
ALGORITHMES D'APPRENTISSAGE

B. Landelle

Table des matières

I Algorithme des k plus proches voisins 2

1 Présentation . 2
2 Classi�cation par apprentissage supervisé . 3
3 Reconnaissance de caractères . 5

II Algorithme des k-moyennes 8

1 Présentation . 8
2 Classi�cation par apprentissage non supervisé 8
3 Nombre de clusters et variance intra-classe . 10
4 Application à la compression d'image . 12

IIILe perceptron 12

1 Présentation . 13
2 Implémentation d'un perceptron . 15
3 Perceptron multi-classes . 17
4 Implémentation d'un perceptron multi-classes 20

1

I Algorithme des k plus proches voisins

1 Présentation

L'algorithme des k plus proches voisins (knn pour k nearest neighbors) avec k un entier non
nul est un algorithme d'apprentissage supervisé, à savoir un algorithme qui apprend automati-
quement à partir d'une base d'apprentissage.

L'algorithme de k plus proches voisins est présenté dans ce cours en tant qu'algorithme de
classi�cation, c'est-à-dire pour classer une observation parmi des catégories existantes. On peut
aussi utiliser cet algorithme à des �ns de régression (prédiction d'une variable quantitative)
mais cet aspect ne sera pas abordé ici.

On peut considérer la situation exposée sur la �gure 1 où sont représentés des points de R2

appartenant à trois catégories distinctes. La proximité, au sens de la distance euclidienne dans
R2, permet d'identi�er les trois amas de points correspondant à chacune des catégories.

−1 0 1 2 3

−1

0

1

2

3

4

Figure 1 � Nuage de points issus de trois catégories distinctes

L'objectif de l'algorithme des k plus proches voisins est, étant donné un nouveau point X =
(x, y) ∈ R2, d'identi�er les k éléments les plus proches dans la base d'apprentissage et d'en
déduire la catégorie à laquelle appartient X.

Dé�nition 1. Soient k, d et C des entiers non nuls et A = (Xi, ci)1⩽i⩽n une base d'appren-
tissage avec Xi ∈ Rd et ci ∈ [[1 ; C]] la classe (ou catégorie) du point Xi pour tout i ∈ [[1 ; n]].
L'algorithme des k plus proches voisins associe à un nouveau point X ∈ Rd une classe ma-
joritaire des k éléments de la famille (Xi)1⩽i⩽n les plus proches de X au sens de la métrique
euclidienne dans Rd.

Le choix de k est un problème à part entière. Des techniques statistiques dites de validation
croisée sont parfois utilisées pour e�ectuer ce choix mais ces considérations dépassent le cadre
de ce cours. Dans la littérature spécialisée, il est recommandé en général de faire le choix d'un
k entier impair et parfois, on trouve aussi la règle heuristique k ≃

√
n.

B. Landelle 2 ISM

−1 0 1 2 3

−1

0

1

2

3

4

−1 0 1 2 3

−1

0

1

2

3

4

−1 0 1 2 3

−1

0

1

2

3

4

−1 0 1 2 3

−1

0

1

2

3

4

Figure 2 � Observation des 5 plus proches voisins pour di�érents points

2 Classi�cation par apprentissage supervisé

On reprend les notations de la dé�nition 1 et on note ∥ · ∥ la norme euclidienne sur Rd.

L'algorithme de classi�cation supervisée des k plus proches voisins consiste en les étapes sui-
vantes :

� Saisie d'un nouveau point X ∈ Rd ;
� Calculer di = ∥X− Xi∥ pour tout i ∈ [[1 ; n]] ;
� Trier par ordre croissant la liste [d1, . . . , dn] en

[
dσ(1), dσ(2), . . . , dσ(n)

]
avec σ permutation

de [[1 ; n]] telle que dσ(1) ⩽ dσ(2) ⩽ . . . ⩽ dσ(n) ;
� Choix d'une classe majoritaire dans la liste

[
cσ(1), . . . , cσ(k)

]
.

Pour l'implémentation, on importe les modules :

import numpy as np, numpy.linalg as alg

Les points de Rd sont codés par des tableaux de type ndarray et on utilise la fonction alg.norm

pour le calcul de la norme euclidienne sur Rd.

