a g′′ = −f

ainsi il existe C ∈ R, tel que g′ : t 7→ C− 1

kπ
cos (kπt)

puis il existe D ∈ R tel que g : t 7→ Ct+D− 1

k2π2
sin (kπt)

On sait que g(0) = g(1) = 0 donc D = 0 puis C = 0

donc T(f) = g = λf

donc f ∈ Eλ(T) et f ̸= 0 car f(1/2k) = 1

donc λ ∈ Sp(T) (ensemble des valeurs propres de T) et Eλ(T) ⊃ Vect (t 7→ sin (kπt))

Conclusion : On a donc Sp(T) =

{
1

k2π2
| k ∈ N∗

}
et ∀k ∈ N∗, E1/k2π2(T) = Vect (t 7→ sin(kπt))

Les sous-espaces propres de T sont bien des droites.

Q 17. Soit (f, g) ∈ E2. D'après 12, T(−g)′′ = g ainsi et T(f) et T(−g)′ sont de classe C1 sur [0, 1]. Ainsi par
intégration par parties et comme T(f)(0) = T(f)(1) = 0, on a :

⟨T(f), g⟩ =
∫ 1

0
T(f)g =

[
T(f)T(−g)′

]1
0
−
∫ 1

0
T(f)′T(−g)′ =

∫ 1

0
T(f)′T(g)′

donc ⟨T(f), g⟩ =
∫ 1

0
T(f)′T(g)′ = ⟨T(g), f⟩ = ⟨f,T(g)⟩

Q 18. Par l'absurde, on suppose que H ̸= {0}. Le résultat admis nous fournit

f ∈ H telle que

∥f∥ = 1

⟨T(f), f⟩ = sup
h∈H,∥h∥=1

⟨T(h), h⟩

En appliquant la partie I à f = x0 et H = F et T = u, f est vecteur propre de T.
Donc il existe µ ∈ R∗ tel que f = µgk d'après 16
donc f ∈ G

⋂
G⊥ donc f = 0 et ∥f∥ = 1 Absurde

On en déduit que H = {0}
Q 19. Soit k, ℓ ∈ N∗. On a

⟨gk, gℓ⟩ = 2

∫ 1

0
sin(kπx) sin(ℓπx)dx =

∫ 1

0
[cos ((k − ℓ)πx)− cos ((k + ℓ)πx)] dx

Si k ̸= ℓ, alors on a

⟨gk, gℓ⟩ =
[
sin ((k − ℓ)πx)

(k − ℓ)π
− sin ((k + ℓ)πx)

(k + ℓ)π

]x=1

x=0

= 0

Si k = ℓ, alors on a

⟨gk, gk⟩ =
∫ 1

0
(1− cos (2kπx)) dx = 1

Ce qui prouve que la famille de vecteurs (gk)k∈N∗ est orthonormale
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Q 20. Dans l'énoncé initial, il y a un problème avec les variables k et n pour dé�nir Φ.

On va montrer que Φ est bien dé�nie et continue sur [0, 1].

Je pose φk : x 7−→ 1

k2π2
⟨f, gk⟩gk(x) pour k ∈ N∗.

Pour tout k ∈ N∗, la fonction φk est continue sur [0, 1]. (i)

Soit k ∈ N∗. Soit x ∈ [0, 1].

En utilisant Cauchy-Schwarz, on a : |φk(x)| =
1

k2π2
|⟨f, gk⟩| · |gk(x)| ⩽

√
2

k2π2
∥f∥ · ∥gk∥

donc comme gk est unitaire, on a

∀k ∈ N∗, ∀x ∈ [0, 1], |φk(x)| ⩽
√
2∥f∥
k2π2

or la série
∑
k⩾1

√
2∥f∥
k2π2

converge

donc la série de fonctions
∑
k⩾1

φk converge normalement donc uniformément sur [0, 1]

Ainsi la somme de cette série Φ est bien dé�nie et continue sur [0, 1]

Q 21. Pour k ∈ N∗, on a T(gk) =
1

k2π2
gk d'après Q16 ainsi T(fN) =

N∑
k=1

1

k2π2
⟨f, gk⟩gk

On note N∞ la norme in�nie sur E = C([0, 1],R), ce qui est possible d'après le cours.
D'après la question précédente, on a (T(fN))N converge vers Φ pour N∞ (norme de la convergence uniforme).

