ALGORITHMES D’APPRENTISSAGE

B. Landelle

Table des matiéres

(I Algorithme des k plus proches voisins|

1 Présentation| s
[2 Classification par apprentissage supervisé|
3 Reconnaissance de caractéresl.

(LIl Le perceptron|
[Présentationl
[2 Implémentation d’un perceptron|.
[3 Perceptron multi-classes| o
[4 Implémentation d'un perceptron multi-classes|

I Algorithme des k plus proches voisins

1 Présentation

L’algorithme des k plus proches voisins (knn pour k nearest neighbors) avec k un entier non
nul est un algorithme d’apprentissage supervisé, a savoir un algorithme qui apprend automati-
quement a partir d’'une base d’apprentissage.

L’algorithme de k£ plus proches voisins est présenté dans ce cours en tant qu’algorithme de
classification, c’est-a-dire pour classer une observation parmi des catégories existantes. On peut
aussi utiliser cet algorithme & des fins de régression (prédiction d’une variable quantitative)
mais cet aspect ne sera pas abordé ici.

On peut considérer la situation exposée sur la figure [1] oti sont représentés des points de R?
appartenant & trois catégories distinctes. La proximité, au sens de la distance euclidienne dans
R2, permet d’identifier les trois amas de points correspondant a chacune des catégories.

1 L °
‘0
(X ®
o4 ® ::o o o ° L ’0.:
® o o 000 o ©
° °
_1 . . .
-1 0 1 2 3

FIGURE 1 — Nuage de points issus de trois catégories distinctes

L’objectif de I'algorithme des k plus proches voisins est, étant donné un nouveau point X =
(z,y) € R?, d’identifier les k éléments les plus proches dans la base d’apprentissage et d’en
déduire la catégorie a laquelle appartient X.

Définition 1. Soient k, d et C des entiers non nuls et o7 = (X;, ¢;)1<i<n une base d’appren-
tissage avec X; € RY et ¢; € [1; C] la classe (ou catégorie) du point X; pour touti € [1;n].
L’algorithme des k plus proches voisins associe a un nouveau point X € RY une classe ma-
joritaire des k éléments de la famille (X;)1<i<n les plus proches de X au sens de la métrique
euclidienne dans R,

Le choix de k est un probléme & part entiére. Des techniques statistiques dites de wvalidation
croisée sont parfois utilisées pour effectuer ce choix mais ces considérations dépassent le cadre
de ce cours. Dans la littérature spécialisée, il est recommandé en général de faire le choix d’un
k entier impair et parfois, on trouve aussi la régle heuristique k ~ /n.

B. Landelle 2 ISM

4 4
3 3
2 2
1 ° ° 1 7§
¢ @
° ° (X
®] e, L]] e,
04 ® o9 oi... O... ° o4 ® o9 o. o.... O... °
° ° ° °
-1 ° ° ° 1 ° ° °
-1 0 1 2 3 -1 0 1 2 3
4 4
3 34
2 v 2
14 ° ° 14 °
¢ @ ¢ @
o0 L4
o L] o 2,
04 ® oge°, O.... '... %o o 04 ® ege, o..o.'... °
° ° ° °
_1 ° ° ° 1 ° ° °

FIGURE 2 — Observation des 5 plus proches voisins pour différents points

2 Classification par apprentissage supervisé

On reprend les notations de la définition 1| et on note || - || la norme euclidienne sur R,

L’algorithme de classification supervisée des k plus proches voisins consiste en les étapes sui-
vantes :

— Saisie d’un nouveau point X € R%;

— Calculer d; = || X — X;|| pour tout i € [1; n];

— Trier par ordre croissant la liste [dy, ..., d,] en [dg(l), dy(2), - - - ,dg(n)] avec o permutation
de [[1; TL]] telle que do‘(l) < dg(g) < ce < dg(n) 3
— Choix d’une classe majoritaire dans la liste [co(l), . ,ca(k)].

Pour I'implémentation, on importe les modules :

import numpy as np, numpy.linalg as alg

Les points de R? sont codés par des tableaux de type ndarray et on utilise la fonction alg.norm
pour le calcul de la norme euclidienne sur R¢.