La fonction majo(L) d'argument L une liste non vide renvoie un élément majoritaire de celle-ci
(élément pas nécessairement unique). La fonction sorted(L,key=lambda u:u[1]) d'argument
L une liste de couples renvoie la liste triée par ordre croissant selon le deuxième argument du
couple. On implémente en�n l'algorithme des k plus proches voisins :

B. Landelle 3 ISM

def knn(k,X,A):

"""knn(k:int,pt:list,pop:list)->int

k : argument k dans l'algorithme knn

X : nouveau point

A : base d'apprentissage,

liste de sous-listes où A[c] est la classe c de A

chaque sous-liste A[c] contient les points de R^d

Renvoie la classe de X selon algorithme knn"""

res=[]

C=len(A)

for c in range(C):

for X_i in A[c]:

res.append([c,alg.norm(X-X_i)])

res=sorted(res,key=lambda u:u[1])

return majo([x[0] for x in res[:k]])

On conserve les notations de la dé�nition 1.

Dé�nition 2. Soit T = (Yℓ, eℓ)1⩽ℓ⩽p une base de test avec Yℓ ∈ Rd et eℓ ∈ [[1 ; C]] la classe du
point Yℓ pour tout ℓ ∈ [[1 ; p]]. La matrice de confusion est une matrice de M =

(
mi,j

)
1⩽i,j⩽C

∈
MC(R) où mi,j désigne le nombre d'éléments de T de classe i dont la classe estimée par
l'algorithme des k plus proches voisins est j, c'est-à-dire

∀(i, j) ∈ [[1 ; C]]2 mi,j =
p∑

ℓ=1

1{[i,j]} ([eℓ, knn(k,Yℓ,A)])

Simulation :

On considère comme base d'apprentissage la famille de couples dont la représentation est donnée
en �gure 1 puis on génère de nouveaux points pour une base de test.

−1 0 1 2 3

0

1

2

3

4

Figure 3 � Nuage de points de la base de test

B. Landelle 4 ISM

On obtient comme matrice de confusion :

[[10 0 0]

[0 10 0]

[1 0 9]]

Si la matrice de confusion est diagonale, cela signi�e que la classi�cation a été parfaitement
réussie. Dans le cas contraire, les termes non nuls hors de la diagonale sont les comptages des
erreurs de classi�cation.

−1 0 1 2 3

−1

0

1

2

3

4

Figure 4 � Zones délimitées par les 5 plus proches voisins

3 Reconnaissance de caractères

On peut utiliser l'algorithme des k plus proches voisins pour e�ectuer par exemple de la recon-
naissance de caractères. On considère une base d'apprentissage A = (Xi, ci)1⩽i⩽n où Xi désigne
l'image d'un chi�re et ci désigne le chi�re lui-même dans [[0 ; 9]] pour tout i ∈ [[1 ; n]]. Ainsi,
pour chaque image de cette base d'apprentissage, le chi�re représenté sur l'image correspond à
sa catégorie.

On utilise comme base d'apprentissage la base de donnée MNIST 1 accessible en ligne.

1. Base de données de chi�res écrits à la main http://yann.lecun.com/exdb/mnist/

B. Landelle 5 ISM

http://yann.lecun.com/exdb/mnist/

Figure 5 � Base d'apprentissage MNIST

On importe les bibliothèques :

import idx2numpy

import matplotlib.pyplot as plt

puis on exécute le code :

imagefile = 'train-images.idx3-ubyte'

imagearray = idx2numpy.convert_from_file(imagefile)

labelfile= 'train-labels.idx1-ubyte'

labelarray = idx2numpy.convert_from_file(labelfile)

La variable imagearray est un tableau contenant 60 000 images de taille 28× 28 et la variable
labelarray est un tableau contenant les chi�res représentés sur les images de imagearray.
Ainsi, pour i un entier dans [[0 ; 59 999]], l'appel imagearray[i] renvoie un tableau codant
une image de taille 28 × 28 et labelarray[i] renvoie le chi�re représenté sur l'image. Par
exemple, pour a�cher l'image d'indice 4 dans base MNIST et le chi�re qu'elle représente, on
saisit :

print("Image MNIST indice 4 :")

print(labelarray[4])

plt.imshow(imagearray[4], cmap=plt.cm.binary)

plt.show()

B. Landelle 6 ISM

On obtient :

Image MNIST indice 4 :

9

et on observe :

