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Thème :

Partie I : Bases symplectiques

1. Soient (e1, . . . , en) une base de E et, pour k ∈ [[1, n]], e∗k la forme linéaire caractérisée par les
relations e∗k(ej) = 0 si j 6= k, et e∗k(ek) = 1. On a, pour tout u ∈ E∗ et x =

∑
i

xiei dans E,

e∗k(x) = xk donc u(x) =
∑
k

u(ek)e
∗
k(x) et

u =
∑
k

u(ek)e
∗
k

Ainsi (e∗1, . . . , e
∗
n) est une famille génératrice de E∗. C’est aussi une famille libre car si∑

i

uie
∗
i = 0

alors uk =

(∑
i

uie
∗
i

)
(ek) = 0. Par conséquent dimE∗ = n.

2. Par antisymétrie, ω(x, x) = −ω(x, x), d’où ω(x, x) = 0.

3. (a) Notons Bk le vecteur colonne t(0, 0, . . . , 0, 1, 0, . . . , 0) (où le 1 est à la k-ième place). Si une
telle matrice M existe, alors

ω(bi, bj) =
tBiMBj =Mi,j

Réciproquement, si l’on définit M comme étant la matrice (ω(bi, bj))16i,j6n, alors pour tous
x, y ∈ E :

ω(x, y) =
∑
i,j

xiyjω(bi, bj) =
∑
i,j

xiMi,jyj =
tXMY

(b) On a
Mi,j = ω(bi, bj) = −ω(bj , bi) = −Mj,i

Donc tM = −M .

(c) Notons An(R) l’espace des matrices antisymétriques de Mn(R). L’application

A(E) → An(R)
ω 7→ (ω(bi, bj))i,j

est clairement linéaire. C’est donc d’après (a) un isomorphisme et l’on a

dimA(E) = dimAn(R) =
n(n− 1)

2
.

En particulier, si n = 2, dimA(E) = 1.

(d) Posons M = MatB(ω).
— (E1) =⇒ (E2) : Supposons (E1). Soit ω une forme symplectique sur E et x ∈ E \ {0}.

Puisque φω est un isomorphisme, φω(x) 6= 0, donc il existe y ∈ E tel que ω(x, y) 6= 0.
— (E2) =⇒ (E3) : Supposons (E2). Soit X tel que MX = 0. Alors, pour tout Y , tXMY =

−t(MX)Y = 0 d’où, par (E2), X = 0. Ceci montre que M est inversible.



— (E3) =⇒ (E1) : Supposons (E3). Soit x ∈ Ker(φω) et X le vecteur colonne de ses coor-
données dans la base B. Si φω(x) = 0 alors, pour tout y ∈ E, ω(x, y) = 0. Donc pour tout
vecteur colonne Y , tXMY = 0. On en déduit tMX = 0 puis, M étant inversible, X = 0 et
x = 0. Ainsi φω est injective. Comme dimE = dimE∗, c’est un isomorphisme et ω est une
forme symplectique.

4. S’il existe une forme symplectique non nulle sur E, alors il existe d’après les questions précédentes
une matrice antisymétrique inversible M dans Mn(R). Comme det(M) = det(tM) = det(−M) =

(−1)n det(M) et det(M) 6= 0, n est pair.

5. Il est clair que ω0 est une forme bilinéaire. Elle est antisymétrique car Jn est antisymétrique :
ω0(Y,X) = tY JnX = t(tY JnX) = tXtJnY = −tXJnY = −ω0(X,Y ). La matrice dans la base
canonique de Rn est ω0 n’est autre que Jn, qui est manifestement inversible. Donc ω0 est une
forme symplectique.

6. Soit B = (b1, b2) une base quelconque de E. La matrice de ω dans B est de la forme

(
0 −a
a 0

)
,

où a 6= 0. Dans la base (
1

a
b1, b2), la matrice de ω est

(
0 −1
1 0

)
= J2.