Dans le cours, on a vu ∀g ∈ E, ∥g∥ ⩽
√
1− 0N∞(g) (si on a oublié, on refait) donc

∀N ∈ N∗, ∥T(fN)− Φ∥ ⩽ N∞ (T(fN)− Φ)

par théorème des gendarmes : lim
n→+∞

∥T(fN)− Φ∥ = 0

Q 22. Soit N ∈ N∗, je note PN = Vect (g1, . . . , gN).

Comme d'après Q19, (g1, . . . , gN) est une base orthonormale de PN, fN =
N∑

k=1

⟨f, gk⟩gk est le projeté orthogonal

de f sur PN.

Comme la famille (gk)k∈N∗ est totale, (fN) converge vers f pour la norme ∥ · ∥ d'après le cours.

Comme T : (E, ∥ · ∥) −→ (E, ∥ · ∥) est continue d'après Q8
(T(fN)) converge vers T(f) pour la norme ∥ · ∥.
Or d'après la question précédente (T(fN)) converge vers Φ pour la norme ∥ · ∥.
Par unicité de la limite, on a T(f) = Φ

III Exemples d'espaces à noyau reproduisant

III.A - Un exemple

Q 23. On admettra que E1 est bien un espace vectoriel comme le susurre l'énoncé.

Cette question est problématique car a priori pour f et g ∈ E1, les fonctions f ′ et g′ peuvent ne pas être
dé�nies sur un ensemble �ni de points. Toutefois ces fonctions sont dé�nies sur [0, 1] sauf en un nombre �ni de
points. Par ailleurs, en prolongeant f ′ et g′ par n'importe quelles valeurs aux points où ces fonctions ne sont
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pas dé�nies, on obtient des fonctions continues par morceaux et ce choix n'interviendra pas sur la valeur de
l'intégrale.
On considère f, g et h ∈ E1. Soit λ ∈ R.
On considère (xi)0⩽i⩽p (où p ∈ N∗) une subdivision de [0, 1] adaptée à f ′, g′ et h′. c'est-à-dire telle que pour
tout i ∈ [[1, p]] les restrictions de f, g et h à ]xi−1, xi[ se prolongent en des fonctions de classe C1 sur [xi−1, xi].
On considérera que f ′, g′ et h′ sont dé�nies sur [0, 1] prolongées en {xi | i ∈ [[0, p]]} par n'importe quelles valeurs
de sorte que ces fonctions sont continues par morceaux sur [0, 1].

Forme : Le produit de deux fonctions continues par morceaux étant continu par morceaux, on a bien

(f | g) =
∫ 1

0
f ′(t)g′(t)dt ∈ R

Linéarité à gauche : Par linéarité de la dérivation en un point,
λf ′ + g′ est la dérivée de λf + g sur [0, 1] \ {xi | i ∈ [[0, p]]}. Ainsi

(λf + g | h) =
∫ 1

0
(λf ′ + g′)(t)h′(t)dt = λ

∫ 1

0
f ′(t)h′(t)dt+

∫ 1

0
g′(t)h′(t)dt = λ(f | h) + (g | h)

Caractère symétrique : On a bien

(f | g) =
∫ 1

0
f ′(t)g′(t)dt =

∫ 1

0
g′(t)f ′(t)dt = (g | f)

Linéarité à droite : Conséquence des deux points précédents

Caractère positif : On a bien

(f | f) =
∫ 1

0

(
f ′(t)

)2
dt ⩾ 0

Caractère dé�ni : On suppose que (f | f) = 0

donc 0 =

∫ 1

0

(
f ′(t)

)2
dt =

n∑
i=1

∫ xi

xi−1

(
f ′(t)

)2
dt

Comme il s'agit d'une somme de réels positifs, on a donc ∀i ∈ [[1, n]],
∫ xi

xi−1

(
f ′(t)

)2
dt = 0

Soit i ∈ [[1, p]]. La fonction (f ′)2 admet sur [xi−1, xi] un prolongement continu en xi−1 et xi, positive
d'intégrale nulle.
Ainsi ∀x ∈ ]xi−1, xi[ , f ′(x) = 0 (vraie dérivée de f ce coup-ci).
Comme f est continue sur [xi−1, xi] alors f y est constante.
On montre ensuite par récurrence sur i que f est constante sur [0, xi] pour tout i ∈ [[1, p]].
Pour i = p, la fonction f est constante sur [0, 1]. De plus f(0) = 0.
Donc f est la fonction nulle.