0 5 10 15 20 25

0

5

10

15

20

25

Figure 6 � Image d'indice 4 extraite de la base MNIST

En faisant croître la taille de la base d'apprentissage, on observe l'amélioration du taux de
reconnaissance de caractères. Ainsi, pour k = 11, en testant les 100 dernières images de la base
MNIST avec une base d'apprentissage constituée des n premières images de cette même base
pour n variant entre 50 et 5000, on obtient l'évolution du taux de reconnaissance illustrée par
la �gure suivante :

0 1000 2000 3000 4000 5000
Taille de la base d'apprentissage

0.45

0.50

0.55

0.60

0.65

0.70

0.75

Ta
ux

 d
e

re
co

nn
ai

ss
na

nc
e

Figure 7 � Taux de reconnaissance en fonction de la taille d'apprentissage

B. Landelle 7 ISM

La croissance du taux de reconnaissance avec la taille de la base d'apprentissage est conforme à
l'intuition d'un apprentissage. Il s'agit d'une première approche de reconnaissance de caractères
qui, bien que naïve, montre déjà une certaine e�cacité. En particulier, le choix de la métrique
euclidienne est un choix arbitraire dont rien ne dit qu'il soit le plus adapté.

D'autres stratégies existent, notamment celles qui s'appuient sur des réseaux de neurones arti-
�ciels et présentent des performances exceptionnelles.

II Algorithme des k-moyennes

Comme pour les k plus proches voisins, l'espace Rd avec d entier non nul est muni de la norme
euclidienne notée ∥ · ∥.

1 Présentation

L'algorithme des k-moyennes (k-mean) avec k un entier non nul est un algorithme d'apprentis-
sage non supervisé, à savoir un algorithme qui apprend automatiquement, directement à partir
des données fournies en entrée, à les partitionner en k classes.

Dé�nition 3. L'algorithme des k-moyennes est une heuristique cherchant à partitionner un
ensemble �ni S de points de Rd en k sous-ensembles S1, S2, . . . , Sk appelés clusters tels que la
quantité

V(S1, S2, . . . , Sk) =
k∑

i=1

∑
x∈Si
∥x− x̄i∥2 avec x̄i =

1

|Si|
∑
x∈Si

x

soit minimale. Cette quantité V(S1, . . . , Sk) est appelée variance intra-classe et les isobarycentres
x̄i de chaque cluster sont appelés centroïdes.

Cet algorithme d'optimisation est une heuristique, à savoir une méthode qui fournit e�cacement
une réponse que l'on espère raisonnable mais sans garantie qu'elle soit une solution optimale.
On peut démontrer la terminaison de l'algorithme des k-moyennes. Ainsi, l'algorithme converge
vers une partition limite qui est un minimum local de la fonction V, pas nécessairement un mi-
nimum global.

Comme pour les k plus proches voisins, le choix de k est ici encore un problème à part entière
abordé dans la littérature spécialisée sur la base de critères statistiques.

2 Classi�cation par apprentissage non supervisé

On reprend les notations de la dé�nition 3.

Les états successifs des clusters et de leurs centroïdes dans l'algorithme des k-moyennes sont
notés :

∀ℓ = 0, 1, 2 . . . S
(ℓ)
1 , S

(ℓ)
2 , . . . , S

(ℓ)
k et x̄1

(ℓ), x̄2
(ℓ), . . . , x̄k

(ℓ)

B. Landelle 8 ISM

L'algorithme de classi�cation non supervisé des k-moyennes consiste en les étapes suivantes :
• Initialisation (état ℓ = 0) : chaque point de S est placé au hasard dans S(0)

1 , S
(0)
2 , . . . , S

(0)
k ,

la variable V(0) reçoît +∞ et une variable booléenne de test de décroissance reçoit True ;
• Tant que le test de décroissance est vrai (on passe de l'état ℓ à ℓ+ 1) :

� On calcule les centroïdes à savoir les x̄i(ℓ) =
1∣∣∣S(ℓ)
i

∣∣∣ ∑
x∈S(ℓ)i

x pour i ∈ [[1 ; k]] ;

� On calcule une nouvelle partition S
(ℓ+1)
1 , S

(ℓ+1)
2 , . . . , S

(ℓ+1)
k telle que chaque point x ∈ S

est a�ecté dans S(ℓ+1)
i avec i indice pour lequel ∥x− x̄i(ℓ)∥ est minimale ;

� On calcule la nouvelle valeur de V(ℓ+1) variance intra-classe et la variable booléenne
de test de décroissance reçoit la valeur de V(ℓ+1) < V(ℓ).