7. (a) Soit G un supplémentaire de F , et u ∈ F ∗. On sait qu’il existe une unique application linéaire
ũ : E → R qui cöıncide avec u sur F et l’application nulle sur G : cette application convient.

(b) La restriction de ω à F ×F est bien sûr une forme bilinéaire alternée. C’est une forme symplec-
tique si {x ∈ F ; ∀y ∈ F, ω(x, y) = 0} est restreint à {0}, c’est-à-dire F ∩ Fω = {0}.

(c) On a bien sûr Ker(ψF ) = Fω. En outre, d’après (a) et parce que φω est bijective, Im(ψF ) = F ∗.

(d) Il suffit d’appliquer le théorème du rang à ψF .

(e) Si la restriction de ω à F ×F est une forme symplectique, alors F et Fω sont en somme directe
d’après (b). Ce sont donc des supplémentaires d’après (c). Choisissons une base B de F et une
base B′ de Fω. Soient M et M ′ les matrices de ω|F×F

et ω|Fω×Fω . Comme ω(x, y) = 0 dès
que (x, y) ∈ F × Fω, la matrice de ω dans la base (B,B′) est la matrice diagonale par blocs(
M 0

0 M ′

)
. Comme elle est inversible, M ′ l’est aussi et ω|Fω×Fω est une forme symplectique.

8. On procède par récurrence (de 2 en 2 bien sûr) sur la dimension de E.

• Si E est de dimension 2, la justification a été donnée en 6..

• Soit n > 4 un entier pair, E de dimension n, et ω une forme symplectique sur E. Soit a ∈ E \ {0}
puis b ∈ E tel que ω(a, b) 6= 0. Posons F = Vect(a, b). D’après 3.(c), toutes les formes bilinéaires
alternées non nulles sur F sont des formes symplectiques. Donc ω|F×F

est une forme symplectique.
D’après 7.(e), F ⊕ Fω = E et ω|Fω×Fω est une forme symplectique. En utilisant 6. et l’hypothèse
de récurrence, il existe une base B de F et une base B′ de Fω dans lesquelles les matrices de ω|F×F

et ω|Fω×Fω sont respectivement J2 et Diag(J2, J2, . . . , J2) (où le bloc J2 est répété n−1 fois). Dans
la base (B,B′) de E, la matrice de ω est Diag(J2, J2, . . . , J2) (où le bloc J2 est répété n fois).

9. Soit (b1, . . . , bn) une base dans laquelle la matrice de ω est Diag(J2, J2, . . . , J2). Dans la base
(e1, e3, . . . , en−1, e2, e4, . . . , en), la matrice de ω est Jn : il existe bien une base dans laquelle la
matrice de ω est Jn.

Considérons alors la structure complexe J dont la matrice dans la base ci-dessus est −Jn (on a
bien J2 = J2

n = −In). Pour tout x 6= 0 de vecteur colonne coordonnées X, on a

ω(x, J(x)) = tXJn(−Jn)X = tXX > 0

C’est dire que ω dompte la structure complexe J .



Partie II : Deux outils sur les polynômes

10. La linéarité de LP,Q est immédiate. Supposons P etQ premiers entre eux. Alors (V,W ) ∈ Ker(LP,Q)

vérifie V P +WQ = 0, donc P |WQ et, puisque P et Q sont premiers entre eux, P |W d’où, puisque
deg(W ) < p = deg(P ), W = 0 puis V = 0. Ainsi, LP,Q est injective. Puisque les espaces de départ
et d’arrivée sont de même dimension finie (à savoir p+ q), LP,Q est un isomorphisme. Supposons
réciproquement que LP,Q soit un isomorphisme. Alors il existe (V,W ) tel que V P +WQ = 1, ce
qui montre que P et Q sont premiers entre eux.

