Lycée Champollion Classe de MP”
X-ENS MP 2017 Epreuve A

Théme

Partie I : Bases symplectiques

1. Soient (ej,...,e,) une base de F et, pour k € [1,n], e; la forme linéaire caractérisée par les
relations ej(e;) = 0sij # k, et e;(e;) = 1. On a, pour tout v € E* et z = inei dans F,

K2

er(x) = zx donc u(z) = Y uler)ej () et

3
u= Z u(ex)er
k

Ainsi (e, ..., e}) est une famille génératrice de E*. C’est aussi une famille libre car si

E we; =0
i

alors uy, = <Z uiez‘> (er;) = 0. Par conséquent dim E* = n.

2. Par antisymétrie, w(z,z) = —w(z,z), dot w(z,z) = 0.
3.(a) Notons B, le vecteur colonne (0,0,...,0,1,0,...,0) (ou le 1 est & la k-iéme place). Si une
telle matrice M existe, alors
w(bi, bJ) = tBiMBj = Mi’j
Réciproquement, si 'on définit // comme étant la matrice (w(b;,b;))1<i,j<n, alors pour tous

T,y €E:
wla,y) =Y ziyjwbiby) =Y wilizy; = ' XMY
I ij

(b) On a
M; j = w(bi, bj) = —w(bj, b;) = —M;,;
Donc ‘M = —M.

(c) Notons A,,(R) I'espace des matrices antisymétriques de M, (R). L’application

AE) — A(R)
w = (w(biy b))

est clairement linéaire. C’est donc d’apres (a) un isomorphisme et 'on a

dim A(E) = dim A, (R) = @

En particulier, si n = 2, dim A(E) = 1.
(d) Posons M = Matg(w).
— (&1) = (&) : Supposons (&;). Soit w une forme symplectique sur F et « € E \ {0}.
Puisque ¢,, est un isomorphisme, ¢, (z) # 0, donc il existe y € F tel que w(z,y) # 0.
— (&) == (&3) : Supposons (&;). Soit X tel que M X = 0. Alors, pour tout Y, ‘XMY =
~H(MX)Y =0 dot, par (&), X = 0. Ceci montre que M est inversible.



— (&) = (&) : Supposons (&3). Soit 2z € Ker(¢,,) et X le vecteur colonne de ses coor-
données dans la base B. Si ¢, (x) = 0 alors, pour tout y € E, w(z,y) = 0. Donc pour tout
vecteur colonne Y, "X MY = 0. On en déduit "M X = 0 puis, M étant inversible, X = 0 et
x = 0. Ainsi ¢,, est injective. Comme dim £ = dim E*, c’est un isomorphisme et w est une
forme symplectique.

4. S’il existe une forme symplectique non nulle sur E, alors il existe d’apres les questions précédentes
une matrice antisymétrique inversible M dans M,,(R). Comme det(M) = det(*M) = det(—M) =
(=1)"det(M) et det(M) # 0, n est pair.

5. 11 est clair que wy est une forme bilinéaire. Elle est antisymétrique car J,, est antisymétrique :
wo(V,X) =Y, X =("YJ,X) = 'X"J,Y = ~'XJ,Y = —w(X,Y). La matrice dans la base
canonique de R" est wy n'est autre que .J,, qui est manifestement inversible. Donc wy est une
forme symplectique.

6. Soit B = (b1, b2) une base quelconque de E. La matrice de w dans B est de la forme ( 0 —Oa ),
a

1 0 -1
ol a # 0. Dans la base (—b1, b2), la matrice de w est ( 1o ) = Js.
a

7.(a) Soit G un supplémentaire de F, et uw € F*. On sait qu’il existe une unique application linéaire
@ : ' — R qui coincide avec u sur F et 'application nulle sur G : cette application convient.

(b) Larestriction de w a F' x F est bien siir une forme bilinéaire alternée. C’est une forme symplec-
tique si {x € F; Vy € F, w(x,y) = 0} est restreint a {0}, c’est-a-dire F' N F** = {0}.

*

(c) On abien str Ker(¢yp) = F“. En outre, d’apres (a) et parce que ¢, est bijective, Im(yp) = F*.
(d) 1 suffit d’appliquer le théoréme du rang a ¥p.

