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I Espaces probabilisés

1 Tribu, événements

Dé�nition 1. Soit Ω un ensemble non vide appelé univers. Une tribu sur Ω est une partie A
de P(Ω) telle que :

1. Ω ∈ A ; (événement certain dans la tribu)

2. Pour tout A ∈ A , on a Ā ∈ A ; (stabilité par complémentation)

3. Pour toute suite (An)n∈N ∈ A N, on a

+∞⋃
n=0

An ∈ A . (stabilité par union dénombrable)

Le couple (Ω,A ) est dit espace probabilisable.

Exemples : La famille {∅,Ω} est une tribu dite grossière.
La famille P(Ω) est une tribu dite discrète (celle sous-jacente au cas d'un univers �ni).

Remarques : (1) On a ∅ ∈ A par stabilité par complémentation.
(2) Si Ω est �ni ou dénombrable, la tribu discrète est la tribu naturelle pour travailler dans le
cadre probabiliste. Il existe en revanche des situations plus élaborées (Ω = R par exemple) où
le choix de tribu adaptée n'est plus P(Ω) mais ceci dépasse le cadre de ce cours.

Dé�nition 2. Soit (Ω,A ) un espace probabilisable. On appelle événement un élément de la
tribu A .

Dé�nition 3. Soit (Ω,A ) un espace probabilisable. Deux événements A et B sont dits incom-
patibles ou disjoints si

A ∩ B = ∅

Dé�nition 4. Soit (Ω,A ) un espace probabilisable. On appelle système complet d'événements
une famille d'événements (An)n∈N véri�ant

+∞⋃
n=0

An = Ω et ∀(i, j) ∈ N2 avec i ̸= j Ai ∩ Aj = ∅

Notation : On note
+∞⊔
n=0

An l'union disjointe des An, notation non o�cielle mais bien commode.

Remarque : Le cas d'une famille �nie d'événements est couvert par la dé�nition en prenant
An = ∅ pour n supérieur à un certain rang.

Exemple : On lance une pièce indé�niment. Soit l'événement Ak : obtenir pile en k lancers
exactement et A∞ : ne pas obtenir pile. La famille (Ak)k∈N∗∪{∞} est un système complet d'évé-
nements. Formellement, on a Ω = {0, 1}N

∗
, pour k entier non nul Ak = {0}[[ 1 ; k−1 ]] × {1}{k} ×

{0, 1}[[ k+1 ;+∞ [] et A∞ = {0}N
∗
. Cette situation, très simple en apparence, est délicate : l'univers

Ω n'est pas dénombrable (argument diagonale de Cantor).
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2 Probabilité

Dé�nition 5. Soit (Ω,A ) un espace probabilisable. On appelle probabilité sur (Ω,A ) une
application P : A → [ 0 ; 1 ] véri�ant :

1. P(Ω) = 1

2. pour toute suite (An)n∈N d'événements (deux à deux) incompatibles, on a

P

(
+∞⊔
n=0

An

)
=

+∞∑
n=0

P(An) σ-additivité

Remarque : La propriété de σ-additivité donne implicitement la convergence de la série∑
P(An) pour des An incompatibles. Comme précédemment, le cas d'une famille �nie est couvert

en considérant An = ∅ pour n plus grand qu'un certain rang (P(∅) = 0 puisque ∅ =

+∞⊔
n=0

∅).

Dé�nition 6. Soit (Ω,A ) un espace probabilisable et P une probabilité sur (Ω,A ). Le triplet
(Ω,A ,P) est appelé espace probabilisé.

Remarque : Cette dé�nition étend celle du cas d'un univers Ω �ni muni de la tribu P(Ω).

Proposition 1. Soit (Ω,A ,P) un espace probabilisé. On a

1. ∀(A,B) ∈ A 2 P(A ∪ B) = P(A) + P(B)− P(A ∩ B)

2. ∀A ∈ A P(Ā) = 1− P(A)

3. ∀(A,B) ∈ A 2 A ⊂ B =⇒ P(A) ⩽ P(B) Croissance

Démonstration. 1. On a A ∪ B = A ⊔ (B ∩ Ā) et cette union est disjointe d'où

P(A ∪ B) = P(A) + P(B ∩ Ā)

Puis, avec l'union disjointe B = (B ∩ A) ⊔ (B ∩ Ā), on obtient

P(B ∩ Ā) = P(B)− P(B ∩ A)

d'où le résultat.
2. On a Ω = A ⊔ Ā et cette union est disjointe. Le résultat suit.
3. Comme A ⊂ B, on a B = A ⊔ (B ∩ Ā), union disjointe d'où

P(B) = P(A) + P(B ∩ Ā) ⩾ P(A)

Proposition 2 (Inégalité de Boole �nie ou sous-additivité). Soit (Ω,A ,P) un espace
probabilisé et (Ak)k∈[[ 0 ;n ]] une suite d'événements. On a

P

(
n⋃

k=0

Ak

)
⩽

n∑
k=0

P(Ak)

Démonstration. Par récurrence.
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Proposition 3. Soit (Ω,A ,P) un espace probabilisé. On a

∀(A,B) ∈ A 2 P(A∖ B) = P(A)− P(A ∩ B)

En particulier ∀(A,B) ∈ A 2 B ⊂ A =⇒ P(A∖ B) = P(A)− P(B)

Démonstration. On a l'union disjointe

A = (A ∩ B) ⊔ (A ∩ B̄) = (A ∩ B) ∪ (A∖ B)

Le résultat suit.

Théorème 1. Soit (Ω,A ,P) un espace probabilisé. Pour toute suite (An)n∈N d'événements, on
a

1.

+∞⋂
n=0

An ∈ A ; (stabilité par intersection dénombrable)

2. continuité croissante : si An ⊂ An+1 pour tout n, alors

lim
n→+∞

P(An) = P

(
+∞⋃
n=0

An

)
3. continuité décroissante : si An+1 ⊂ An pour tout n, alors

lim
n→+∞

P(An) = P

(
+∞⋂
n=0

An

)

Démonstration. 1. On a An ∈ A pour tout n entier (stabilité par complémentation). Puis, par

union dénombrable,
+∞⋃
n=0

An ∈ A et par stabilité par complémentation, Ω∖
+∞⋃
n=0

An =

+∞⋂
n=0

An ∈ A .

2. Posons A−1 = ∅ puis Bn = An∖An−1 pour tout n ∈ N. Pour n entier non nul, on a Bn ⊂ An

et Bn ∩ An−1 = ∅ d'où Bn ∩ Bk = ∅ pour tout k < n. Par suite, les Bn sont incompatibles et

par construction, on a An =
n⊔

k=0

Bk pour tout n ∈ N (par récurrence ou pour x ∈ An, considérer

k = min {i ∈ [[ 0 ; n ]] | x ∈ Ai}) et
+∞⋃
n=0

An =

+∞⊔
n=0

Bn. Par suite

P(An) = P

(
n⊔

k=0

Bk

)
=

n∑
k=0

P(Bk) −−−→
n→∞

+∞∑
k=0

P(Bk) = P

(
+∞⊔
n=0

Bn

)
= P

(
+∞⋃
n=0

An

)

A2A1A0
. . . B0 B1 B2

. . .