Pour l'implémentation, on importe les modules :

import numpy as np, numpy.random as rd, numpy.linalg as alg

La variable pop est une liste de points au format ndarray et on utilise la fonction alg.norm

pour le calcul de la norme euclidienne sur Rd.

Initialisation

decrease=True

V=float('inf')

Partition initiale

S=[[] for i in range(k)]

for pt in pop:

tirage=rd.randint(0,k)

S[tirage].append(pt)

centr=[0]*k

Tant que la variance intra-classe décroît

while decrease:

Calcul des centroïdes

for i in range(k):

centr[i]=sum(S[i])/len(S[i])

Mise à jour de la partition

S=[[] for i in range(k)]

V_aux=0

for pt in pop:

dmin=float('inf')

for i in range(k):

d=alg.norm(pt-centr[i])

if d<dmin:

dmin,ind=d,i

S[ind].append(pt)

V_aux+=dmin**2

if V_aux<V:

V=V_aux

else:

decrease=False

B. Landelle 9 ISM

Comme avec les k plus proches voisins, on considère la situation d'une liste de points de R2. On
souhaite donc répartir ces points en 3 classes de sorte qu'au sein d'une même classe, les points
soient proches les uns des autres.

0 1 2 3

−1

0

1

2

3

4

0 1 2 3

−1

0

1

2

3

4

0 1 2 3

−1

0

1

2

3

4

0 1 2 3

−1

0

1

2

3

4

Figure 8 � Étapes de la classi�cation par k-moyennes avec k = 3

La première �gure comporte l'ensemble des points mélangés, sans classi�cation. On observe
ensuite la partition initiale qui correspond à une a�ectation aléatoire des points dans 3 classes.
Puis, en seulement deux itérations, l'algorithme des k-moyennes converge vers une partition
des points tout à fait raisonnable.

3 Nombre de clusters et variance intra-classe

L'évolution de la variance intra-classe en fonction du choix de k peut être un critère empirique
intéressant pour décider d'un choix de k adapté. On considère des points de R2 appartenant
à trois catégories distinctes et on exécute l'algorithme des k-moyennes pour di�érentes valeurs
de k.

B. Landelle 10 ISM

−0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

−1

0

1

2

3

4

−0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

−1

0

1

2

3

4

−0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

−1

0

1

2

3

4

−0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

−1

0

1

2

3

4

Figure 9 � Classi�cation par k-moyennes pour k ∈ [[2 ; 5]]

1 2 3 4 5 6 7 8 9

25

50

75

100

125

150

175

200

Variance intra-classe en fonction de k

Figure 10 � Tracé de la variance intra-classe en fonction de k

On observe un � coude �, une décroissance beaucoup moins forte après la valeur k = 3 qui
correspond précisément au nombre de catégories des points utilisés pour la simulation.

La détection pratique d'un tel coude n'est toutefois pas toujours aussi franche que dans la �gure
présentée ci-avant.

B. Landelle 11 ISM

4 Application à la compression d'image

L'algorithme des k-moyennes fournit également, pour chaque cluster Si un représentant moyen
qu'est le centroïde x̄i.

On peut donc envisager l'utilisation de cet algorithme pour compresser une image. En e�et, on
peut importer une image en couleur sous forme tableau ndarray de taille L× C× 3 avec L le
nombre de lignes, C et le nombre de colonnes et les 3 composantes de la dernière dimension
codent l'intensité des couleurs rouge, vert et bleue dont la combinaison permet le codage de
la plupart des couleurs perçus par l'÷il humain. Il su�t ensuite de choisir un nombre k de
couleurs et d'appliquer l'algorithme des k-moyennes sur le tableau. Les centroïdes fournissent
les candidats pour constituer la palette des couleurs retenues pour la compression.

Figure 11 � Compression d'image par k-moyennes avec k = 8, Château Sarran, Antony

Figure 12 � Palette des 8 couleurs retenues pour la compression

III Le perceptron

Dans ce qui suit, les lettres d et n désignent des entiers non nuls. L'espace Rd+1 est muni de
son produit scalaire canonique.

B. Landelle 12 ISM

1 Présentation

Le perceptron est le premier modèle de neurone arti�ciel inventé en 1957 par Franck Rosen-
blatt 2. Il a été conçu pour imiter le fonctionnement d'un réseau de neurones biologiques.