La fonction majo (L) d’argument L une liste non vide renvoie un élément majoritaire de celle-ci
(élément pas nécessairement unique). La fonction sorted (L,key=lambda u:u[1]) d’argument
L une liste de couples renvoie la liste triée par ordre croissant selon le deuxiéme argument du
couple. On implémente enfin I'algorithme des k plus proches voisins :

B. Landelle 3 ISM

def knn(k,X,A):
""'knn(k:int,pt:1list,pop:list)->int
k : argument k dans 1’algorithme knn
X : nouveau point
A : base d’apprentissage,
liste de sous-listes ou A[c] est la classe c de A
chaque sous-liste A[c] contient les points de R~d
Renvoie la classe de X selon algorithme knn"""
res=[]
C=len(A)
for ¢ in range(C):
for X_i in Alc]:
res.append([c,alg.norm(X-X_1i)1)
res=sorted(res,key=lambda u:ul1])
return majo([x[0] for x in res[:k]])

On conserve les notations de la définition [IL

Définition 2. Soit 7 = (Y, e0)1<0<p une base de test avec Y, € R? et e, € [1; C] la classe du
point Yy pour tout £ € [1; p]. La matrice de confusion est une matrice de M = (mi7j)1<ij<c
AMc(R) ou m;; désigne le nombre d’éléments de .7 de classe i dont la classe estimée par

Ualgorithme des k plus proches voisins est j, ¢’est-a-dire

p
V(i,j) € [1; C]2 myy = ;1{[1‘,3']} (lee, knn(k, Yo, &)])

Simulation :

On considére comme base d’apprentissage la famille de couples dont la représentation est donnée
en figure [1| puis on génére de nouveaux points pour une base de test.

o‘ *%
0{ e ® o
® o ® o &
e ©
-1 0 1 2 3

FIGURE 3 — Nuage de points de la base de test

B. Landelle 4 ISM

On obtient comme matrice de confusion :

[[10 0 0]
[010 0]
[1 0 9]]

Si la matrice de confusion est diagonale, cela signifie que la classification a été parfaitement
réussie. Dans le cas contraire, les termes non nuls hors de la diagonale sont les comptages des
erreurs de classification.

FIGURE 4 — Zones délimitées par les 5 plus proches voisins

3 Reconnaissance de caractéres

On peut utiliser 'algorithme des & plus proches voisins pour effectuer par exemple de la recon-
naissance de caractéres. On considére une base d’apprentissage 7 = (X, ¢;)1<i<n 00 X; désigne
I'image d’un chiffre et ¢; désigne le chiffre lui-méme dans [0; 9] pour tout ¢ € [1; n]. Ainsi,
pour chaque image de cette base d’apprentissage, le chiffre représenté sur I'image correspond &
sa catégorie.

On utilise comme base d’apprentissage la base de donnée MNISTEl accessible en ligne.

1. Base de données de chiffres écrits a la main http://yann.lecun.com/exdb/mnist/

B. Landelle 5) ISM

http://yann.lecun.com/exdb/mnist/

T P—ad=2 aeax WL
S0 w v\ N ™
© % O 4 0 5NN B
N NN D~
RN N=N W W W

SN NW e N e R

Qo W=~ X w\u
N QONRNQ Q45O
g~ WU O WS B — 0

FIGURE 5 — Base d’apprentissage MNIST

On importe les bibliothéques :

import idx2numpy
import matplotlib.pyplot as plt

puis on exécute le code :

imagefile = ’train-images.idx3-ubyte’
imagearray = idx2numpy.convert_from_file(imagefile)
labelfile= ’train-labels.idxl-ubyte’
labelarray = idx2numpy.convert_from_file(labelfile)

La variable imagearray est un tableau contenant 60 000 images de taille 28 x 28 et la variable
labelarray est un tableau contenant les chiffres représentés sur les images de imagearray.
Ainsi, pour i un entier dans [0; 59999], 'appel imagearray[i] renvoie un tableau codant
une image de taille 28 x 28 et labelarray[i] renvoie le chiffre représenté sur I'image. Par
exemple, pour afficher I'image d’indice 4 dans base MNIST et le chiffre qu’elle représente, on
saisit :

print ("Image MNIST indice 4 :")
print(labelarray[4])
plt.imshow(imagearray[4], cmap=plt.cm.binary)
plt.show()