On dé�nit bien un produit scalaire sur E1 avec (· | ·)

Dans la suite de cette partie, on désigne par N la norme associée à ce produit scalaire.

Q 24. Soit x ∈ [0, 1]. Avec le théorème fondamental de l'analyse et l'inégalité de Cauchy-Schwarz, on a :

|f(x)| =
∣∣∣∣∫ x

0
1f ′(t)dt

∣∣∣∣ ⩽
√∫ x

0
12dt×

∫ x

0

(
f ′(t)

)2
dt

donc on a bien |f(x)| ⩽
√
x

∫ x

0

(
f ′(t)

)2
dt
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Q 25. Soit s ∈ [0, 1]. Selon Q6,
la fonction ks est continue sur [0, 1] et ∀t ∈ [0, s[ , k′s(t) = 1− s et ∀t ∈ ]s, 1], k′s(t) = −s.

Ainsi la fonction ks admet des prolongements de classe C1 sur [0, s] et [s, 1].

d'où les restrictions de ks à [0, s] et [s, 1] sont de classe C1 (ks est C1 par morceaux).

En e�ectuant des intégrations par parties sur [0, s] et [s, 1] avec des fonctions C1 car f est C2, on a :

U(f)(s) =

∫ s

0
k′s(t)f

′(t)dt+

∫ 1

s
k′s(t)f

′(t)dt =
[
ks(t)f

′(t)
]t=s

t=0
−
∫ s

0
ks(t)f

′′(t)dt+
[
ks(t)f

′(t)
]t=1

t=s
−
∫ 1

s
ks(t)f

′′(t)dt

Comme ks(0) = ks(1) = 0 et que f ′′ ∈ E, on obtient :

U(f)(s) = −
∫ 1

0
ks(t)f

′′(t)dt = −T(f ′′)(s)

d'où U(f) = −T(f ′′)

Comme f ′′ ∈ E, on a d'après Q12, on a T(f ′′) de classe C2 sur [0, 1] et T(f ′′)′′ = −f ′′

donc (T(f ′′) + f)′′ = 0 et la fonction T(f ′′) + f s'annule en 0 et 1

donc T(f ′′) + f = 0 comme en Q14 et U(f) = f

Q 26. Soit f ∈ E1. On va tout d'abord montrer le lemme suivant :

Soit α < β dans [0, 1], on a
∫ β

α
f ′ = f(β)− f(α)

On considère (xi)0⩽i⩽p (où p ∈ N∗) une subdivision de [α, β] adaptée à f ′.

Soit i ∈ [[1, p]], on a en changeant éventuellement les valeurs de f ′ aux bornes :
∫ xi

xi−1

f ′ = f(xi) − f(xi−1) en

utilisant le théorème fondamental de l'analyse.

Pour démontrer le lemme il su�t d'utiliser la relation de Chasles.

Soit maintenant s ∈ [0, 1], comme f(0 = f(1) = 0, on a alors :

U(f)(s) =

∫ 1

0
k′s(t)f

′(t)dt = (1− s)

∫ s

0
f ′ − s

∫ 1

s
f ′ = (1− s)(f(s)− f(0))− s(f(1)− f(s)) = f(s)

d'où U(f) = f

donc U est l'application identité de E1

Je suis fort surpris de ne pas utiliser la question précédente !

Q 27. On va revenir à la dé�nition et montrer les points 1., 3. et 2. dans cette ordre.

1. Selon 23, l'espace préhilbertien (E1, (· | ·)) est un sous-espace de F(I,R) où I est l'intervalle [0, 1].

3. Il s'agit de montrer que ∀x ∈ I, ∀f ∈ E1, f(x) = (kx | f) où kx et K sont dé�nies en II et véri�ent

∀x, t ∈ [0, 1], K(x, t) = kx(t)

Selon ce qui a été vu en 25, on a ∀x ∈ [0, 1], kx ∈ E1.

Soit f ∈ E1. Soit x ∈ [0, 1]. D'après 26, on a :

(kx | f) =
∫ 1

0
k′x(t)f

′(t)dt = U(f)(x) = f(x)
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2. Soit x ∈ [0, 1]. L'application Vx : f 7→ f(x) est une forme linéaire sur E1.

De plus, on a, en utilisant le point ci-dessus et l'inégalité de Cauchy-Schwarz :

∀f ∈ E1, |Vx(f)| = |(kx | f)| ⩽ N(kx) ·N(f)

Comme Vx est linéaire, Vx est continue de (E1,N) vers R.