Le perceptron à d entrées (dans la littérature spécialisée, on lit parfois d � neurones � en entrée,
formulation qui peut sembler abusive) auxquelles on ajoute un biais égal à 1 possède une unique
couche, un seul neurone, qui e�ectue le calcul de la combinaison linéaire

⟨W,X⟩ = w0 +
d∑

i=1

wixi

avec X = (1, x1, . . . , xd) et W = (w0, . . . , wd) où les wi désignent des poids réels.

1

x1

x2

xd

⟨W,X⟩ ϕ(⟨W,X⟩)

...
Neurone

w0

w1

w2

wd

Figure 13 � Perceptron à d entrées

Le perceptron est présenté dans ce cours en tant qu'algorithme de de classi�cation. La fonction
ϕ considérée ici est la fonction signe, à savoir

∀t ∈ R ϕ(t) =


1 si t > 0

0 si t = 0

−1 si t < 0

t

y

−1

1
y = ϕ(t)

•

Figure 14 � Fonction signe

Le perceptron peut aussi être utilisé pour e�ectuer de la régression mais cet aspect ne sera pas
développé ici.

2. Franck Rosenblatt, 1928-1971, psychologue américain.

B. Landelle 13 ISM

On considère la situation décrite par la �gure 15. Des points de R2 issus de deux catégories
distinctes sont représentés.

−1 0 1 2 3
−1

0

1

2

3

4

5

Figure 15 � Nuage de points issus de deux catégories distinctes

On peut aisément imaginer tracer un trait qui sépare ces deux catégories ce qui revient préci-
sément à déterminer une droite d'équation w0+w1x+w2y = 0 avec w0, w1 et w2 des réels. Les
demi-plans w0+w1x+w2y > 0 et w0+w1x+w2y < 0 désignent alors les deux classes identi�ées.
Le biais en entrée est indispensable : c'est le degré de liberté qui permet de ne pas considérer
que des droites passant par l'origine. L'enjeu de la classi�cation est donc la détermination du
vecteur W = (w0, w1, w2) de R3.

B. Landelle 14 ISM

−1 0 1 2 3
−1

0

1

2

3

4

5

Figure 16 � Droite séparant les deux catégories de points

Dé�nition 4. Le perceptron à d entrées est un classi�eur linéaire, à savoir une application
dé�nie par

∀(x1, . . . , xd) ∈ Rd f(x1, . . . , xd) = ϕ(⟨W,X⟩)

avec X = (1, x1, . . . , xd), W = (w0, . . . , wd) ∈ Rd+1 et ϕ la fonction signe.

Remarque : Le quali�catif linéaire vient de la linéarité de X ∈ Rd+1 7→ ⟨W,X⟩.

2 Implémentation d'un perceptron

Dé�nition 5. Soit S = (Mi, ci)1⩽i⩽n avec Mi = (m
(i)
1 , . . . ,m

(i)
d) ∈ Rd et ci ∈ {−1, 1} la classe

du point Mi pour tout i ∈ [[1 ; n]]. La famille S est dite linéairement séparable s'il existe une
forme linéaire ψ non nulle sur Rd telle que

∀i ∈ [[1 ; n]] ci ψ(Mi) > 0

Remarque : La condition de séparabilité peut donc s'interpréter par

∀i ∈ [[1 ; n]] ψ(Mi)

®
> 0 si ci = 1

< 0 si ci = −1

autrement dit, l'hyperplan Ker ψ sépare les points de la famille S .

Dé�nition 6. Soit A = (Xi, ci)1⩽i⩽n une base d'apprentissage avec Xi = (1, x
(i)
1 , . . . , x

(i)
d) ∈

Rd+1 et ci ∈ {−1, 1} la classe du point (x
(i)
1 , . . . , x

(i)
d) pour tout i ∈ [[1 ; n]]. On suppose que la

famille A est linéairement séparable. L'algorithme d'apprentissage du perceptron détermine un
vecteur de poids W = (w0, . . . , wd) ∈ Rd+1 tel que

∀i ∈ [[1 ; n]] ci ⟨W,Xi⟩ > 0

B. Landelle 15 ISM

Remarque : D'après le théorème de Riesz, on peut interpréter le résultat de cet algorithme
comme l'apprentissage de l'hyperplan Vect (W)⊥ puisque toute forme linéaire peut être vue
comme produit scalaire contre un vecteur.