Figure 1 � Famille croissante (An)n, famille disjointe (Bn)n
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3. Il su�t d'appliquer le résultat précédent sur les ensembles An .

Corollaire 1. Soit (Ω,A ,P) un espace probabilisé. Pour toute suite (An)n∈N d'événements, on
a

P

(
n⋂

k=0

Ak

)
−−−→
n→∞

P

(
+∞⋂
k=0

Ak

)
et P

(
n⋃

k=0

Ak

)
−−−→
n→∞

P

(
+∞⋃
k=0

Ak

)

Démonstration. La suite

(
n⋂

k=0

Ak

)
n

décroît avec
+∞⋂
n=0

n⋂
k=0

Ak =

+∞⋂
k=0

Ak et la suite

(
n⋃

k=0

Ak

)
n

croît avec
+∞⋃
n=0

n⋃
k=0

Ak =

+∞⋃
k=0

Ak. Ainsi, par continuité décroissante et croissante

P

(
n⋂

k=0

Ak

)
−−−→
n→∞

P

(
+∞⋂
k=0

Ak

)
et P

(
n⋃

k=0

Ak

)
−−−→
n→∞

P

(
+∞⋃
k=0

Ak

)

Proposition 4 (Inégalité de Boole ou sous-additivité). Soit (Ω,A ,P) un espace proba-
bilisé. Pour toute suite (An)n∈N d'événements, on a

P

(
+∞⋃
n=0

An

)
⩽

+∞∑
n=0

P(An)

Démonstration. D'après l'inégalité de Boole �nie, on a

∀N ∈ N P

(
N⋃

n=0

An

)
⩽

N∑
n=0

P(An) ⩽
+∞∑
n=0

P(An)︸ ︷︷ ︸
∈[ 0 ;+∞ ]

Faisant tendre N → +∞ d'après le résultat du corollaire précédent, l'inégalité suit.

Dé�nition 7. Soit (Ω,A ,P) un espace probabilisé. Un événement A est dit négligeable si
P(A) = 0.

Proposition 5. Soit (Ω,A ,P) un espace probabilisé.

1. Un événement inclus dans un événement négligeable est négligeable.

2. Une réunion �nie ou dénombrable d'événements négligeables est négligeable.

Démonstration. 1. Immédiate par croissance de P.
2. Conséquence de l'inégalité de Boole.

Dé�nition 8. Soit (Ω,A ,P) un espace probabilisé. Un événement A est dit presque sûr si
P(A) = 1. Une propriété P est dite presque sûre ou réalisée presque sûrement si l'événement
{P vraie} est presque sûr.

Proposition 6. Soit (Ω,A ,P) un espace probabilisé.

1. Un événement contenant un événement presque sûr est presque sûr.

2. Une intersection �nie ou dénombrable d'événements presque sûrs est un événement
presque sûr.
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Démonstration. Par complémentation avec le résultat de la proposition 5.

Dé�nition 9. Soit (Ω,A ,P) un espace probabilisé. On appelle système quasi-complet d'événe-

ments une famille (An)n d'événements incompatibles telle que
⊔
n∈N

An est un événement presque

sûr.

Remarque : Un système complet est quasi-complet.

Dé�nition 10. Soit Ω un ensemble. Une distribution de probabilité discrète sur Ω est une

famille (P({ω}))ω∈Ω à valeurs dans R+ telle que
∑
ω∈Ω

P({ω}) = 1. Le support d'une distribution

de probabilité discrète est l'ensemble

{ω ∈ Ω : P({ω}) > 0}

Remarque : L'existence d'une distribution de probabilité discrète sur Ω impose Ω ̸= ∅ sans
quoi on aurait

∑
ω∈Ω

P({ω}) = 0.

Proposition 7. Soit Ω un ensemble et (P({ω}))ω∈Ω une distribution de probabilité discrète sur
Ω. Son support est au plus dénombrable.

Démonstration. Résultat établi dans le chapitre Familles sommables.

Proposition 8. Soit Ω un ensemble, A = P(Ω) et (P({ω}))ω∈Ω une distribution de probabilité
discrète. On dé�nit une probabilité P sur (Ω,A ) par

∀A ∈ A P(A) =
∑
ω∈A

P({ω})

Démonstration. Par construction de P, on a P à valeurs dans [ 0 ; 1 ], P(Ω) = 1 et pour (An)n
une suite d'événements incompatibles, il vient par sommation par paquets pour une famille à
termes positifs

P

(
+∞⊔
n=0

An

)
=

∑
ω∈⊔+∞

n=0An

P({ω}) =
+∞∑
n=0

Ç ∑
ω∈An

P({ω})
å

=
+∞∑
n=0

P(An)

Remarques : (1) Si Ω est au plus dénombrable, toute probabilité sur (Ω,A ) avec A = P(Ω)
est obtenue à partir d'une distribution de probabilités discrètes selon la construction ci-avant.
En e�et, étant donnée P une probabilité sur (Ω,A ), pour A ∈ A , l'événement A est au plus
dénombrable et par σ-additivité

P(A) = P

(⊔
ω∈A

{ω}

)
=
∑
ω∈A

P({ω})

(2) Cette notion de distribution de probabilité discrète est très limitée. Par exemple, elle ne
couvre pas le cas du jeu de pile/face in�ni : on a Ω = {0, 1}N

∗
non dénombrable, univers pour

lequel on ne choisit pas P(Ω) comme tribu a�n d'éviter des situations paradoxales.
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3 Probabilité conditionnelle

Dé�nition 11. Soit (Ω,A ,P) un espace probabilisé et B un événement véri�ant P(B) > 0.
Pour A événement, on dé�nit la probabilité conditionnelle de A sachant B notée P(A|B) ou
PB(A) par

P(A|B) = P(A ∩ B)

P(B)

Théorème 2. Soit (Ω,A ,P) un espace probabilisé et B un événement véri�ant P(B) > 0.
L'application PB est une probabilité sur (Ω,A ).

Démonstration. On a PB à valeurs dans [ 0 ; 1 ] puisque P(A ∩ B) ⩽ P(B) pour A ∈ A par
croissance de P puis PB(Ω) = P(Ω ∩ B)/P(B) = P(B)/P(B) = 1 et la propriété de σ-additivité
est clairement héritée.

Vocabulaire : La probabilité PB est dite probabilité a priori.

Proposition 9 (Formules des probabilités composées). Soit (Ω,A ,P) un espace proba-
bilisé et (Ai)i∈[[ 1 ;n ]] des événements tels que P (A1 ∩ . . . ∩ An−1) > 0. On a

P (A1 ∩ . . . ∩ An) = P(A1)× P(A2|A1)× . . .× P(An|A1 ∩ . . . ∩ An−1)

Démonstration. Comme A1 ∩ . . .∩An−1 ⊂ A1 ∩ . . .∩An−2 ⊂ . . . ⊂ A1 et P (A1 ∩ . . . ∩ An−1) >
0, on peut conditionner par chacun de ces événements. Il s'agit ensuite d'un simple produit
téléscopique :

P(A1)× P(A2|A1)× . . .× P(An|A1 ∩ . . . ∩ An−1)

= P(A1)×
P(A1 ∩ A2)

P(A1)
× P(A1 ∩ A2 ∩ A3)

P(A1 ∩ A2)
× . . .× P(A1 ∩ . . . ∩ An)

P(A1 ∩ . . . ∩ An−1)
= P(A1 ∩ . . . ∩ An)

Remarque : La situation typique d'utilisation des probabilités composées est celle de tirages
successifs dans une urne avec évolution de la composition de l'urne (sans remise, ou avec remise
selon résultat du tirage).