B. Landelle 6 ISM

On obtient :

Image MNIST indice 4
9

et on observe :

FIGURE 6 — Image d’indice 4 extraite de la base MNIST

En faisant croitre la taille de la base d’apprentissage, on observe I'amélioration du taux de
reconnaissance de caractéres. Ainsi, pour k = 11, en testant les 100 derniéres images de la base
MNIST avec une base d’apprentissage constituée des n premiéres images de cette méme base
pour n variant entre 50 et 5000, on obtient ’évolution du taux de reconnaissance illustrée par
la figure suivante :

0.75 4

0.70 A

o

)]

(5,1
1

o

n

)
1

Taux de reconnaissnance
o
)]
o
)

0.50 A

0.45 4

1000 2000 3000 4000 5000
Taille de la base d'apprentissage

o

FIGURE 7 — Taux de reconnaissance en fonction de la taille d’apprentissage

B. Landelle 7 ISM

La croissance du taux de reconnaissance avec la taille de la base d’apprentissage est conforme a
I'intuition d’un apprentissage. Il s’agit d'une premiére approche de reconnaissance de caractéres
qui, bien que naive, montre déja une certaine efficacité. En particulier, le choix de la métrique
euclidienne est un choix arbitraire dont rien ne dit qu’il soit le plus adapté.

D’autres stratégies existent, notamment celles qui s’appuient sur des réseauz de neurones arti-
ficiels et présentent des performances exceptionnelles.

II Algorithme des k-moyennes

Comme pour les k plus proches voisins, I'espace R? avec d entier non nul est muni de la norme
euclidienne notée || - ||.

1 Présentation

[’algorithme des k-moyennes (k-mean) avec k un entier non nul est un algorithme d’apprentis-
sage non supervisé, a savoir un algorithme qui apprend automatiquement, directement a partir
des données fournies en entrée, a les partitionner en k classes.

Définition 3. L’algorithme des k-moyennes est une heuristique cherchant a partitionner un

ensemble fini S de points de R? en k sous-ensembles Si,Ss, ..., Sy appelés clusters tels que la
quantité
k 1
V(S1,S0,..,Sk) =Y. > ||z — &> avec &i=— > x
i=1xeS; |SZ| TES;
soit minimale. Cette quantité V(Sy, ..., Sk) est appelée variance intra-classe et les isobarycentres

x; de chaque cluster sont appelés centroides.

Cet algorithme d’optimisation est une heuristique, a savoir une méthode qui fournit efficacement
une réponse que l’on espére raisonnable mais sans garantie qu’elle soit une solution optimale.
On peut démontrer la terminaison de I'algorithme des k-moyennes. Ainsi, 'algorithme converge
vers une partition limite qui est un minimum local de la fonction V, pas nécessairement un mi-
nimum global.

Comme pour les k£ plus proches voisins, le choix de k est ici encore un probléme & part entiére
abordé dans la littérature spécialisée sur la base de critéres statistiques.

2 Classification par apprentissage non supervisé

On reprend les notations de la définition

Les états successifs des clusters et de leurs centroides dans ’algorithme des k-moyennes sont
notés :

ve=0,1,2... S8 8 et 5O 5O, . 50

B. Landelle 8 ISM

L’algorithme de classification non supervisé des k-moyennes consiste en les éta(pes suivantes :
e Initialisation (état £ = 0) : chaque point de S est placé au hasard dans SJD,SgD,...,SgD,
la variable V(® recoit +0o et une variable booléenne de test de décroissance recoit True:
e Tant que le test de décroissance est vrai (on passe de 1’état £ a ¢+ 1) :
> wxpourie[l;k];
‘Sz(é) :EESEZ>

)7 Séﬂ—s—l)’ ‘ S](f—H)

— On calcule les centroides a savoir les ;0 =

— On calcule une nouvelle partition Sg“l telle que chaque point x € S

est affecté dans S\""V) avec i indice pour lequel ||z — #;(©|| est minimale
— On calcule la nouvelle valeur de V@Y variance intra-classe et la variable booléenne

de test de décroissance recoit la valeur de VD) < V@),

Pour I'implémentation, on importe les modules :

import numpy as np, numpy.random as rd, numpy.linalg as alg

La variable pop est une liste de points au format ndarray et on utilise la fonction alg.norm
pour le calcul de la norme euclidienne sur R¢.