(e) Silarestriction de w a F' x F est une forme symplectique, alors F' et F'“ sont en somme directe
d’apres (b). Ce sont donc des supplémentaires d’apres (c). Choisissons une base B de F' et une
base B’ de F*. Soient M et M’ les matrices de w, , et w|,. .. Comme w(z,y) = 0 deés
que (z,y) € F x F*“, la matrice de w dans la base (B, B’) est la matrice diagonale par blocs

M 0
0o M

8. On procéde par récurrence (de 2 en 2 bien sfir) sur la dimension de E.

. Comme elle est inversible, M’ I'est aussi et w,., est une forme symplectique.

X Fw

e Si F est de dimension 2, la justification a été donnée en 6..

e Soit n > 4 un entier pair, E de dimension n, et w une forme symplectique sur E. Soita € E'\ {0}
puis b € E tel que w(a,b) # 0. Posons F' = Vect(a, b). D’apres 3.(c), toutes les formes bilinéaires
alternées non nulles sur F sont des formes symplectiques. Donc wy,., ,. est une forme symplectique.
D’apres 7.(e), F & F¥ = E et w),.,
de récurrence, il existe une base B de F et une base B’ de F* dans lesquelles les matrices de w,, .

est une forme symplectique. En utilisant 6. et ’hypotheése

X Fw

et Wy, , .. Sontrespectivement J, et Diag(Js, Ja, ..., J2) (ou le bloc J; est répété n —1 fois). Dans
la base (B, B’) de E, la matrice de w est Diag(Js, Ja, ..., J2) (ol le bloc J; est répété n fois).

9. Soit (by,...,b,) une base dans laquelle la matrice de w est Diag(Js, Ja, ..., J2). Dans la base
(e1,€3,...,€n_1,€2,€4,...,€y), la matrice de w est J, : il existe bien une base dans laquelle la
matrice de w est J,,.

Considérons alors la structure complexe J dont la matrice dans la base ci-dessus est —J,, (on a
bien J? = J? = —1I,,). Pour tout = # 0 de vecteur colonne coordonnées X, on a

w(z, J(x)) ="XJ(—J) X ='XX >0

C’est dire que w dompte la structure complexe J.



10.

11.

12.

13.

14.

Partie II : Deux outils sur les polynomes

La linéarité de L p ¢ est immédiate. Supposons P et () premiers entre eux. Alors (V, W) € Ker(Lpq)
vérifie VP +WQ = 0, donc P|WWQ et, puisque P et () sont premiers entre eux, P|I¥ d’ou, puisque
deg(W) < p = deg(P), W = 0 puis V = 0. Ainsi, Lp ¢ est injective. Puisque les espaces de départ
et d’arrivée sont de méme dimension finie (a savoir p + ¢), Lp g est un isomorphisme. Supposons
réciproquement que Lp g soit un isomorphisme. Alors il existe (V, W) tel que VP + WQ =1, ce
qui montre que P et () sont premiers entre eux.

L’application nulle convient! On va plutét construire r telle que r(P) est non nul si et seulement si
les racines de P dans C sont simples. On sait que les racines complexes de P € R,[X] sont simples
si et seulement si P et P’ sont premiers entre eux, donc si et seulement si 'application Lp p+ est un
isomorphisme. La matrice de cette application dans les bases canoniques de R;_1[X] X Ry_2[X]
et Roy_o[X] est une matrice dont les coefficients sont des polyndémes (de degré au plus 1) en
les coefficients de P et dont le déterminant r(P) est aussi une application polynomiale en les
coefficients de P. Cette application r convient.

Il revient au méme de montrer que f~*({0}) est d’intérieur vide, ce qu'on montre par récurrence
sur d. La proposition est immédiate pour d = 1. Soit d > 2 et f polynomiale non nulle a valeurs
réelles, définie sur R?. Posons

f(xlv"'axd) = fO(LCl?"'?md—l) +f1(x17"'a$d—l)xd+ +fs($1;"'axd—l)xfl

Supposons par contraposition qu'il existe a = (a1, as, ..., aq) intérieur & f~1(0). Alors 'application
polynomiale g : « — f(aj,as,...,aq4-1,2) est nulle au voisinage de a4. Comme un polynéme
non nul en une variable ne posséde qu'un nombre fini de racines, g est 'application nulle. Les
coefficients fy(a1,...,aq—1) de cette application polynomiale sont donc nuls, et c’est vrai aussi de
fre(b1,...,ba—1) pour (by,...,bq—1) dans un voisinage de (a1, ...,aq—1). Par conséquent, chaque
frx Sannule sur un ensemble d’intérieur non vide. Par 'hypothése de récurrence, f est nulle et f
aussi.