Théorème 3 (Formules des probabilités totales). Soit (Ω,A ,P) un espace probabilisé et
(An)n∈N un système quasi-complet d'événements. Pour B ∈ A , on a

P(B) =
+∞∑
n=0

P(B ∩ An) =
+∞∑
n=0

P(B|An)P(An)

avec pour convention P(B|An)P(An) = 0 si P(An) = 0.

Démonstration. Notons A =

+∞⊔
n=0

An. Considérant le système complet
{
A, Ā

}
, il vient

P(B) = P(B ∩ A) + P(B ∩ Ā)︸ ︷︷ ︸
⩽P(Ā)=1−P(A)=0

= P(B ∩ A) = P

(
+∞⊔
n=0

(B ∩ An)

)
=

+∞∑
n=0

P(B ∩ An)

d'où le résultat annoncé.
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Théorème 4 (Formules de Bayes). Soit (Ω,A ,P) un espace probabilisé.

1. Soient A, B des événements tels que P(B) > 0. On a

P(A|B) = P(B|A)P(A)
P(B)

2. Soit (An)n∈N un système quasi-complet d'événements et B un événement tel que P(B) >
0. On a

∀k ∈ N P(Ak|B) =
P(B|Ak)P(Ak)

+∞∑
n=0

P(B|An)P(An)

avec la convention mentionnée dans le théorème 3.

Démonstration. 1. Par dé�nition, on a

P(A|B) = P(A ∩ B)

P(B)
=

P(B|A)P(A)
P(B)

2. On procède comme au 1 et on applique en plus la formule des probabilités totales au déno-
minateur.

4 Indépendance

Dé�nition 12. Soit (Ω,A ,P) un espace probabilisé. Des événements A et B sont dits indé-
pendants si

P(A ∩ B) = P(A)× P(B)

Proposition 10. Soit (Ω,A ,P) un espace probabilisé et deux événements A et B. Si A et B
sont indépendants, alors A et B̄ le sont aussi.

Démonstration. On a

P(A ∩ B̄) = P(A)− P(A ∩ B) = P(A)(1− P(B)) = P(A)P(B̄)

Proposition 11. Soit (Ω,A ,P) un espace probabilisé. Les événements presque sûrs et négli-
geables sont indépendants de tout autre événement.

Démonstration. Soit A ∈ A et B un événement négligeable. L'événement A∩B est négligeable
car contenu dans B et

P(A ∩ B) = 0 = P(A)P(B)

Puis, soit B un événement presque sûr. On a B̄ négligeable donc indépendant de A d'où B
indépendant de A d'après le résultat de la proposition précédente.

Remarque : En particulier, les événements ∅ et Ω sont indépendants de tout autre événement.

Proposition 12. Soit (Ω,A ,P) un espace probabilisé et deux événements A et B avec P(B) > 0.
On a

A,B indépendants ⇐⇒ P(A|B) = P(A)
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Démonstration. On a

A,B indépendants ⇐⇒ P(A ∩ B) = P(A)× P(B) ⇐⇒ P(A ∩ B)

P(B)
= P(A)

Dé�nition 13. Soit (Ω,A ,P) un espace probabilisé. La famille (An)n∈N est constituée d'évé-
nements dits indépendants si

∀I �ni ⊂ N P

(⋂
i∈I

Ai

)
=
∏
i∈I

P(Ai)

Remarque : Cette dé�nition couvre le cas d'une famille �nie d'événements en prenant An = Ω
pour n supérieur à un certain rang.

Proposition 13. Soit (Ω,A ,P) un espace probabilisé et (An)n∈N une famille d'événements
indépendants. Alors les événements An sont deux à deux indépendants.

Démonstration. Il su�t de considérer I = {i, j} avec (i, j) ∈ N2 et i ̸= j pour établir l'indépen-
dance de Ai et Aj.

Remarque importante : La réciproque est fausse : des événements peuvent être deux à deux
indépendants sans être indépendants.

On lance deux fois de suite une pièce. On note Pi l'événement pile au i-ème lancer et Fi

l'événement face au i-ème lancer. Les événements P1,P2 et A = P1P2 ∪ F1F2 sont deux à
deux indépendants mais non mutuellement indépendants (pour alléger, on note P1P2 au lieu
de P1 ∩ P2 et de même avec les Fi).

Proposition 14. Soit (Ω,A ,P) un espace probabilisé et (An)n∈N une famille d'événements
indépendants. Considérons la famille d'événements (Bn)n∈N telle que Bn = An ou An pour tout
n ∈ N, alors les Bn sont indépendants.

Démonstration. Pour p entier, on note

P(p) : ∀(Bn)n ∈
{
An,An

}N ∀I �ni ⊂ N | Card
{
i ∈ I | Bi = Ai

}
= p P

(⋂
i∈I

Bi

)
=
∏
i∈I

P(Bi)

L'initialisation P(0) est vraie puisque pour toute suite (Bn)n avec Bn = An ou An pour tout
n entier, pour I ⊂ N tel que Card

{
i ∈ I | Bi = Ai

}
= 0, on a Ai = Bi pour tout i ∈ I d'où

P

(⋂
i∈I

Bi

)
= P

(⋂
i∈I

Ai

)
=
∏
i∈I

P(Ai) =
∏
i∈I

P(Bi)

On suppose le résultat vrai au rang p entier �xé. Soit I ⊂ N tel que Card
{
i ∈ I | Bi = Ai

}
=

p+ 1. Soit k ∈ I tel que Bk = Ak. On a

P

(⋂
i∈I

Bi

)
= P

Ñ
Ak ∩

⋂
i∈I∖{k}

Bi

é
= P

Ñ ⋂
i∈I∖{k}

Bi

é
− P

Ñ
Ak ∩

⋂
i∈I∖{k}

Bi

é
Par hypothèse de récurrence avec la famille (Bn)n et la partie I∖ {k}, on a
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P

Ñ ⋂
i∈I∖{k}

Bi

é
=

∏
i∈I∖{k}

P(Bi)

On pose Ci = Bi pour tout i ∈ N∖ {k} et Ck = Ak. On a

Card
{
i ∈ I | Ci = Ai

}
= Card

{
i ∈ I∖ {k} | Bi = Ai

}
= p

Ainsi, par hypothèse de récurrence appliquée avec la famille (Cn)n et la partie I, il vient

P

Ñ
Ak ∩

⋂
i∈I∖{k}

Bi

é
= P

(⋂
i∈I

Ci

)
=
∏
i∈I

P(Ci) = P(Ak)
∏

i∈I∖{k}
P(Bi)

Il vient ensuite

P

(⋂
i∈I

Bi

)
=

∏
i∈I∖{k}

P(Bi)− P(Ak)
∏

i∈I∖{k}
P(Bi) = (1− P(Ak))

∏
i∈I∖{k}

P(Bi) =
∏
i∈I

P(Bi)

ce qui clôt la récurrence.