11. L’application nulle convient ! On va plutôt construire r telle que r(P ) est non nul si et seulement si
les racines de P dans C sont simples. On sait que les racines complexes de P ∈ Rd[X] sont simples
si et seulement si P et P ′ sont premiers entre eux, donc si et seulement si l’application LP,P ′ est un
isomorphisme. La matrice de cette application dans les bases canoniques de Rd−1[X] × Rd−2[X]

et R2d−2[X] est une matrice dont les coefficients sont des polynômes (de degré au plus 1) en
les coefficients de P et dont le déterminant r(P ) est aussi une application polynomiale en les
coefficients de P . Cette application r convient.

12. Il revient au même de montrer que f−1({0}) est d’intérieur vide, ce qu’on montre par récurrence
sur d. La proposition est immédiate pour d = 1. Soit d > 2 et f polynomiale non nulle à valeurs
réelles, définie sur Rd. Posons

f(x1, . . . , xd) = f0(x1, . . . , xd−1) + f1(x1, . . . , xd−1)xd + . . .+ fs(x1, . . . , xd−1)x
s
d

Supposons par contraposition qu’il existe a = (a1, a2, . . . , ad) intérieur à f−1(0). Alors l’application
polynomiale g : x 7→ f(a1, a2, . . . , ad−1, x) est nulle au voisinage de ad. Comme un polynôme
non nul en une variable ne possède qu’un nombre fini de racines, g est l’application nulle. Les
coefficients fk(a1, . . . , ad−1) de cette application polynomiale sont donc nuls, et c’est vrai aussi de
fk(b1, . . . , bd−1) pour (b1, . . . , bd−1) dans un voisinage de (a1, . . . , ad−1). Par conséquent, chaque
fk s’annule sur un ensemble d’intérieur non vide. Par l’hypothèse de récurrence, fk est nulle et f
aussi.

Partie III : Réduction simultanée

13. La condition sur u considérée ici équivaut à φω1
= φω ◦u. Elle admet une solution u unique, qui est

bien un isomorphisme, puisque φω et φω1
sont des isomorphismes. On a alors, pour tout x, y ∈ E :

ω(x, u(y)) = −ω(u(y), x) = −ω1(y, x) = ω1(x, y) = ω(u(x), y).

Donc u ∈ S.

14. (a) La relation ω(x, u(y)) = ω(u(x), y) s’exprime matriciellement dans la base B : tXJ4UY =
t(UX)J4Y . Ceci étant vrai pour tous vecteurs colonnes X et Y :

J4U = tUJ4.

(b) Écrivons U sous forme de matrice blocs 2 × 2 : U =

(
A B

C D

)
. La condition J4U = tUJ4 se

traduit par D = tA, tB = −B, tC = −C. Comme toute matrice antisymétrique de M2(R) est

colinéaire à J2, il existe en effet N ∈ M2(R) et α, β ∈ R tels que U =

(
N αJ2

βJ2
tN

)
.

(c) Puisque det(N −XI2) est le polynôme caractéristique de N , on a

T (X) = X2 − Tr(N)X + (det(N) + αβ).



On en déduit :

T (U) =

(
N2 + αβJ2

2 α(NJ2 + βJ2
tN)

β(J2N + βtNJ2)
tN2 + αβJ2

2

)
− Tr(N)U + (det(N) + αβ)I4.

Comme J2
2 = −I2, et NJ2 + J2

tN = tNJ2 + J2N = Tr(N)J2, il vient :

T (U) =

(
N2 − Tr(N)N + det(N)I2 0

0 N2 − Tr(N)N + det(N)I2

)
= 0

par le théorème de Cayley-Hamilton.

15. L’expression � u n’admet aucune valeur propre réelle � est impropre car une valeur propre d’un
endomorphisme d’un R-espace vectoriel ne saurait être autre chose qu’un réel. Disons plutôt que
u n’a aucune valeur propre, ou que U n’a aucune valeur propre réelle. Par conséquent, U admet
une valeur propre non réelle et T , qui annule U ainsi une toute valeur propre de U , admet une
racine non réelle. Puisqu’il s’agit d’un polynôme de degré deux à coefficients réel, T admet deux
racines conjuguées non réelles. En particulier, les racines de T sont simples. Puisque T annule U ,
on sait que cela entrâıne que U est diagonalisable sur C.