Ainsi l'espace préhilbertien (E1, (· | ·)) est un espace à noyau reproduisant admettant K comme noyau

III.B - Un contre-exemple

Q 28. L'exemple du cours de la suite de fonctions qui converge pour la norme 2 mais pas simplement m'a inspiré

ici.

Par l'absurde si (E, ⟨·, ·⟩) était un espace à noyau reproduisant.

Alors l'application V1 : f 7→ f(1) serait une forme linéaire continue sur l'espace vectoriel normé (E, ∥ · ∥).
Pour n ∈ N∗, on considère fn : x 7→ xn. On a ∀n ∈ N∗, V1(fn) = 1. De plus

∥fn∥ =

√∫ 1

0
(tn)2 dt =

1

2n+ 1

donc ∥fn∥ −−−−−→
n→+∞

0 ainsi (fn)n converge vers 0E la fonction nulle sur [0, 1].

Par continuité de V1, on a donc V1(fn) −−−−−→
n→+∞

V1(0E)

Par unicité de la limite 1 = 0E(1) = 0 ce qui est absurde

Ainsi (E, ⟨·, ·⟩) n'est pas un espace à noyau reproduisant

III.C - Fonctions développables en série entière

Q 29. Comme la série
∑

(an)
2 est convergente, alors la suite (a2n)n est bornée

donc la suite (an1
n)n est bornée.

Ainsi d'après le lemme d'Abel, le rayon de convergence de la série entière
∑

ant
n est supérieur ou égal à 1

Q 30. Nous allons montrer que E2 est bien un espace vectoriel et que ⟨·, ·⟩ est un produit scalaire.

Soit f, g et h ∈ E2. Soit λ ∈ R.
On considère (an), (bn) et (cn) ∈ RN de carrés sommables telles que

f : t 7→
+∞∑
n=0

ant
n et g : t 7→

+∞∑
n=0

bnt
n et h : t 7→

+∞∑
n=0

cnt
n

On remarque qu'il y a correspondance bijective entre une fonction de E2 et la suite de coe�cients de la série
entière d'après le cours.

Ainsi (λf + g) : t 7→
+∞∑
n=0

(λan + bn) t
n et seule la suite (λan + bn)n convient.

E2 espace vectoriel : On a clairement E2 ⊂ F ( ]− 1, 1[ ,R) qui est un espace vectoriel.

Il su�t d'établir que E2 est un sous-espace de F ( ]− 1, 1[ ,R).
De plus E2 ̸= ∅ car la fonction nulle est dans E2.

Il reste à établir que λf , f + g ∈ E2 c'est-à-dire
∑
n⩾0

(λan)
2 et

∑
n⩾0

(an + bn)
2 convergent.
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Pour la première série, c'est vrai par linéarité.

Pour la deuxième, on commence par remarquer que ∀n ∈ N, |anbn| ⩽
a2n + b2n

2
car (|an| − |bn|)2 ⩾ 0.

Ainsi par comparaison entre séries à termes positifs, la série
∑
n⩾0

anbn converge absolument donc converge

d'où
∑
n⩾0

(an + bn)
2 converge aussi par linéarité.

Forme : À l'aide de l'étape précédente, on voit que la série
∑
n⩾0

anbn converge.

Ainsi ⟨f, g⟩ existe bien dans R.
Caractère symétrique et linéarité : sont évidents.

Caractère positif : Une somme de réels positifs est positive.

Caractère dé�ni : On suppose que ⟨f, f⟩ = 0. Ainsi
+∞∑
n=0

(an)
2 = 0

Donc ∀n ∈ N, an = 0 (somme de réels positifs) d'où f est la fonction nulle

Conclusion : Ainsi E2 muni de ⟨·, ·⟩ est un espace préhilbertien réel

Q 31. On pose (bn)n∈N = (xn)n∈N.

On remarque que la série
∑
n⩾0

(bn)
2 converge en tant que série géométrique de raison x2n ∈ [0, 1[ .

Je pose alors gx : t 7→
+∞∑
n=0

bnt
n =

+∞∑
n=0

xntn =
1

1− xt
, ainsi gx ∈ E2.