II Variables aléatoires discrètes

1 Dé�nitions

Pour une application X : Ω → E, l'ensemble X(Ω) désigne l'ensemble image par X avec

X(Ω) = {X(ω), ω ∈ Ω}

On appelle aléa un élément ω ∈ Ω.

Dé�nition 14. Soit (Ω,A ) un espace probabilisable. On appelle variable aléatoire discrète sur
(Ω,A ) une application X dé�nie sur Ω à valeurs dans un ensemble E telle que X(Ω) est �ni
ou dénombrable et

∀x ∈ X(Ω) X−1({x}) = {X = x} = {ω ∈ Ω | X(ω) = x} ∈ A

Si E ⊂ R, on parle de variable aléatoire réelle discrète.

Remarques : (1) Cette dé�nition généralise le cas de Ω �ni puisque la condition X−1({x}) ∈ A
est nécessairement réalisée si A = P(Ω).
(2) Pour x ∈ E∖ X(Ω), on a aussi {X = x} ∈ A puisque {X = x} = ∅.

Exemple : Soit A ∈ A . L'application 1A est une variable aléatoire discrète : 1A(Ω) ⊂ {0, 1}
avec 1−1

A ({1}) = A et 1−1
A ({0}) = Ā.

Proposition 15. Soit (Ω,A ) un espace probabilisable et X : Ω → E une variable aléatoire
discrète. On a

∀A ⊂ E X−1(A) = {ω ∈ Ω | X(ω) ∈ A} ∈ A

Démonstration. On a X−1(A) =
⊔

x∈A∩X(Ω)

{X = x}

avec A ∩X(Ω) au plus dénombrable. Par stabilité par union dénombrable, le résultat suit.
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Notations : Soit X : Ω → E variable aléatoire discrète. Pour A ⊂ E, on note

X−1(A) = {X ∈ A} ou (X ∈ A)

Si X est une variable aléatoire réelle discrète, on note pour x réel

X−1(] −∞ ;x ]) = {X ⩽ x} ou (X ⩽ x), X−1(] −∞ ;x [) = {X < x} ou (X < x) etc.

Dans (Ω,A ,P) espace probabilisé, on note (abusivement) P(X ∈ A) au lieu de P ({X ∈ A})
et de même avec P(X ⩽ x) au lieu de P({X ⩽ x}) pour x réel si X à valeurs réelles (omission
d'accolades délibérée).

Exemple : On lancé un dé indé�niment. On note T le rang de première obtention de 6. On
admet que le résultat Xk du k-ième lancer est une variable aléatoire discrète. Alors, la fonction
T est une variable aléatoire discrète. En e�et, on a T à valeurs N∗ ∪ {+∞} puis

∀n ∈ N∗ {T = n} = {Xn = 6} ∩
n−1⋂
k=1

{Xk < 6} et {T = +∞} =

+∞⋂
k=1

{Xk < 6}

Soit (Ω,A ,P) espace probabilisé et X une variable aléatoire discrète. On note suppX (notation
non o�cielle) son support dé�ni par

suppX = {x ∈ X(Ω) | P(X = x) > 0}

Proposition 16. Soit (Ω,A ,P) un espace probabilisé et X une variable aléatoire discrète.
L'événement {X ∈ suppX} est presque sûr.

Démonstration. L'ensemble X(Ω)∖suppX est au plus dénombrable car inclus dans X(Ω). L'évé-

nement {X /∈ suppX} =
⊔

x∈X(Ω)∖suppX

{X = x} est négligeable comme union au plus dénom-

brable d'événements négligeables d'où le résultat sur {X ∈ suppX} par complémentation.

Proposition 17. Soit (Ω,A ,P) un espace probabilisé et X une variable aléatoire discrète à
valeurs dans E. Pour D ⊂ E avec D au plus dénombrable contenant suppX (comme D = X(Ω)
par exemple), la famille (P(X = x))x∈D est une distribution de probabilité discrète dont le support
est suppX.

Démonstration. C'est une famille à valeurs dans R+ et par σ-additivité, l'ensemble D étant au
plus dénombrable∑

x∈D
P(X = x) = P

(
X ∈

⊔
x∈D

{X = x}

)
= P(X ∈ D)

= P(X ∈ D,X ∈ suppX) = P(X ∈ suppX) = 1

Son support est clairement suppX.

Proposition 18. Soit (Ω,A ,P) un espace probabilisé et X une variable aléatoire discrète.
L'application notée PX dé�nie sur P(suppX) par PX : A 7→ P(X ∈ A) est une probabilité sur
(suppX,P(suppX)).

Démonstration. La famille (P(X = x))x∈suppX est une distribution de probabilité discrète. Pour
A ⊂ suppX qui est donc au plus dénombrable, on a par σ-additivité

PX(A) = P(X ∈ A) =
∑
x∈A

P(X = x)

D'après la proposition 8, l'application PX est une probabilité sur (suppX,P(suppX)).
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Dé�nition 15. Soit (Ω,A ,P) un espace probabilisé et X une variable aléatoire discrète. On
appelle loi de la variable aléatoire X la probabilité PX sur (suppX,P(suppX)).

Notation : Si L désigne une loi usuelle et que X suit cette loi L , on note X∼L .

Exemple : Pour A ∈ A , on a 1A∼B(P(A)).

Proposition 19. Soit (Ω,A ,P) un espace probabilisé, X une variable aléatoire discrète à va-
leurs dans E et D partie de E au plus dénombrable contenant suppX. La famille (P(X = x))x∈D
caractérise la loi de X.

Démonstration. La loi de X est la probabilité construite à partir de la distribution de probabilité
discrète (P(X = x))x∈suppX qui est une sous-famille de (P(X = x))x∈D de support suppX. Le
résultat suit.

Remarque importante : Si l'ensemble D est au plus dénombrable et contient X(Ω), il convient
pour caractériser la loi. En pratique, on a plus souvent accès à un tel ensemble D qu'au support
de X ou X(Ω).

Dé�nition 16. Soient (Ω1,A1,P1), (Ω2,A2,P2) des espaces probabilisés et X,Y des variables
aléatoires discrètes respectivement sur l'un et l'autre de ces espaces probabilisés et véri�ant
suppX = suppY. On dit que X et Y suivent la même loi si P1,X = P2,Y et on note X∼Y.

Exemple : Deux personnes lancent chacune un dé équilibré à 6 faces. On note X et Y les
résultats pour chaque dé. Alors, on a X∼Y∼U[[ 1 ; 6 ]]. L'égalité en loi n'est pas l'égalité ! Il n'y
aucune raison que les deux dés fournissent le même résultat.

Proposition 20. Soient (Ω1,A1,P1), (Ω2,A2,P2) des espaces probabilisés et X,Y des variables
aléatoires discrètes respectivement sur l'un et l'autre de ces espaces probabilisés. S'il existe D
au plus dénombrable tel que suppX ∪ suppY ⊂ D et

∀x ∈ D P1(X = x) = P2(Y = x)

alors on a X∼Y.

Démonstration. Conséquence immédiate de la proposition 19.

Remarque : Si D au plus dénombrable contient X(Ω1)∪Y(Ω2), on a le résultat. En particulier
si X(Ω1) = Y(Ω2) et D = X(Ω1) ou D ⊃ X(Ω1), le résultat vaut.