Initialisation
decrease=True
V=float(’inf’)

Partition initiale

S=[[] for i in range(k)]

for pt in pop:
tirage=rd.randint (0,k)
S[tiragel .append(pt)

centr=[0]*k

Tant que la variance intra-classe décroit
while decrease:
Calcul des centroides
for i in range(k):
centr[i]l=sum(S[i])/len(S[il)
Mise & jour de la partition
S=[[] for i in range(k)]
V_aux=0
for pt in pop:
dmin=float(’inf’)
for i in range(k):
d=alg.norm(pt-centr[il)
if d<dmin:
dmin,ind=d, i
S[ind] .append(pt)
V_aux+=dmin**2
1f V_aux<V:
V=V_aux
else:
decrease=False

B. Landelle 9 ISM

Comme avec les k plus proches voisins, on considére la situation d’une liste de points de R2. On
souhaite donc répartir ces points en 3 classes de sorte qu’au sein d’une méme classe, les points
soient proches les uns des autres.

4 ° 4
° °
° ° °
5 e ® o © N oe® o ®
ee o e o
° ° ® ° ° ®
2 [(] 2 [[]
° °
14 ® 1
K4 o Y @ ° %
°e o °e
% °_ oo ° - ¢
0 ° e q o ° 0 ° °
[} . ° ° ° ®* %
o ° ° %e © $ o °
° °
-1 -1
° °
0 1 2 3 0 1 2 3
4 ° 4 °
° °
. d . °
s % e ® o ® N e ® e ©
e 0 L] e 0]
° ® ° ° ® °
2) (] 2 ° ®
° °
14 ® 14 ®
) X
o ° °
01 o ° 0 % ¢
o © %o ©
° °
—1 -1
° °

FIGURE 8 — Etapes de la classification par k-moyennes avec k = 3

La premiére figure comporte I'ensemble des points mélangés, sans classification. On observe
ensuite la partition initiale qui correspond & une affectation aléatoire des points dans 3 classes.
Puis, en seulement deux itérations, l'algorithme des k-moyennes converge vers une partition
des points tout a fait raisonnable.

3 Nombre de clusters et variance intra-classe

L’évolution de la variance intra-classe en fonction du choix de k£ peut étre un critére empirique
intéressant pour décider d’un choix de k adapté. On considére des points de R? appartenant
a trois catégories distinctes et on exécute I'algorithme des k-moyennes pour différentes valeurs
de k.

B. Landelle 10 ISM

°
° 44 °
o °, . o °,
° ° ° °
° °
3
oe0 oeo
o0 ° o0
° Py [°
11 ®
° []
°
0 e o4 ° °
b e o
. oo
°
°
—14
T T T T T T T T T T
25 3.0 -05 0.0 0.5 1.0 1.5 2.0 25 3.0
44
3
o00
° oo
2 8 °
B U
° ° °
° ° L) °
. ° ° 0l e O°© e * ° ° o: . ° °
') o o e o oo
] Shc,c . ®]
° °
14 °
v v v v v v v v v v
2.5 3.0 -0.5 0.0 0.5 1.0 15 2.0 25 3.0

FIGURE 9 — Classification par k-moyennes pour k € [2; 5]

Variance intra-classe en fonction de k

200 ~

175

150 1

125

100 -

751

50 1

251

FIGURE 10 — Tracé de la variance intra-classe en fonction de k

On observe un « coude », une décroissance beaucoup moins forte aprés la valeur £ = 3 qui

correspond précisément au nombre de catégories des points utilisés pour la simulation.

La détection pratique d’un tel coude n’est toutefois pas toujours aussi franche que dans la figure

présentée ci-avant.

B. Landelle

11

4 Application a la compression d’image

L’algorithme des k-moyennes fournit également, pour chaque cluster S; un représentant moyen
qu’est le centroide ;.