Soit f ∈ E2. On considère (an) ∈ RN de carré sommable telle que f : t 7→
+∞∑
n=0

ant
n. Alors on a

⟨gx, f⟩ =
+∞∑
n=0

anbn =

+∞∑
n=0

anx
n = f(x)

On a trouvé gx ∈ E2 tel que pour tout f ∈ E2, f(x) = ⟨gx, f⟩

Q 32. E2 muni de ⟨·, ·⟩ est un espace préhilbertien réel sous-espace vectoriel de F (I,R) où I est l'intervalle ]− 1, 1[ .
Le point 1 est véri�é.

Je note N2 la norme de l'espace préhilbertien (E2, ⟨·, ·⟩).
Soit x ∈ I. À l'aide de Cauchy-Schwarz, on a :

∀f ∈ E2, |Vx(f)| = |f(x)| = |⟨gx, f⟩| ⩽ N2 (gx) ·N2(f)

De plus Vx étant linéaire, ainsi Vx est continue. On a établi le point 2.

Le point 3. a alors été établi en Q31. et on a :

∀(x, t) ∈ (]−1, 1[)2 , gx(t) =
1

1− xt

On peut en déduire que E2 est un espace à noyau reproduisant, de noyau : (x, t) ∈ ]−1, 1[2 7−→ 1

1− xt
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III.D - Autre exemple parmi les fonctions de classe C1 par morceaux

Q 33. On admet que (E3, (· | ·)) est bien un espace préhilbertien, la preuve se faisant comme en Q23.

Le point 1 est véri�é avec I = [0, a].

La continuité de Vx pour x ∈ I sera conséquence de 3 en faisant comme en Q 32 avec Cauchy-Schwarz et la
caractérisation des applications linéaires continues.

Soit x ∈ [0, a] et f ∈ E3. Pour le point 3, on pose kx : t 7→ min(x, t) et il su�t d'établir que

kx ∈ E3 et f(x) = (kx | f)

or on a ∀t ∈ [0, x], kx(t) = t et ∀t ∈ [x, a], kx(t) = x

donc la fonction kx est continue et C1 par morceaux et

∀t ∈ [0, x[ , k′x(t) = 1 et ∀t ∈ ]x, a], k′x(t) = 0

De plus kx(0) = 0 d'où kx ∈ E3.

Ainsi, en utilisant le lemme établi en Q26 :

(kx | f) =
∫ a

0
f ′(t)k′x(t)dt =

∫ x

0
f ′(t)dt+

∫ a

x
0dt = f(x)− f(0) = f(x)

Ainsi la fonction (x, y) 7→ min(x, y) est un noyau reproduisant sur (E3, (· | ·))

Q 34. Comme φ′ < 0 et φ(a) = 0 alors φ est continue et strictement décroissante sur [0, a]

donc φ induit une bijection de [0, a] vers [φ(a), φ(0)] = [0, α] en notant α = φ(0) > 0.

Je note alors F : [0, α] −→ [0, a] la bijection réciproque qui est strictement décroissante et dérivable car φ′ ne

s'annule pas. Et comme ∀t ∈ [0, α], F′(t) =
1

φ′ (F(t))
on voit que F′ est continue par composition.

Ainsi F est de classe C1.

Je considère l'espace E3 de la question précédente mais en remplaçant a par α c'est-à-dire que E3 est l'espace
des fonctions continues et de classe C1 par morceaux sur [0, α] avec le produit scalaire dé�ni par :

∀f, g ∈ E3, (f | g) =
∫ α

0
f ′g′.

On a ainsi un espace préhilbertien à noyau de noyau (x, y) ∈ [0, α] 7→ min(x, y)

Je considère alors l'application :

Λ :

{
E4 −→ E3

f 7−→ f ◦ F
Il s'agit dans un premier temps de montrer que Λ est bien dé�nie. Soit f ∈ E4.

Comme f : [0, a] 7→ R et F : [0, α] −→ [0, a] sont continues alors f ◦ F est bien continue sur [0, α]

De plus f ◦ F(0) = f(F(0)) = f(a) = 0.

On considère alors (xi)0⩽i⩽p (p ∈ N∗) une subdivision de [0, a] adaptée au caractère C1 par morceaux de f alors
(φ(xp−i))0⩽i⩽p est une subdivision de [0, α] et par composition cette subdivision est adaptée au caractère C1

par morceaux de f ◦ F.
Donc Λ est bien dé�nie.

De plus Λ est clairement linéaire et bijective de bijection réciproque g ∈ E3 7→ g ◦ φ ∈ E4.

Ainsi Λ est un isomorphisme.