Proposition 21. Soient (Ω1,A1,P1), (Ω2,A2,P2) des espaces probabilisés et X,Y des variables
aléatoires discrètes respectivement sur l'un et l'autre de ces espaces probabilisés et à valeurs dans
E. Si on a X∼Y, alors

∀A ⊂ E P1(X ∈ A) = P2(Y ∈ A)

Démonstration. On a

∀A ⊂ E P1(X ∈ A) = P1(X ∈ A ∩ suppX) =
∑

x∈A∩suppX

P1(X = x) = . . . = P2(Y ∈ A)

Proposition 22. Soit (Ω,A ) un espace probabilisable, X une variable aléatoire discrète à va-
leurs dans E et f : E → F une fonction. Alors f(X) est une variable aléatoire discrète sur
(Ω,A ).

B. Landelle 12 ISM MP



Remarque : La notation f(X) est abusive. En toute rigueur, on devrait noter f ◦ X.

Démonstration. On a f(X(Ω)) = {f(x), x ∈ X(Ω)} au plus dénombrable. Puis, soit y ∈ f(X(Ω)).
Il vient

(f ◦ X)−1({y}) = {ω ∈ Ω | f ◦ X(ω) ∈ {y}} = {ω ∈ Ω | X(ω) ∈ f−1({y})} = X−1(f−1({y}))
Comme f−1({y}) ⊂ E, on conclut grace à la proposition 15.

Proposition 23. Soient (Ω1,A1,P1), (Ω2,A2,P2) des espaces probabilisés et X,Y des variables
aléatoires discrètes respectivement sur l'un et l'autre de ces espaces probabilisés à valeurs dans
E et f : E → F. Si on a X∼Y, il s'ensuit f(X)∼ f(Y).

Démonstration. Soit a ∈ supp f(X) ∪ supp f(Y). On a

P1(f(X) = a) = P1 (X ∈ f−1({a})) = P2 (Y ∈ f−1({a})) = P2(f(Y) = a)

Dé�nition 17. Soit (Ω,A ,P) un espace probabilisé, X une variable aléatoire discrète et B un
événement véri�ant P(B) > 0. On appelle loi conditionnelle de X sachant B la probabilité sur
(suppX,P(suppX)) notée PX|B dé�nie par

∀A ∈ P(suppX) PX|B(A) = P(X ∈ A|B)

Remarque : Cette dé�nition est valide d'après la proposition 18 et le théorème 2 (PB est une
probabilité et on regarde la loi de X pour cette probabilité).

Proposition 24. Soit (Ω,A ,P) un espace probabilisé, X : Ω → E une variable aléatoire discrète
et B un événement véri�ant P(B) > 0. Pour D ⊂ E avec D au plus dénombrable contenant
suppX, la famille (P(X = x|B))x∈D caractérise la loi de X sachant B.

Démonstration. On applique la proposition 19 à PX|B.

Dé�nition 18. Soit (Ω,A ,P) un espace probabilisé et X une variable aléatoire réelle discrète.
On dé�nit la fonction de répartition de X notée FX sur R par

∀x ∈ R FX(x) = P(X ⩽ x)

Proposition 25 (À savoir refaire). Soit (Ω,A ,P) un espace probabilisé, X une variable
aléatoire réelle discrète de fonction de répartition FX. On a

1. FX est croissante ;

2. FX(x) −−−−→
x→+∞

1 et FX(x) −−−−→
x→−∞

0.

Démonstration. 1. Soit x ⩽ y. On a {X ⩽ x} ⊂ {X ⩽ y} d'où le résultat par croissance de P.
2. La fonction FX est croissante bornée donc admet une limite �nie en +∞ et −∞ par limite
monotone. Ainsi

lim
x→+∞

FX(x) = lim
n→+∞

FX(n) et lim
x→−∞

FX(x) = lim
n→+∞

FX(−n)

La famille ({X ⩽ n})n∈N est croissante pour l'inclusion d'où, par continuité croissante,

FX(n) = P(X ⩽ n) −−−→
n→∞

P

(
+∞⋃
n=0

{X ⩽ n}

)
= P(X ∈ R) = 1
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La famille ({X ⩽ −n})n∈N est décroissante pour l'inclusion d'où, par continuité décroissante,

FX(−n) = P(X ⩽ −n) −−−→
n→∞

P

(
+∞⋂
n=0

{X ⩽ −n}

)
= P(∅) = 0

Illustration : Soit (Ω,A ,P) un espace probabilisé, (Xn)n⩾1 une suite de variables aléatoires

indépendantes de même loi B(x) avec x ∈ ] 0 ; 1 [ et Sn =
n∑

i=1

Xi pour n entier. On admet l'égalité∫ +∞

−∞
e− t2

2 dt =
√
2π et on rappelle le résultat du théorème de Moivre-Laplace :

∀α ∈ R P
Ç

Sn − nx√
nx(1− x)

⩽ α

å
−−−→
n→∞

1√
2π

∫ α

−∞
e− t2

2 dt

On peut donc observer la convergence annoncée par des tracés de fonctions de répartition.
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Figure 2 � Théorème de Moivre-Laplance, fonctions de répartition pour n = 100 et n = 1000

La fonction α 7→ 1√
2π

∫ α

−∞
e− t2

2 dt est la fonction de répartition de la loi normale centrée réduite.

2 Couples de variables aléatoires

Dé�nition 19. Soit (Ω,A ) un espace probabilisable. On appelle couple de variables aléatoires
discrètes un couple (X,Y) avec X et Y des variables aléatoires discrètes sur (Ω,A ).

Proposition 26. Soit (Ω,A ) un espace probabilisable et (X,Y) un couple de variables aléatoires
discrètes. Le couple (X,Y) est une variable aléatoire discrète sur (Ω,A ).

Démonstration. On a (X,Y)(Ω) ⊂ X(Ω) × Y(Ω) au plus dénombrable comme produit �ni
d'ensembles au plus dénombrables. Puis, pour (x, y) ∈ (X,Y)(Ω), on a

(X,Y)−1({(x, y)}) = X−1({x}) ∩ Y−1({y}) ∈ A

d'où le résultat.

Proposition 27. Soit (Ω,A ) un espace probabilisable. L'ensemble des variables aléatoires dis-
crètes sur (Ω,A ) à valeurs dans K = R ou C est un K-ev.
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Démonstration. La fonction nulle Ω → K, ω 7→ 0 est une variable aléatoire scalaire discrète.
Soient X, Y des variables aléatoires scalaires discrètes et λ scalaire. Posant f : K2 → K, (x, y) 7→
x+λy, on a X+λY = f(X,Y) qui est une variable aléatoire discrète en tant que fonction d'une
variable aléatoire discrète. On en déduit que l'ensemble des variables aléatoires réelles est un
K-ev en tant que sev de KΩ.

Dé�nition 20. Soit (Ω,A ,P) un espace probabilisé et (X,Y) un couple de variables aléatoires
discrètes. On appelle loi conjointe de X et Y la loi du couple (X,Y) et lois marginales du couple
(X,Y) les lois de X et Y.

Remarque : En général, les lois marginales ne déterminent pas la loi conjointe.