Partie III : Réduction simultanée

La condition sur u considérée ici équivaut a ¢,,, = ¢,, ou. Elle admet une solution v unique, qui est
bien un isomorphisme, puisque ¢, et ¢,,, sont des isomorphismes. On a alors, pour tout z,y € F :
(U(LIJ, u(y)) = —W(’U/(y), x) = _Wl(y, x) = wl(xa y) = LU(U(.T), y)

Doncwu € S.

(a) La relation w(z,u(y)) = w(u(x),y) Sexprime matriciellement dans la base B : "X J,UY =
Y(UX)J,Y. Ceci étant vrai pour tous vecteurs colonnes X et Y :

JU =1UJy.

A
C
traduit par D = ‘A, 'B = —B, 'C = —C. Comme toute matrice antisymétrique de My (R) est

, B
(b) Ecrivons U sous forme de matrice blocs 2 x 2 : U = ( D > La condition J,U = 'UJ, se

e " N J.
colinéaire a Jo, il existe en effet N € My(R) et o, 8 € R tels que U = < 57 CjNQ >
2

(c) Puisque det(N — X 15) est le polynome caractéristique de IV, on a

T(X)=X?—~Tr(N)X + (det(N) + af).
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On en déduit :

N? +apBJ3 a(NJy + BJ2'N)

() = ( SN 4 BNL) N 1 i )—TF(N)U+(det(N)+a6)I4~

Comme Ji = — Iy, et NJy + Jo'!N = ' NJy + JoN = Tr(N).Jo, il vient :

[ N? = Te(N)N +det(N)I, 0 -
TU) = ( 0 N? — Tr(N)N + det(N)I, ) =0

par le théoréme de Cayley-Hamilton.

L’expression < u n’admet aucune valeur propre réelle > est impropre car une valeur propre dun
endomorphisme d’'un R-espace vectoriel ne saurait étre autre chose qu'un réel. Disons plutét que
u n'a aucune valeur propre, ou que U n’a aucune valeur propre réelle. Par conséquent, U admet
une valeur propre non réelle et 7', qui annule U ainsi une toute valeur propre de U, admet une
racine non réelle. Puisqu'’il s’agit d’'un polynéme de degré deux a coefficients réel, T' admet deux
racines conjuguées non réelles. En particulier, les racines de T" sont simples. Puisque 7" annule U,
on sait que cela entraine que U est diagonalisable sur C.
Soit A € sp(U) (donc A ¢ R). Puisque U est réelle, \ est valeur propre avec la méme multiplicité
que \. Comme U admet au plus deux valeurs propres (car U annule 7" qui est de degré 2), sp(U) =
{\, A} et ces deux valeurs propres sont de multiplicité 2. Puisque U est diagonalisable, les espaces
propres sont de dimension 2. On peut donc choisir Z et Y € C*, linéairement indépendants, tels
queUZ =XZetUY =)Y.
Le couple (Z,Y) est une C-base de I'espace propre E)(U), et (Z,Y) est une base de Ex(U).
Comme C* est somme directe de ces deux espaces propres, (Z,Z,Y,Y) est une C-base de C*.
Donc (7, Z5,Y1,—Y3) aussi (cCest a I'’évidence une famille C-génératrice), qui est une famille C-
libre et, par conséquent R-libre : c’est une base de R et (21, 22,41, —y2) est une base de E.
De J,U = 'UJ, on déduit ' ZJ,UZ = ' Z'UJ,Z d’ol, puisque UZ = \Z et UZ = \Z, \'ZJ4 7 =
N ZJ,Z et, \wétant pas réel, ' ZJ,Z = 0, Cest-a-dire ' Z,J4 2, +i' Zy Jy Z1 —i' Z1 Iy Zo+' Zy Js Zy = 0
ou encore

w(z1,21) +i(w(z2,21) —w(z1,22)) + w(z2,22) = 0.
Comme w est antisymétrique, il vient w(zy, z2) = 0.
On a de la méme maniere ‘Y J,Y = 0 et ‘ZJ,Y = 0, dot w(y1,y2) = 0, w(z1,y1) + w(z2,y2) =0
et w(ze,y1) — w(z1,y2) = 0.
Comme w est symplectique et w(z,z) = 0 pour tout z € Vect(z1,22), on a w(z1,y1) # 0 ou
w(z1,y2) # 0, donc *Z; J,Y # 0. On peut donc poser ¢ = —ﬁ, etlona’ZJ,(£Y) = —1. En
substituant Y aY, on a bien w(z1,y1) = -1 et w(z1,y2) = 0. o