Je pose alors pour f et g ∈ E4,

∀f, g ∈ E4, < f | g >= (Λ(f) | Λ(g)) =
∫ α

0
(f ◦ F)′ · (g ◦ F)′
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où (· | ·) est le produit scalaire de la question précédente.
En exploitant l'isomorphisme, on montre facilement que < · | · > est un produit scalaire sur E4.
Je note L : (x, y) 7−→ min(φ(x), φ(y)) et pour x ∈ [0, α], je pose ℓx : t 7→ L(x, t)

Le point 1 étant vrai avec I = [0, a] et le point 2 étant conséquence du point 3, il reste à établir que L est un
noyau reproduisant sur l'espace préhilbertien E4 c'est-à-dire :

∀x ∈ [0, a], ∀f ∈ E4, ℓx ∈ E4 et < ℓx | f >= f(x)

Soit f ∈ E4 et x ∈ [0, a]. En remarquant que φ ([0, a]) = [0, α], on a :

∀t ∈ [0, a], ℓx(t) = min(φ(x), φ(t)) = kφ(x) (φ(t))

donc ℓx = kφ(x) ◦ φ = Λ−1
(
kφ(x)

)
∈ E4 car kφ(x) ∈ E3. Puis

< ℓx | f >= (Λ (ℓx) | Λ(f)) =
(
kφ(x) | f ◦ F

)
= f ◦ F (φ(x)) = f(x)

ainsi (f, g) 7−→
∫ φ(0)

0

(
f ◦ φ−1

)′ · (f ◦ φ−1
)′

est un produit scalaire sur E4 tel que la fonction

(x, y) 7→ min(φ(x), φ(y)) soit un noyau reproduisant sur l'espace préhilbertien E4

IV Quelques résultats sur les espaces à noyau reproduisant

IV.A - Continuité

Q 35. Soit f ∈ E tel que ∥f∥ = 1. À l'aide Cauchy-Schwarz, on a :

|f(x)| = |⟨f, kx⟩| ⩽ ∥f∥ · ∥kx∥ =
√
⟨kx, kx⟩

d'où l'existence des membres et l'inégalité : 0 ⩽ N(Vx) = sup
∥f∥=1

|f(x)| ⩽
√
⟨kx, kx⟩

Si kx = 0E, alors N(Vx) = 0 =
√

⟨kx, kx⟩

Si kx ̸= 0E, alors g =
1√

⟨kx, kx⟩
kx est de norme 1 et

Vx(g) =
1√

⟨kx, kx⟩
kx(x) =

⟨kx, kx⟩√
⟨kx, kx⟩

Dans tous les cas, il s'agit d'un maximum et on a N(Vx) =
√
⟨kx, kx⟩

Q 36. On remarque tout d'abord que

∀x, y ∈ I, K(x, y) = kx(y) = ⟨kx, ky⟩ = K(y, x)

Soit f ∈ E et x ∈ I. Il s'agit d'établir que lim
y→x

f(y) = f(x) pour obtenir la continuité de f en x.

Soit y ∈ I. On a, avec Cauchy-Schwarz,

|f(x)− f(y)| = |⟨kx, f⟩ − ⟨ky, f⟩| = |⟨kx − ky, f⟩| ⩽ ∥kx − ky∥ · ∥f∥

Puis
∥kx − ky∥2 = ⟨kx, kx⟩+ ⟨ky, ky⟩ − 2⟨kx, ky⟩ = K(x, x) + K(y, y)− 2K(x, y)

Or K est continue sur I2 et (x, x) = lim
y→x

(y, y) = lim
y→x

(x, y) donc

lim
y→x

∥kx − ky∥ =
√

lim
y→x

(K(x, x) + K(y, y)− 2K(x, y)) =
√
K(x, x) + K(x, x)− 2K(x, x) = 0

D'où par théorème des gendarmes : lim
y→x

f(y) = f(x).