Par exemple, pour X ∼ B(1/2), les lois marginales des couples (X,X) et (X, 1 − X) sont
identiques mais les couples n'ont pas même loi puisque, par exemple, on a

P((X,X) = (0, 1)) = 0 ̸= P((X, 1− X) = (0, 1)) = P(X = 0) =
1

2

Remarque : Étant donné un couple de variables aléatoires discrètes (X,Y), on peut dé�nir la
loi conditionnelle de X sachant {Y = y} avec y ∈ suppY selon la dé�nition 17.

Dé�nition 21. Soit (Ω,A ) un espace probabilisable. On appelle vecteur aléatoire discret un
n-uplet (X1, . . . ,Xn) avec les Xi des variables aléatoires discrètes sur (Ω,A ).

Proposition 28. Soit (Ω,A ) un espace probabilisable et (X1, . . . ,Xn) un vecteur aléatoire dis-
cret. Il s'agit d'une variable aléatoire discrète sur (Ω,A ).

Démonstration. Identique à celle de la proposition 26.

Exemple : Soit (Ω,A ) un espace probabilisable, (Xn)n⩾1 une suite in�nie de variables aléatoires
discrètes avec Xn(Ω) = {0, 1} pour tout n ⩾ 1 et N une variable aléatoire discrète avec N(Ω) =
N. On pose

∀ω ∈ Ω T(ω) =
N(ω)∑
i=1

Xi(ω)

Alors, la fonction T est une variable aléatoire discrète. En e�et, l'application T est à valeurs
dans N et

∀k ∈ N {T = k} =

+∞⊔
n=0

{N = n} ∩
ß

n∑
i=1

Xi = k

™
et

n∑
i=1

Xi est une variable aléatoire comme fonction du vecteur aléatoire (X1, . . . ,Xn).

3 Variables aléatoires indépendantes

Dé�nition 22. Soit (Ω,A ,P) un espace probabilisé. Des variables aléatoires discrètes X et Y
sont dites indépendantes si

∀(x, y) ∈ X(Ω)× Y(Ω) P(X = x,Y = y) = P(X = x)P(Y = y)
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Notations : On note X ⊥⊥ Y.
L'événement {X = x,Y = y} désigne l'événement {X = x} ∩ {Y = y}.

Remarque : L'indépendance de X et Y équivaut à l'égalité entre distributions de probabilité
discrète suivantes :

(P(X = x,Y = y))(x,y)∈(X,Y)(Ω) = (P(X = x)P(Y = y))(x,y)∈X(Ω)×Y(Ω)

Proposition 29. Soit (Ω,A ,P) un espace probabilisé. Les variables aléatoires discrètes X et
Y à valeurs respectives dans E et F sont indépendantes si et seulement si

∀(A,B) ∈ P(E)× P(F) P(X ∈ A,Y ∈ B) = P(X ∈ A)P(Y ∈ B)

Démonstration. Le sens indirect est immédiat. Soit (A,B) ∈ P(E)× P(F). On a les égalités

{X ∈ A} = {X ∈ A ∩ X(Ω)} et {Y ∈ B} = {Y ∈ B ∩ Y(Ω)}

On peut donc considérer A ⊂ X(Ω) et Y ⊂ Y(Ω) sans perte de généralité et on a alors A et B
au plus dénombrables. L'ensemble A×B est au plus dénombrable comme produit d'ensembles
au plus dénombrables. D'après le théorème de Fubini pour des familles à termes positifs, il vient

P(X ∈ A,Y ∈ B) =
∑

(x,y)∈A×B

P(X = x,Y = y)

=
∑

(x,y)∈A×B

P(X = x)P(Y = y) =
∑
x∈A

P(X = x)
∑
y∈B

P(Y = y)

Dé�nition 23. Soit (Ω,A ,P) un espace probabilisé. Des variables aléatoires discrètes
X1, . . . ,Xn sont dites indépendantes

∀(xi)i∈[[ 1 ;n ]] ∈
n∏

i=1

Xi(Ω) P

(
n⋂

i=1

{Xi = xi}

)
=

n∏
i=1

P(Xi = xi)

Proposition 30. Soit (Ω,A ,P) un espace probabilisé. Les variables aléatoires discrètes
X1, . . . ,Xn avec Xi : Ω → Ei sont indépendantes si et seulement si

∀(Ai)i∈[[ 1 ;n ]] ∈
n∏

i=1

P(Ei) P

(
n⋂

i=1

{Xi ∈ Ai}

)
=

n∏
i=1

P(Xi ∈ Ai)

ou de manière équivalente

∀I ⊂ [[ 1 ; n ]] ∀(Ai)i∈I ∈
∏
i∈I

P(Ei) P

(⋂
i∈I

{Xi ∈ Ai}

)
=
∏
i∈I

P(Xi ∈ Ai)

Autrement dit, les événements {Xi ∈ Ai}i∈[[ 1 ;n ]] sont indépendants.

Lemme 1. Soient X1, . . . ,Xn indépendantes, alors X1, . . . ,Xn−1 le sont aussi.

Il su�t en e�et de considérer le système complet {Xn = xn}xn∈Xn(Ω).

Démonstration. Le sens indirect est immédiat. Pour le sens direct, on procède par récurrence.
Les variables (X1, . . . ,Xn−1) etXn indépendantes. En e�et, pour (x1, . . . , xn−1) ∈ (X1, . . . ,Xn)(Ω)
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et xn ∈ Xn(Ω), on a

P ((X1, . . . ,Xn−1) = (x1, . . . , xn−1),Xn = xn) =

P

(
n⋂

i=1

{Xi = xi}

)
=

n∏
i=1

P(Xi = xi) = P ((X1, . . . ,Xn−1) = (x1, . . . , xn−1))P(Xn = xn)

Soit (Ai)i∈[[ 1 ;n ]] ∈
n∏

i=1

P(Ei). D'après la proposition 29 (on considère (X1, . . . ,Xn−1) à valeurs

dans
n−1∏
i=1

Ei et on a bien
n−1∏
i=1

Ai ∈ P(
n−1∏
i=1

Ei)), il vient

P

(
n⋂

i=1

{Xi ∈ Ai}

)
= P
Å
(X1, . . . ,Xn−1) ∈

n−1∏
i=1

Ai,Xn ∈ An

ã
= P
Å
(X1, . . . ,Xn−1) ∈

n−1∏
i=1

Ai

ã
P(Xn ∈ An)

et le résultat suit par hypothèse de récurrence. Pour la dernière équivalence, le sens indirect est
immédiat en prenant I = [[ 1 ; n ]] et pour le sens direct, on choisit Aj = Ej pour j /∈ I.

Remarque : La deuxième caractérisation garantit que toute sous-famille (Xi)i∈I est constituée
de variables indépendantes.

Proposition 31. Soit (Ω,A ,P) un espace probabilisé. Si X1, . . . ,Xn sont des variables aléa-
toires discrètes indépendantes, alors elles sont deux à deux indépendantes.

Démonstration. Il su�t de choisir I = {i, j} avec i ̸= j dans la dernière caractérisation de la
proposition précédente.

Remarque : La réciproque est fausse.
On peut reprendre le contre-exemple fourni dans la remarque faisant suite à la proposition 13
et poser X1 = 1P1 , X2 = 1P2 et X3 = 1A. Les variables X1,X2,X3 sont indépendantes deux à
deux mais non indépendantes.