Posons A = a + ib. Les relations UZ = AZ et UY = \Y se traduisent par

UZy =aZy—bZs UY; =aY) +b(—Y3)
UZy =bZ1 4+ aZy U(—ifg) = —bY; + a(—i/g)

La matrice de u dans la base B = (21, 22, Y1, —Yy2) est donc

a —-b 0 0
b a 0 O
0 0 a b
0 0 —-b a

Soient 7 > 0 et # € R tels que X\ = r¢'? (avec § ¢ 77 car A ¢ R), cette matrice s'écrit

Ry O
r .
0 Ry
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Par ailleurs, les relations w(z1, y1) = —1, w(z2, —y2) = w(z1,y1) = —1 etw(z1, —y=2) = w(z2,y1) =0
montrent que le bloc 2 x 2 < en haut 4 droite > de la matrice de w dans la base B est —I,. Comme
w(z1,22) = w(y1,y2) = 0, la matrice de w dans B est bien J,.

Enfin, puisque w; (z,y) = w(uz,y) = 'X'UJ,Y, la matrice de w; est

gy =1 0 =R
Ry O

Comme F; est le noyau de P;(u) qui commute avec u, F; est stable par u. La décomposition
E=F,®F®...® F, résulte du lemme des noyaux.

Soit j,k € {1,...,r} distincts. Par le théoreme de Bézout, il existe U,V € R[X] tels que VP; +
WP, = 1. On a, pour tous x € F; ety € Fy : w(Pj(u)(z),y) = 0 (car P;j(u)(z) = 0) et
w(Py(u)(z),y) = w(z,Py(u)(y)) = 0. Comme F} est stable par u, V(u)(x) et W(u)(z) appar-
tiennent a F;. En appliquant les deux relations précédentes & ces vecteurs, il vient :

w(P;(u)(V(u)(@)),y) =0 w(P;(u)(W(u)(x)),y) = 0,

dot w((P;V+PW)(u)(z),y) =0, cest-a-dire w(x, y) = 0. En outre, puisque u(z) € Fj;, wi(z,y) =
w(u(z),y) = 0. Ceci montre Iy C F}’ et Fj, C I,

Considérons une base 5, de Fy, et B = (By,...,B,). Comme les F}, sont deux a deux orthogonaux
pour w, la matrice M de w dans B est diagonale par blocs Diag(Mj, ..., M,), ou M, est la matrice
de la restriction de w a F}, x Fj. Comme w est symplectique, M est inversible et chaque M, est
inversible. Donc la restriction de w a Fj, x F}, est symplectique. Il en va de méme pour w.

Supposons que x, n’admette aucune racine double dans C, de sorte que y,, est le produit de po-
lynémes P, ..., P, € R[X] deux a deux premiers entre eux, chacun de 'une des formes suivantes :

X —a,a € R*,

(X —a)? a€R",

(X = A)(X =X, e C\R,
(X = N*(X -=N%:AeC\R

Posons F; = Ker(P;(u)). Les F; sont stables par u et leur somme directe est égale a £ d’apres 20..
Soit u; 'endomorphisme induit par u sur F}, de sorte que P;(u;) = 0. On voit matriciellement
T

que x, = H Xu;- Puisque Pj(u;) = 0, les valeurs propres réelles ou complexes de v (ou plutot
=1
d’une matrice représentant u...) sont des racines de P;. Donc x; est premier avec chaque P,

k # j. De HPj = ij, on déduit alors (tous ces polynémes sont unitaires) x,; = P; puis

J J
dim F; = deg(P;) € {1,2,4}. Comme w induit une forme symplectique sur F;, F; est de dimension
paire, ce qui exclut dim F; = 1. Chaque F} est donc de dimension 2 ou 4 et on conclut par 22..