Ainsi f est continue en tout point de I donc f est continue sur I.
D'où toutes les fonctions de E sont continues
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IV.B - Construction d'un espace à noyau reproduisant

Q 37. Montrons au préalable que T : E −→ E est bien dé�nie
Soit f ∈ E. Je note F : (x, t) ∈ [0, 1]2 7−→ A(x, t)f(t) ∈ R.
Ainsi F et continue sur [0, 1]2.
Pour tout t ∈ [0, 1], x 7→ F(x, t) est continue sur [0, 1] (i)
Pour tout x ∈ [0, 1], t 7→ F(x, t) est continue sur [0, 1] (ii)
[0, 1]2 étant compact (produit de compacts), le théorème des bornes atteintes nous fournit M > 0 tel que

∀(x, t) ∈ [0, 1]2, |F(x, t)| ⩽ m

L'hypothèse de domination est véri�ée car t 7−→ M est continue donc intégrable sur le segment [0, 1] (iii)

Avec (i), (ii) et (iii), on a par théorème de cours : T(f) : x 7→
∫ 1

0
F(x, t)dt dé�nie et continue sur [0, 1].

Donc T(f) ∈ E. La linéarité étant évidente, on a bien

T ∈ L(E)

Comme kerT est de dimension �nie, alors (kerT)⊥ est un supplémentaire de kerT

donc selon la forme géométrique du théorème du rang, T induit un isomorphisme de (kerT)⊥ sur ImT

Q 38.
(
(kerT)⊥ , ⟨·, ·⟩

)
est un espace préhilbertien réel où le produit scalaire est induit par celui sur E

et S ∈ L
(
ImT, (kerT)⊥

)
est un isomorphisme. Ainsi comme en Q34, on obtient que

(ImT, φ) est un espace préhilbertien réel
et on a ImT ⊂ E ⊂ F ([0, 1],R), le point 1 est véri�é.

Soit f ∈ ImT et x ∈ [0, 1]. Je note kx : y ∈ [0, 1] 7−→ K(x, y). Comme en Q33, pour véri�er les points 2 et 3, il
su�ra d'établir que

kx ∈ ImT et f(x) = φ (kx, f)

Je pose hx : t ∈ [0, 1] 7−→ A(x, t).
Comme A est continue sur [0, 1]2, alors hx ∈ E et

∀y ∈ [0, 1], kx(y) = K(x, y) =

∫ 1

0
A(x, t)A(y, t)dt =

∫ 1

0
hx(t)A(y, t)dt = T(hx)(y)

Ainsi on a kx = T(hx) ∈ ImT et au passage on a véri�é que K est bien dé�nie.

D'après 37, on a kerT
⊕

(kerT)⊥ = E, on peut noter πx le projeté orthogonale de kx sur (kerT)⊥.
Ainsi kx − πx ∈ kerT et T(kx) = T(πx). On a alors

φ (kx, f) = ⟨S ◦ T (hx) ,S(f)⟩ = ⟨S ◦ T (πx) , S(f)⟩ = ⟨πx, S(f)⟩

Comme ImS = (kerT)⊥, on a kx − πx ∈ Im (S)⊥. D'où

φ (kx, f) = ⟨kx,S(f)⟩ =
∫ 1

0
A(x, t) · S(f)(t) dt = T(S(f)) (x) = f(x)

Ainsi (ImT, φ) est un espace à noyau reproduisant, de noyau K

• • • FIN • • •
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Théorème 1. Soit E un espace préhilbertien réel et (en)n∈N une suite totale de vecteurs de E.
On note pn = pFn avec Fn = Vect (ek)0⩽k⩽n pour tout n entier. Alors

∀x ∈ E pn(x) −−−→
n→∞

x

Démonstration. Soit ε > 0. On a B(x, ε) ∩ Vect (en)n∈N ̸= ∅. Soit y un élément de cette

intersection. Il existe N entier tel que y ∈ FN. Par propriété du projeté orthogonal, on a

∥x− pN(x)∥ ⩽ ∥x− y∥. Par ailleurs, la suite d'ensemble {∥x− u∥, u ∈ Fn}n est croissante pour

l'inclusion par croissance de (Fn)n d'où la décroissance de la suite des bornes inférieures i.e. la

suite (∥x− pn(x)∥)n. Ainsi

∀n ⩾ N ∥x− pn(x)∥ ⩽ ∥x− pN(x)∥ ⩽ ∥x− y∥ ⩽ ε

autrement dit

∀ε > 0 ∃N ∈ N ∀n ∈ N n ⩾ N =⇒ ∥x− pn(x)∥ ⩽ ε

Application : Ici, on considère la famille (gk)k⩾1 comme famille totale de E. Comme cette

famille est orthonormale, notant FN = Vect (g1, . . . , gN) pour N entier avec F0 = {0E}, on a

∀N ∈ N∗ pN(f) =
N∑

k=1

⟨f, gk⟩ gk = fN

Ainsi fN −−−→
N→∞

f

1