Dé�nition 24. Soit (Ω,A ,P) un espace probabilisé et (Xn)n⩾1 une suite de variables aléatoires
discrètes. On dit que les variables aléatoires (Xn)n⩾1 sont indépendantes si toute sous-famille
�nie de (Xn)n⩾1 est formée de variables aléatoires indépendantes.

Proposition 32. Soit (Ω,A ,P) un espace probabilisé.

1. Si X et Y sont des variables aléatoires indépendantes et f et g sont des applications
dé�nies respectivement sur X(Ω) et Y(Ω), alors f(X) et g(Y) sont indépendantes.

2. Si X1, . . . ,Xn sont des variables aléatoires discrètes indépendantes et f1, . . . , fn dé�nies
respectivement sur X1(Ω), . . . ,Xn(Ω), alors f1(X1), . . . , fn(Xn) sont indépendantes ;

3. Plus généralement, si (Xn)n est une suite de variables aléatoires discrètes indépendantes
et fn une application dé�nie sur Xn(Ω) pour tout n entier, alors (fn(Xn))n est une suite
de variables aléatoires indépendantes.

Démonstration. 1. Soit (a, b) ∈ f(X(Ω))× g(Y(Ω)). On a

P(f(X) = a, g(Y) = b) = P (X ∈ f−1({a}),Y ∈ g−1({b})) = P(f(X) = a)P(g(Y) = b)
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2. Soit (ai)1⩽i⩽n ∈
n∏

i=1

fi(Xi(Ω)). On a

P

(
n⋂

i=1

{fi(Xi) = ai}

)
= P

(
n⋂

i=1

Xi ∈ f−1
i ({ai})

)
=

n∏
i=1

P
(
Xi ∈ f−1

i ({ai})
)
=

n∏
i=1

P(fi(Xi) = ai)

3. Découle du cas précédent.

Proposition 33 (Lemme des coalitions). Soit (Ω,A ,P) un espace probabilisé.

1. Si X1, . . . ,Xn sont des variables aléatoires indépendantes et f et g sont des appli-

cations dé�nies respectivement sur
p∏

i=1

Xi(Ω) et
n∏

i=p+1

Xi(Ω), alors f(X1, . . . ,Xp) et

g(Xp+1, . . . ,Xn) sont indépendantes.

2. Plus généralement, si (Xn)n est une suite de variables aléatoires indépendantes , alors
f1(X1, . . . ,Xn1), f2(Xn1+1, . . . ,Xn2), . . . , fp(Xnp−1+1, . . . ,Xnp), . . . forment une suite de
variables aléatoires indépendantes.

Démonstration. 1. On pose X = (X1, . . . ,Xp) et Y = (Xp+1, . . . ,Xn). Pour x = (x1, . . . , xp) ∈
X(Ω) et y = (xp+1, . . . , xn) ∈ Y(Ω), on a sans di�culté

P(X = x,Y = y) = P

(
n⋂

i=1

{Xi = xi}

)
=

n∏
i=1

P(Xi = xi) = P(X = x)P(Y = y)

Il su�t ensuite d'appliquer le résultat du 1. de la proposition 32.
2. On procède à l'identique avec p coalitions puisqu'il su�t de véri�er l'indépendance de toute
sous-famille �nie.

Théorème 5. Il existe un espace probabilisé (Ω,A ,P) sur lequel existe une suite (Xn)n⩾1 de
variables aléatoires indépendantes avec Xn∼Ln pour tout n ⩾ 1, la famille (Ln)n⩾1 étant une
famille de lois donnée.

[Admis]

Application : Il existe un espace probabilisé (Ω,A ,P) sur lequel existe une suite (Xn)n⩾1 de
variables aléatoires indépendantes de loi B(p) avec p ∈ [ 0 ; 1 ]. Pour p = 1/2, on peut donc
considérer le jeu de pile ou face in�ni. Le choix d'une tribu est une autre a�aire !

III Espérance et variance

1 Espérance

Dé�nition 25. Soit (Ω,A ,P) un espace probabilisé et X une variable aléatoire réelle discrète
à valeurs dans [ 0 ; +∞ ]. On dé�nit l'espérance de X notée E(X) à valeurs dans [ 0 ; +∞ ] par

E(X) =
∑

x∈X(Ω)

xP(X = x)
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Proposition 34 (Antirépartition). Soit (Ω,A ,P) un espace probabilisé et X une variable
aléatoire réelle discrète à valeurs dans N ∪ {+∞}. On a dans [ 0 ; +∞ ]

E(X) =
+∞∑
n=1

P(X ⩾ n)

Démonstration. D'après le théorème de Fubini pour des familles à termes positifs, il vient
+∞∑
n=1

P(X ⩾ n) =
∑

n∈N∗

∑
k∈[[n ;+∞ []∪{+∞}

P(X = k)

=
∑

n∈N∗

∑
k∈N∗∪{+∞}

1[[ 1 ; k ]](n)P(X = k)

+∞∑
n=1

P(X ⩾ n) =
∑

k∈N∗∪{+∞}

∑
n∈N∗

1[[ 1 ; k ]](n)P(X = k) =
∑

k∈N∗∪{+∞}
kP(X = k)

d'où le résultat.

Dé�nition 26. Soit (Ω,A ,P) un espace probabilisé et X une variable aléatoire réelle ou com-
plexe discrète. On dit que X est d'espérance �nie si la famille (xP(X = x))x∈X(Ω) est sommable.
Dans ce cas, on dé�nit l'espérance de X notée E(X) par

E(X) =
∑

x∈X(Ω)

xP(X = x)

La condition de sommabilité et l'égalité valent toujours en remplaçant X(Ω) par D au plus
dénombrable qui contient X(Ω) (puisque P(X = x) = 0 pour x ∈ D∖ X(Ω)).

Notation : On note L1 l'ensemble des variables complexes discrètes d'espérance �nie.

Commentaire : L'espérance est la somme des valeurs prises par la variable aléatoire X pon-
dérées par la probabilité que X prenne ces valeurs. Il s'agit d'un moyenne en probabilité de X.

Remarques : (1) Si l'univers Ω est �ni, on retrouve la même dé�nition.
(2) Dans la pratique, il n'est pas pertinent de chercher X(Ω) si celui-ci n'est pas donné. Un
ensemble au plus dénombrable qui le contient su�t.

Dé�nition 27. Soit (Ω,A ,P) un espace probabilisé et X ∈ L1. On dit que X est centrée si
E(X) = 0.

Proposition 35. Soit (Ω,A ,P) un espace probabilisé et X une variable aléatoire constante
égale à un réel ou complexe a. Alors on a X ∈ L1 et E(X) = a.

Démonstration. On a X(Ω) = {a} et le résultat suit.

Remarque : Le résultat vaut aussi pour une variable constante presque sûrement puisque si
X = a presque sûrement, la famille (xP(X = x))x∈X(Ω) contient comme seul terme éventuelle-
ment non nul aP(X = a) c'est-à-dire a.