Soit λ ∈ sp(U) (donc λ /∈ R). Puisque U est réelle, λ est valeur propre avec la même multiplicité
que λ. Comme U admet au plus deux valeurs propres (car U annule T qui est de degré 2), sp(U) =

{λ, λ} et ces deux valeurs propres sont de multiplicité 2. Puisque U est diagonalisable, les espaces
propres sont de dimension 2. On peut donc choisir Z et Y ∈ C4, linéairement indépendants, tels
que UZ = λZ et UY = λY .

16. Le couple (Z, Y ) est une C-base de l’espace propre Eλ(U), et (Z, Y ) est une base de Eλ(U).
Comme C4 est somme directe de ces deux espaces propres, (Z,Z, Y, Y ) est une C-base de C4.
Donc (Z1, Z2, Y1,−Y2) aussi (c’est à l’évidence une famille C-génératrice), qui est une famille C-
libre et, par conséquent R-libre : c’est une base de R4 et (z1, z2, y1,−y2) est une base de E.

17. De J4U = tUJ4 on déduit tZJ4UZ = tZtUJ4Z d’où, puisque UZ = λZ et UZ = λZ, λtZJ4Z =

λtZJ4Z et, λ n’étant pas réel, tZJ4Z = 0, c’est-à-dire tZ1J4Z1+i
tZ2J4Z1−itZ1J4Z2+

tZ2J4Z2 = 0

ou encore
ω(z1, z1) + i(ω(z2, z1)− ω(z1, z2)) + ω(z2, z2) = 0.

Comme ω est antisymétrique, il vient ω(z1, z2) = 0.

On a de la même manière tY J4Y = 0 et tZJ4Y = 0, d’où ω(y1, y2) = 0, ω(z1, y1) + ω(z2, y2) = 0

et ω(z2, y1)− ω(z1, y2) = 0.

18. Comme ω est symplectique et ω(z1, x) = 0 pour tout x ∈ Vect(z1, z2), on a ω(z1, y1) 6= 0 ou

ω(z1, y2) 6= 0, donc tZ1J4Y 6= 0. On peut donc poser ξ = − 1
tZ1J4Y

, et l’on a tZ1J4(ξY ) = −1. En

substituant ξY à Y , on a bien ω(z1, y1) = −1 et ω(z1, y2) = 0.

19. Posons λ = a+ ib. Les relations UZ = λZ et UY = λY se traduisent par{
UZ1 = aZ1 − bZ2

UZ2 = bZ1 + aZ2

{
UY1 = aY1 + b(−Y2)
U(−Y2) = −bY1 + a(−Y2)

.

La matrice de u dans la base B̃ = (z1, z2, y1,−y2) est donc
a −b 0 0

b a 0 0

0 0 a b

0 0 −b a


Soient r > 0 et θ ∈ R tels que λ = reiθ (avec θ /∈ πZ car λ /∈ R), cette matrice s’écrit

r

(
Rθ 0

0 R−θ

)
.



Par ailleurs, les relations ω(z1, y1) = −1, ω(z2,−y2) = ω(z1, y1) = −1 et ω(z1,−y2) = ω(z2, y1) = 0

montrent que le bloc 2× 2 � en haut à droite � de la matrice de ω dans la base B̃ est −I2. Comme
ω(z1, z2) = ω(y1, y2) = 0, la matrice de ω dans B̃ est bien J4.

Enfin, puisque ω1(x, y) = ω(ux, y) = tXtUJ4Y , la matrice de ω1 est

tUJ4 = r

(
0 −R−θ
Rθ 0

)
.