L'algorithme d'apprentissage du perceptron consiste en les étapes suivantes :
• Initialisation : la variable W est initialisée avec le vecteur nul de Rd+1 et une variable
booléenne d'apprentissage reçoit True ;
• Tant qu'il y a apprentissage :
� On remet la variable d'apprentissage à False ;
� Pour i variant de 1 à n :

* Si ci ⟨W,Xi⟩ ⩽ 0, alors W←W+ ciXi et la variable d'apprentissage reçoit True ;

On peut démontrer (théorème de Noviko�) la correction et terminaison de l'algorithme. In-
tuitivement, l'étape d'apprentissage correspond à ajouter, pour un point Xi mal classi�é, un
contrepoids à W pour aller dans le sens d'une classi�cation correcte.

Pour l'implémentation, on importe les modules :

import numpy as np, numpy.linalg as alg

Les points de Rd et les vecteurs de Rd+1 sont codés par des tableaux de type ndarray. La base
d'apprentissage est une liste de sous-listes où chaque sous-liste contient les points de Rd d'une
même classe. La fonction np.dot réalise le produit scalaire canonique de Rd+1.

B. Landelle 16 ISM

def percept(A,c):

"""pecept(A:list)->ndarray

A : base d'apprentissage, chaque classe étant une sous-liste de A

c : classe c à séparer du reste

Renvoie le vecteur de poids W calculé par le peceptron"""

d=A[0][0].shape[0]

W=np.array([0]*(d+1))

C=len(A) # nb de classes dans A

Learning=True

while Learning:

Learning=False

for k in range(C):

c_i=(k==c)-(k!=c)

for pt in A[k]:

X_i=np.append(pt,1)

if c_i*np.dot(W,X_i)<=0:

Learning=True

W=W+c_i*X_i

return W

On obtient la classi�cation illustrée par la �gure :

−1 0 1 2 3
−1

0

1

2

3

4

5

Figure 17 � Classi�cation binaire par le perceptron

3 Perceptron multi-classes

Une extension naturelle à la classi�cation binaire est la classi�cation multi-classes, avec poten-
tiellement plus que deux classes.

B. Landelle 17 ISM

On considère la situation décrite par la �gure 18 où sont représentés des points de R2 issus de
trois catégories distinctes.

−1 0 1 2 3 4 5

−1

0

1

2

3

4

Figure 18 � Nuage de points issus de trois catégories distinctes

Une stratégie naïve consiste simplement à exécuter plusieurs perceptrons où chacun réalise la
classi�cation binaire d'une classe contre toutes les autres.

−1 0 1 2 3 4 5

−1

0

1

2

3

4

−1 0 1 2 3 4 5

−1

0

1

2

3

4

−1 0 1 2 3 4 5

−1

0

1

2

3

4

Figure 19 � Classi�cations binaires en � One vs All �

Ainsi, pour réaliser une classi�cation en C classes numérotées de 1 à C avec C entier supérieur
ou égal à 2, on utilise C perceptrons, donc C neurones, où pour i ∈ [[1 ; C]], le perceptron
d'indice i sert à classi�er la classe i contre toutes les autres à savoir [[1 ; C]]∖ {i}.

B. Landelle 18 ISM

1

x1

x2

xd

⟨W1,X⟩ ϕ(⟨W1,X⟩)

...
Neurone 1

w1,0

w1,1

w1,2

w1,d

1

x1

x2

xd

⟨W2,X⟩ ϕ(⟨W2,X⟩) . . .

...
Neurone 2

w2,0

w2,1

w2,2

w2,d

Figure 20 � Plusieurs perceptrons à d entrées

Une fois les classi�cations � One vs All � e�ectuées, l'espace Rd est partitionné selon les valeurs
prises par l'application

X ∈ Rd 7→ arg Max
k∈[[1 ; C]]

⟨Wk,X⟩

On retient donc la classe qui maximise en un certain sens la séparation du point X dans cette
classe vis-à-vis des autres.