On peut donc envisager I'utilisation de cet algorithme pour compresser une image. En effet, on
peut importer une image en couleur sous forme tableau ndarray de taille L x C x 3 avec L le
nombre de lignes, C et le nombre de colonnes et les 3 composantes de la derniére dimension
codent l'intensité des couleurs rouge, vert et bleue dont la combinaison permet le codage de
la plupart des couleurs percus par I'ceil humain. Il suffit ensuite de choisir un nombre k& de
couleurs et d’appliquer 1'algorithme des k-moyennes sur le tableau. Les centroides fournissent
les candidats pour constituer la palette des couleurs retenues pour la compression.

FIGURE 11 — Compression d’image par k-moyennes avec k = 8, Chateau Sarran, Antony

FIGURE 12 — Palette des 8 couleurs retenues pour la compression

IIT Le perceptron

Dans ce qui suit, les lettres d et n désignent des entiers non nuls. L’espace R est muni de
son produit scalaire canonique.

B. Landelle 12 ISM

1 Présentation

Le perceptron est le premier modéle de neurone artificiel inventé en 1957 par Franck Rosen-
blattP] Il a été congu pour imiter le fonctionnement d’un réseau de neurones biologiques.

Le perceptron a d entrées (dans la littérature spécialisée, on lit parfois d « neurones » en entrée,
formulation qui peut sembler abusive) auxquelles on ajoute un biais égal 4 1 posséde une unique
couche, un seul neurone, qui effectue le calcul de la combinaison linéaire

d
<W, X> = Wy + Zwm
i=1

avec X = (1, 21,...,24) et W = (wy, ..., wy) ou les w; désignent des poids réels.

" @ H((W, X))

Neurone

ANV

FIGURE 13 — Perceptron a d entrées

Le perceptron est présenté dans ce cours en tant qu’algorithme de de classification. La fonction
¢ considérée ici est la fonction signe, a savoir

sit>0
Vte R o(t) =<0 sit=20
-1 sit<O
Ya
1 s
y = ¢(t)
> 1

FIGURE 14 — Fonction signe

Le perceptron peut aussi étre utilisé pour effectuer de la régression mais cet aspect ne sera pas
développé ici.

2. Franck Rosenblatt, 1928-1971, psychologue américain.

B. Landelle 13 ISM

On considére la situation décrite par la figure [L5] Des points de R? issus de deux catégories
distinctes sont représentés.

5_
44
3_
2_
1_
. .
0- @ ° e o0 o
° 28 %
% °
1
-1 0 1 2 3

FIGURE 15 — Nuage de points issus de deux catégories distinctes

On peut aisément imaginer tracer un trait qui sépare ces deux catégories ce qui revient préci-
sément & déterminer une droite d’équation wy + wix + wey = 0 avec wy, wy et wy des réels. Les
demi-plans wo+wxz+woy > 0 et wo+wix+wsy < 0 désignent alors les deux classes identifiées.
Le biais en entrée est indispensable : c’est le degré de liberté qui permet de ne pas considérer
que des droites passant par l'origine. L’enjeu de la classification est donc la détermination du
vecteur W = (wq, wy, wy) de R3.

B. Landelle 14 ISM

FIGURE 16 — Droite séparant les deux catégories de points

Définition 4. Le perceptron a d entrées est un classifieur linéaire, & savoir une application
définie par

V(z1,...,00) ERY f(zn,. .. 20) = (W, X))

avec X = (1,21, ...,2q), W = (wp, ..., wg) € R et ¢ la fonction signe.

Remarque : Le qualificatif linéaire vient de la linéarité de X € R4 — (W, X).