20. Comme Fj est le noyau de Pj(u) qui commute avec u, Fj est stable par u. La décomposition
E = F1 ⊕ F2 ⊕ . . .⊕ Fr résulte du lemme des noyaux.

21. Soit j, k ∈ {1, . . . , r} distincts. Par le théorème de Bézout, il existe U, V ∈ R[X] tels que V Pj +
WPk = 1. On a, pour tous x ∈ Fj et y ∈ Fk : ω(Pj(u)(x), y) = 0 (car Pj(u)(x) = 0) et
ω(Pk(u)(x), y) = ω(x, Pk(u)(y)) = 0. Comme Fj est stable par u, V (u)(x) et W (u)(x) appar-
tiennent à Fj . En appliquant les deux relations précédentes à ces vecteurs, il vient :

ω(Pj(u)(V (u)(x)), y) = 0 ω(Pj(u)(W (u)(x)), y) = 0,

d’où ω((PjV +PkW )(u)(x), y) = 0, c’est-à-dire ω(x, y) = 0. En outre, puisque u(x) ∈ Fj , ω1(x, y) =

ω(u(x), y) = 0. Ceci montre Fk ⊂ Fωj et Fk ⊂ Fω1
j .

22. Considérons une base Bk de Fk et B = (B1, . . . ,Br). Comme les Fk sont deux à deux orthogonaux
pour ω, la matrice M de ω dans B est diagonale par blocs Diag(M1, . . . ,Mr), où Mk est la matrice
de la restriction de ω à Fk × Fk. Comme ω est symplectique, M est inversible et chaque Mk est
inversible. Donc la restriction de ω à Fk × Fk est symplectique. Il en va de même pour ω1.

23. Supposons que χu n’admette aucune racine double dans C, de sorte que χu est le produit de po-
lynômes P1, . . . , Pr ∈ R[X] deux à deux premiers entre eux, chacun de l’une des formes suivantes :

X − a, a ∈ R∗,
(X − a)2, a ∈ R∗,
(X − λ)(X − λ), λ ∈ C \ R,
(X − λ)2(X − λ)2, λ ∈ C \ R

Posons Fj = Ker(Pj(u)). Les Fj sont stables par u et leur somme directe est égale à E d’après 20..
Soit uj l’endomorphisme induit par u sur Fj , de sorte que Pj(uj) = 0. On voit matriciellement

que χu =

r∏
i=1

χui
. Puisque Pj(uj) = 0, les valeurs propres réelles ou complexes de u (ou plutôt

d’une matrice représentant u...) sont des racines de Pj . Donc χj est premier avec chaque Pk,
k 6= j. De

∏
j

Pj =
∏
j

χj , on déduit alors (tous ces polynômes sont unitaires) χj = Pj puis

dimFj = deg(Pj) ∈ {1, 2, 4}. Comme ω induit une forme symplectique sur Fj , Fj est de dimension
paire, ce qui exclut dimFj = 1. Chaque Fj est donc de dimension 2 ou 4 et on conclut par 22..

Apportons une précision : si E est de dimension 2, A(E) est une droite et deux formes symplec-
tiques sont donc proportionnelles. Il existe donc a ∈ R∗ tel que ω1 = aω. On a alors φω1 = aφω

donc φω ◦ u = aφω = φω ◦ (aIdE), d’où u = aIdE (ce qu’on retrouverait aussi en appliquant les
méthodes de 14.). Si l’on applique ceci, dans le cadre de cette question, à l’espace Fj lorsqu’il est
de dimension 2, on voit que uj est une homothétie. En particulier, le polynôme Pj n’est jamais de
la forme (X − λ)(X − λ).