Pour le nuage de points considéré à la �gure 18, le plan R2 est partitionné en trois zones P1,
P2 et P3 telles que

∀ℓ ∈ [[1 ; 3]] ∀(x, y) ∈ Pℓ arg Max
k∈[[1 ; 3]]

⟨Wk, (1, x, y)⟩ = ℓ

−1 0 1 2 3 4 5

−1

0

1

2

3

4

Figure 21 � Classi�cation multi-classes en � One vs All �

On peut aussi imaginer un travail plus collaboratif des neurones entre eux. C'est le principe du

B. Landelle 19 ISM

perceptron multi-classes qui est un réseau de neurones à une couche avec C neurones qui vont,
d'une certaine façon, travailler conjointement.

1

x1

x2

xd

⟨W1,X⟩

⟨W2,X⟩

⟨W3,X⟩

⟨WC,X⟩

arg Max
k∈[[1 ; C]]

⟨Wk,X⟩

...

...

Figure 22 � Perceptron multi-classes

4 Implémentation d'un perceptron multi-classes

Dé�nition 7. Soit A = (Xi, ci)1⩽i⩽n une base d'apprentissage avec Xi = (1, x
(i)
1 , . . . , x

(i)
d) ∈

Rd+1 et ci ∈ [[1 ; C]] la classe du point (x
(i)
1 , . . . , x

(i)
d) pour tout i ∈ [[1 ; n]]. L'algorithme d'ap-

prentissage du perceptron multi-classes détermine une liste de vecteurs de poids [W1, . . . ,WC]
avec Wi = (wi,0, . . . , wi,d) ∈ Rd+1 tels que

∀i ∈ [[1 ; n]] ci = arg Max
k∈[[1 ; C]]

⟨Wk,Xi⟩

L'algorithme d'apprentissage du perceptron multi-classes consiste en les étapes suivantes :
• Initialisation : la variable tab_W est initialisée avec une liste de C vecteurs nuls de Rd+1

et une variable booléenne d'apprentissage reçoit True ;
• Tant qu'il y a apprentissage :
� On remet la variable d'apprentissage à False ;
� Pour i variant de 1 à n :

� On détermine c = arg Max
k∈[[1 ; C]]

⟨tab_W[k],Xi⟩ ;

� Si c ̸= ci, c'est-à-dire si la classe prédite est di�érente de la vraie classe, alors :
* On ajuste le poids pour la vraie classe tab_W[ci]← tab_W[ci] + Xi ;
* On ajuste le poids de la classe prédite tab_W[c]← tab_W[c]− Xi ;
* La variable d'apprentissage reçoit True ;

On généralise l'idée vue pour le perceptron en classi�cation binaire : on modi�e la liste des
poids avec des contrepoids pour aller dans le sens d'une classi�cation correcte.

Là aussi, on peut trouver dans la littérature spécialisée des résultats théoriques de correction
et terminaison de l'algorithme.

B. Landelle 20 ISM

def percept_mult(A):

"""pecept(A:list)->list

A : base d'apprentissage, chaque classe étant une sous-liste de A

Renvoie la liste des vecteurs de poids W

calculés par le peceptron multi-classes"""

C=len(A)

d=A[0][0].shape[0]

tab_W=[np.array([0]*(d+1)) for i in range(C)]

Learning=True

while Learning:

Learning=False

for c_i in range(C):

for pt in A[c_i]:

crit=-np.inf

X_i=np.append(pt,1)

recherche indice pour max

for k in range(C):

aux=np.dot(tab_W[k],X_i)

if aux>crit:

c=k

crit=aux

c : classe prédite, c_i : vraie classe

if c!=c_i:

Learning=True

tab_W[c_i]=tab_W[c_i]+X_i

tab_W[c]=tab_W[c]-X_i

return tab_W

On obtient la classi�cation illustrée par la �gure :

−1 0 1 2 3 4 5

−1

0

1

2

3

4

Figure 23 � Classi�cation par le perceptron multi-classes

B. Landelle 21 ISM

Références

[1] Base MNIST, https://yann.lecun.com/exdb/mnist/

[2] Chloé-Agathe Azencott, Introduction au Machine Learning, Dunod, 2022

B. Landelle 22 ISM

https://yann.lecun.com/exdb/mnist/

	Algorithme des k plus proches voisins
	Présentation
	Classification par apprentissage supervisé
	Reconnaissance de caractères

	Algorithme des k-moyennes
	Présentation
	Classification par apprentissage non supervisé
	Nombre de clusters et variance intra-classe
	Application à la compression d'image

	Le perceptron
	Présentation
	Implémentation d'un perceptron
	Perceptron multi-classes
	Implémentation d'un perceptron multi-classes