2 Implémentation d’un perceptron

Définition 5. Soit .7 = (M;, ¢;)1<icn avec M; = (m{", ... ,mg)) e R4 et ¢; € {—1,1} la classe
du point M; pour tout i € [1; n]. La famille .7 est dite linéairement séparable s’il existe une
forme linéaire 1 non nulle sur R? telle que

Remarque : La condition de séparabilité peut donc s’interpréter par

>0 SiCizl
<0 si¢g=-1

Vie[l;n] 1/1(MZ){

autrement dit, 'hyperplan Ker v sépare les points de la famille .7

Définition 6. Soit &/ = (X;,¢;)1<i<n une base d’apprentissage avec X; = (1,:69, . ,a:((;)) €
Rt et ¢; € {—1,1} la classe du point (xgi), . ,atg)) pour tout i € [1; n]. On suppose que la
famille o est linéairement séparable. L’algorithme d’apprentissage du perceptron détermine un
vecteur de poids W = (wy, . .., wq) € R¥1 tel que

B. Landelle 15 ISM

Remarque : D’aprés le théoréme de Riesz, on peut interpréter le résultat de cet algorithme
comme Papprentissage de I'hyperplan Vect (W)+ puisque toute forme linéaire peut étre vue
comme produit scalaire contre un vecteur.

L’algorithme d’apprentissage du perceptron consiste en les étapes suivantes :
e Initialisation : la variable W est initialisée avec le vecteur nul de R**! et une variable
booléenne d’apprentissage recoit True;
e Tant qu’il y a apprentissage :
— On remet la variable d’apprentissage & False;
— Pour ¢ variant de 1 a n :
*Sie (W, X;) <0, alors W <= W+ ¢;X; et la variable d’apprentissage recoit True;

On peut démontrer (théoréme de Novikoff) la correction et terminaison de l'algorithme. In-
tuitivement, ’étape d’apprentissage correspond & ajouter, pour un point X; mal classifié, un

contrepoids & W pour aller dans le sens d’une classification correcte.

Pour I'implémentation, on importe les modules :

import numpy as np, numpy.linalg as alg

Les points de R? et les vecteurs de R sont codés par des tableaux de type ndarray. La base
d’apprentissage est une liste de sous-listes ot chaque sous-liste contient les points de R? d’une
méme classe. La fonction np.dot réalise le produit scalaire canonique de R4,

B. Landelle 16 ISM

def percept(A,c):
""ipecept (A:list)->ndarray
A : base d’apprentissage, chaque classe étant une sous-liste de A
c : classe c a séparer du reste
Renvoie le vecteur de poids W calculé par le peceptron"""
d=A[0] [0] .shape[0]
W=np.array([0]*(d+1))
C=len(A) # nb de classes dans A
Learning=True
while Learning:
Learning=False
for k in range(C):
c_i=(k==c)-(k!=c)
for pt in A[k]:
X_i=np.append(pt,1)
if c_i*np.dot(W,X_i)<=0:
Learning=True
W=W+c_ixX_1i
return W

On obtient la classification illustrée par la figure :

FiGURE 17 — Classification binaire par le perceptron

3 Perceptron multi-classes

Une extension naturelle a la classification binaire est la classification multi-classes, avec poten-

tiellement plus que deux classes.

B. Landelle 17

ISM

On considére la situation décrite par la figure [18| oli sont représentés des points de R? issus de
trois catégories distinctes.

4_
3_
2_
°
11 ° °
9.... []) °
° °
® o o ey
0 %, ° ° ° [4 °
® 9 ® o
° °
hd °
1 .
-1 0 1 2 3 4 5

FIGURE 18 — Nuage de points issus de trois catégories distinctes

Une stratégie naive consiste simplement a exécuter plusieurs perceptrons ol chacun réalise la
classification binaire d’une classe contre toutes les autres.

FIGURE 19 — Classifications binaires en « One vs All »

Ainsi, pour réaliser une classification en C classes numérotées de 1 & C avec C entier supérieur
ou égal a 2, on utilise C perceptrons, donc C neurones, ou pour i € [1; C], le perceptron
d’indice 7 sert a classifier la classe i contre toutes les autres a savoir [1; C] ~ {i}.

B. Landelle 18 ISM

/®
/®

©
©

W10 W2,0
wWi,1 W 1

()~ w> oW X)) () wz H(Wa, X)) .
Wy g Neurone 1 ‘ Wy 4 Neurone 2

ON
ON

FIGURE 20 — Plusieurs perceptrons a d entrées

Une fois les classifications « One vs All » effectuées, 'espace R? est partitionné selon les valeurs
prises par 'application

X € R? Max (W, X
€ Hargkeﬂla?éﬂ(ky X)

On retient donc la classe qui maximise en un certain sens la séparation du point X dans cette
classe vis-a-vis des autres.