Partie IV : Structures complexes domptées simultanément

24. Supposons que les racines complexes du polynôme caractéristique de u soient de multiplicité au
plus 2 et montrons, sous cette hypothèse, que F1 et F2 sont simultanément vrais ou faux. Il suffit



d’établir ces énoncés dans le cas où E est de dimension 2 ou 4 car les résultats de 23., permettent
aisément d’en déduire le cas général (chaque Fi est vraie sur E si et seulement si les formes
restreintes aux Fj la vérifient). Le cas de la dimension 2 est immédiat : ω1 et ω2 sont propor-
tionnelles et F1, tout comme F2, est vraie si et seulement si le coefficient de proportionnalité est
(strictement) positif.

Supposons donc E de dimension 4 et reprenons le contexte de 19.. Montrons que (si les racines
complexes du polynôme caractéristique de u sont de multiplicité au plus 2) F1 et F2 sont tous les
deux vrais.

• Pour établir F1, remarquons d’abord que, pour tous vecteurs colonnes X1, X2 de C2,

(tX1,
tX2)(−J4)

(
0 Rθ

−R−θ 0

)(
X1

X2

)
= tX1RθX1 +

tX2RθX2 = cos(θ)(‖X1‖22 + ‖X2‖22).

Donc la structure complexe de matrice (−J4) est domptée par la forme symplectique de matrice(
0 Rθ

−R−θ 0

)
si et seulement si cos(θ) > 0.

Effectuons alors le changement de base de matrice

(
I2 0

0 R−φ

)
, où φ ∈ R. La matrice de ω dans

cette nouvelle base est

t(
I2 0

0 R−φ

)
J4

(
I2 0

0 R−φ

)
=

(
0 −R−φ
Rφ 0

)

et la matrice de ω1 est

r
t

(
I2 0

0 R−φ

)(
0 −R−θ
Rθ 0

)(
I2 0

0 R−φ

)
= r

(
0 −R−(θ+φ)

Rθ+φ 0

)

Choisissons φ tel que cos(φ) > 0 et cos(θ + φ) > 0 (ça existe). Alors (−J4) est domptée par ω et
par ω1.

• Pour tout t ∈ [0, 1], la matrice (1−t)J4+tr

(
0 −R−θ
Rθ 0

)
=

(
0 −(1− t)I2 −R−θ

(1− t)I2 +Rθ 0

)
est inversible car (1− t)I2 +Rθ l’est (Rθ n’admet pas de valeur propre réelle). D’où F2.

25. Posons S0 = {u ∈ L(E); ∀x, y, ω(x, u(y)) = ω(u(x), y)}, de sorte que S = S0. L’ensemble S0
est un sous-espace vectoriel de L(E), disons de dimension d. Choisissons-en une base et notons
x1, . . . , xd les coordonnées d’un élément u ∈ S0. Les racines complexes de χu sont au plus doubles
si et seulement si r(χ′u) 6= 0. L’application f(x1, . . . , xd) = r(χ′u) est une application polynomiale
non nulle sur Rd. Par 12., l’ensemble des u ∈ S0 dont le polynôme caractéristique est à racines au
plus doubles est dense dans S0. Enfin, puisque GL(E) est un ouvert dense de L(E), l’ensemble des
u ∈ S dont le polynôme caractéristique est à racines au plus doubles est dense dans S.

26. Pas grand chose semble-t-il... Supposons F2. Il existe d’après 25. une suite (vk)k>2 d’éléments
de S qui converge vers u et telle que le polynôme caractéristique de chaque vk soit à racines au
plus doubles. Soit ωk la forme bilinéaire définie par φωk

= φω ◦ vk. C’est une forme symplectique
et le segment [ω, ωk] est contenu dans l’ensemble des formes symplectiques dès que k est assez
grand. Par 24., il existe, pour k assez grand une structure complexe domptée par ω et ωk. Si on
peut en extraire une sous-suite convergente, on obtient une structure complexe domptée par ω et
ω1. Mais l’ensemble des structures complexes n’est pas compact (c’est matriciellement la classe de
similitude de Jn), pas plus que l’ensemble des structures complexes domptées par ω. So... ?