Apportons une précision : si F est de dimension 2, A(E) est une droite et deux formes symplec-
tiques sont donc proportionnelles. Il existe donc a € R* tel que w; = aw. On a alors ¢, = ad,
donc ¢, o u = ag, = ¢, o (aldg), dolt u = aldg (ce qu’on retrouverait aussi en appliquant les
méthodes de 14.). Sil'on applique ceci, dans le cadre de cette question, a 'espace F; lorsqu'il est
de dimension 2, on voit que u; est une homothétie. En particulier, le polynéme P; n’est jamais de
la forme (X — \)(X — ).

Partie IV : Structures complexes domptées simultanément

Supposons que les racines complexes du polyndéme caractéristique de u soient de multiplicité au
plus 2 et montrons, sous cette hypothése, que F; et F» sont simultanément vrais ou faux. Il suffit
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d’établir ces énoncés dans le cas ol F est de dimension 2 ou 4 car les résultats de 23., permettent
aisément d’en déduire le cas général (chaque F; est vraie sur E si et seulement si les formes
restreintes aux F; la vérifient). Le cas de la dimension 2 est immédiat : w; et w, sont propor-
tionnelles et 7, tout comme F», est vraie si et seulement si le coefficient de proportionnalité est
(strictement) positif.

Supposons donc E de dimension 4 et reprenons le contexte de 19.. Montrons que (si les racines
complexes du polynéme caractéristique de u sont de multiplicité au plus 2) F; et F» sont tous les
deux vrais.

e Pour établir 7, remarquons d’abord que, pour tous vecteurs colonnes X;, X, de C?,
0 R X
R ( R 0 ) ( X, > = "X1Ro X1+ XaRo Xa = cos(O) (| Xa 3 + 1 Xal)
—B_g 2

Donc la structure complexe de matrice (—.J;) est domptée par la forme symplectique de matrice

0 Ro si et seulement si cos(6) > 0.
—-R_p 0

0
Ry

t
L 0 L 0 0 —R_g
Jy =
0 R_y 0 R_y Ry 0
et la matrice de w; est

L [0 0 —Ry L0 \_ [ 0 —Ry
0 R4 Ry 0 0 Ry ) \ Rosg 0

Choisissons ¢ tel que cos(¢) > 0 et cos(f + ¢) > 0 (ca existe). Alors (—.J;) est domptée par w et

1
Effectuons alors le changement de base de matrice < 2 ), ol ¢ € R. La matrice de w dans

cette nouvelle base est

par w;.

e Pour tout ¢ € [0, 1], la matrice (1—t)Jy+tr

Ry 0 (1-t)Is+ Ry 0

est inversible car (1 — ¢)Is + Ry 'est (Ry n’admet pas de valeur propre réelle). D’ou Fs.

Posons Sy = {u € L(E); Vz,y,w(z,u(y)) = w(u(x),y)}, de sorte que S = Sy. L’ensemble S
est un sous-espace vectoriel de L(F), disons de dimension d. Choisissons-en une base et notons
x1,...,xq les coordonnées d’un élément u € Sy. Les racines complexes de y, sont au plus doubles
si et seulement si r(x},) # 0. L'application f(z1,...,z4) = r(x,,) est une application polynomiale
non nulle sur R?. Par 12., 'ensemble des u € Sy dont le polyndme caractéristique est & racines au
plus doubles est dense dans Sy. Enfin, puisque GL(E) est un ouvert dense de L(E), I'ensemble des
u € S dont le polynéme caractéristique est a racines au plus doubles est dense dans S.

Pas grand chose semble-t-il... Supposons F;. Il existe d’aprés 25. une suite (vj)g>2 d’éléments
de S qui converge vers u et telle que le polyndme caractéristique de chaque v soit a racines au
plus doubles. Soit wy, la forme bilinéaire définie par ¢, = ¢, o v;. Cest une forme symplectique
et le segment [w,wy] est contenu dans 'ensemble des formes symplectiques dés que k est assez
grand. Par 24., il existe, pour k assez grand une structure complexe domptée par w et wy. Si on
peut en extraire une sous-suite convergente, on obtient une structure complexe domptée par w et
w1. Mais I'ensemble des structures complexes n’est pas compact (c’est matriciellement la classe de
similitude de J,,), pas plus que I'ensemble des structures complexes domptées par w. So...?

—R_y > 0 —(1—t)I,— R_g

)