Pour le nuage de points considéré a la figure le plan R? est partitionné en trois zones Py,
P, et P3 telles que

Vee[l;3] V(z,y) € Py arg Max (Wy, (1,7,y)) = ¢

ke[1;3]

FIGURE 21 — Classification multi-classes en « One vs All »

On peut aussi imaginer un travail plus collaboratif des neurones entre eux. C’est le principe du

B. Landelle 19 ISM

perceptron multi-classes qui est un réseau de neurones a une couche avec C neurones qui vont,
d’une certaine facon, travailler conjointement.

FIGURE 22 — Perceptron multi-classes

4 Implémentation d’un perceptron multi-classes

Définition 7. Soit &7 = (X;,¢;)1<i<n une base d’apprentissage avec X; = (1,955”, . ,xff)) €
R et ¢; € [1; C] la classe du point (xgz), . ,xg)) pour tout i € [1; n]. L’algorithme d’ap-
prentissage du perceptron multi-classes détermine une liste de vecteurs de poids [Wy, ..., W]
avec W; = (w;,. .., w;q) € R tels que
Vie|[l;n c; =arg Max (Wy, X,
[1;n] 5, e (Wi, Xi)

L’algorithme d’apprentissage du perceptron multi-classes consiste en les étapes suivantes :
e Initialisation : la variable tab W est initialisée avec une liste de C vecteurs nuls de R4*+!
et une variable booléenne d’apprentissage recoit True;
e Tant qu’il y a apprentissage :
— On remet la variable d’apprentissage & False;

— Pour ¢ variant de 1 a n :
— On détermine ¢ = arg ké\[[/[ﬁ}é}] (tab_WIk], X;) ;
— Si ¢ # ¢, c’est-a-dire si la classe prédite est différente de la vraie classe, alors :
* On ajuste le poids pour la vraie classe tab_ W/[¢;] + tab_ W]e;] + X ;
* On ajuste le poids de la classe prédite tab_ W/c| < tab_ W|c] — X;;
* La variable d’apprentissage recoit True ;

On généralise I'idée vue pour le perceptron en classification binaire : on modifie la liste des
poids avec des contrepoids pour aller dans le sens d’une classification correcte.

La aussi, on peut trouver dans la littérature spécialisée des résultats théoriques de correction
et terminaison de l’algorithme.

B. Landelle 20 ISM

return tab_W

def percept_mult(A):

"Mipecept (A:list)->1list
A : base d’apprentissage, chaque classe étant une sous-liste de A
Renvoie la liste des vecteurs de poids W
calculés par le peceptron multi-classes"""
C=len(A)
d=A[0][0].shape[0]
tab_W=[np.array([0]*(d+1)) for i in range(C)]
Learning=True
while Learning:

Learning=False

for c_i in range(C):

for pt in Alc_il:

crit=-np.inf
X_i=np.append(pt,1)
recherche indice pour max
for k in range(C):
aux=np.dot (tab_W[k],X_1i)
i1f aux>crit:
c=k
crit=aux
¢ : classe prédite, c_i : vraie classe
if cl=c_1i:
Learning=True
tab_Wlc_il=tab_W[c_i]+X_i
tab_W[c]=tab_W[c]-X_i

On obtient la classification illustrée par la figure :

F1GURE 23 — Classification par le perceptron multi-classes

B. Landelle

21

ISM

Références

[1] Base MNIST, https://yann.lecun.com/exdb/mnist/
[2] Chloé-Agathe Azencott, Introduction au Machine Learning, Dunod, 2022

B. Landelle 22 ISM

https://yann.lecun.com/exdb/mnist/

	Algorithme des k plus proches voisins
	Présentation
	Classification par apprentissage supervisé
	Reconnaissance de caractères

	Algorithme des k-moyennes
	Présentation
	Classification par apprentissage non supervisé
	Nombre de clusters et variance intra-classe
	Application à la compression d'image

	Le perceptron
	Présentation
	Implémentation d'un perceptron
	Perceptron multi-classes
	Implémentation d'un perceptron multi-classes