Théorème 6 (Théorème de transfert). Soit (Ω,A ,P) un espace probabilisé, X une va-
riable aléatoire discrète et f : X(Ω) → C. On a f(X) d'espérance �nie si et seulement si
(f(x)P(X = x))x∈X(Ω) est sommable et dans ce cas

E(f(X)) =
∑

x∈X(Ω)

f(x)P(X = x)

L'équivalence et l'égalité valent aussi en remplaçant X(Ω) par D au plus dénombrable qui
contient X(Ω) (puisque P(X = x) = 0 pour x ∈ D∖ X(Ω)).
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Démonstration. On considère f : D → C avec D au plus dénombrable qui contient X(Ω). On
dispose du recouvrement disjoint de X(Ω) :

(f−1 ({y}) ∩ X(Ω))y∈f(X)(Ω)

En e�et, on a

⊔
y∈f(X)(Ω)

f−1 ({y}) ∩ X(Ω) = X(Ω) ∩ f−1

Ñ ⊔
y∈f(X)(Ω)

{y}

é
= X(Ω) ∩ f−1 (f(X(Ω)))︸ ︷︷ ︸

⊃X(Ω)

= X(Ω)

Par sommation par paquets pour une famille à termes positifs, il vient dans [ 0 ; +∞ ]∑
x∈D

|f(x)|P(X = x) =
∑

x∈X(Ω)

|f(x)|P(X = x)

=
∑

y∈f(X)(Ω)

Ç ∑
x∈f−1({y})∩X(Ω)

|y|P(X = x)

å
=

∑
y∈f(X)(Ω)

|y|P(f(X) = y)

On en déduit l'équivalence des sommabilités. Ainsi, quand cette condition est réalisée, on obtient
toujours par sommation par paquets avec le même recouvrement disjoint que précédemment∑

x∈D
f(x)P(X = x) =

∑
x∈X(Ω)

f(x)P(X = x)

=
∑

y∈f(X)(Ω)

Ç ∑
x∈f−1({y})∩X(Ω)

yP(X = x)

å
=

∑
y∈f(X)(Ω)

yP(f(X) = y)

d'où le résultat annoncé.

Remarque : Dans le cas particulier (fréquent) où X(Ω) ⊂ N, on a

f(X) ∈ L1 ⇐⇒ (f(n)P(X = n))n∈N ∈ ℓ1(N)

⇐⇒
∑

f(n)P(X = n) converge absolument

Théorème 7 (Linéarité de l'espérance). Soit (Ω,A ,P) un espace probabilisé. L'ensemble
KΩ ∩ L1 est un K-ev et l'application dé�nie sur cet espace par X 7→ E(X) est linéaire.

Démonstration. La variable aléatoire nulle est clairement d'espérance �nie. On pose Z = X +
λY = f(X,Y) avec X et Y variables aléatoires à valeurs dans K d'espérance �nie et λ ∈ K.
On a (X,Y)(Ω) ⊂ X(Ω) × Y(Ω) et le produit X(Ω) × Y(Ω) est au plus dénombrable. On
travaille sur cet ensemble pour la suite, les calculs s'en trouvant grandement simpli�és. Par
transfert (vers la loi du couple (X,Y)), on a Z d'espérance �nie si et seulement si la famille
(f(x, y)P(X = x,Y = y))(x,y)∈X(Ω)×Y(Ω) sommable. Or

∀(x, y) ∈ X(Ω)× Y(Ω) |f(x, y)| ⩽ |x|+ |λ| |y|

On a la sommabilité de (|x|P(X = x,Y = y))(x,y)∈X(Ω)×Y(Ω) et (|y|P(X = x,Y = y))(x,y)∈(X,Y)(Ω).
En e�et, d'après le théorème de Fubini pour une famille à termes positifs et par probabilités
totales, on a ∑

(x,y)∈X(Ω)×Y(Ω)

|x|P(X = x,Y = y) =
∑

x∈X(Ω)

|x|
Ç ∑

y∈Y(Ω)

P(X = x,Y = y)

å
=

∑
x∈X(Ω)

|x|P(X = x) < +∞

On procède de même pour l'autre famille. Ainsi, par transfert, il vient que Z est d'espérance �nie
puis, par transfert, linéarité du symbole somme, théorème de Fubini et probabilités totales :

B. Landelle 20 ISM MP



E(X + λY) = E(Z) =
∑

(x,y)∈X(Ω)×Y(Ω)

f(x, y)P(X = x,Y = y)

=
∑

x∈X(Ω)

xP(X = x) + λ
∑

y∈Y(Ω)

yP(Y = y) = E(X) + λE(Y)

Remarque : On a utilisé avec succès l'ensemble D = X(Ω) × Y(Ω) au plus dénombrable qui
contient (X,Y)(Ω) pour appliquer le théorème de transfert.

Proposition 36 (Positivité, croissance de l'espérance). Soit (Ω,A ,P) un espace proba-
bilisé.

1. Soit X ∈ RΩ
+ ∩ L1, alors E(X) ⩾ 0.

2. Soient X,Y dans RΩ ∩ L1. On a

X ⩽ Y =⇒ E(X) ⩽ E(Y)

Démonstration. 1. Immédiate.
2. Conséquence de la positivité et de la linéarité de l'espérance appliquée à Y − X.

Proposition 37 (Inégalité triangulaire). Soit (Ω,A ,P) un espace probabilisé et X ∈ L1.
On a

|E(X)| ⩽ E(|X|)

Démonstration. Par inégalité triangulaire appliquée à la famille sommable (xP(X = x))x∈X(Ω),

il vient

∣∣∣∣∣ ∑x∈X(Ω)

xP(X = x)

∣∣∣∣∣ ⩽ ∑
x∈X(Ω)

|x|P(X = x)

c'est-à-dire, après transfert |E(X)| ⩽ E(|X|)

Théorème 8. Soit (Ω,A ,P) un espace probabilisé. Si X et Y sont dans L1 et indépendantes,
alors on a XY ∈ L1 et

E(XY) = E(X)E(Y)

Démonstration. On a (X,Y)(Ω) ⊂ X(Ω) × Y(Ω) et le produit X(Ω) × Y(Ω) est au plus dé-
nombrable. On travaille sur cet ensemble pour la suite, les calculs s'en trouvant grandement
simpli�és. On pose Z = XY. Par transfert (vers la loi du couple (X,Y)), on a Z d'espérance
�nie si et seulement si (xyP(X = x,Y = y))(x,y)∈X(Ω)×Y(Ω) sommable. On a

∀(x, y) ∈ X(Ω)× Y(Ω) xyP(X = x,Y = y) = xP(X = x)yP(Y = y)

Or, les familles (xP(X = x))x∈X(Ω) et (yP(Y = y))y∈Y(Ω) sont sommables d'où, par théorème
de Fubini, la sommabilité de (xyP(X = y)P(Y = y))(x,y)∈(X,Y)(Ω). On conclut par transfert et
théorème de Fubini

E(Z) =
∑

(x,y)∈X(Ω)×Y(Ω)

xyP(X = x,Y = y) =
∑

x∈X(Ω)

xP(X = x)
∑

y∈Y(Ω)

yP(Y = y) = E(X)E(Y)
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Remarques : (1) La réciproque est fausse.
Soient X,Y deux variables aléatoires indépendantes de même loi U{−1,1} et posons U = X+Y,
V = X− Y. On a

E(U)E(V) = 0 et E(UV) = E(X2)− E(Y2) = 0

Pourtant, les variables U et V ne sont pas indépendantes puisque par exemple

P(U = 2,V = 2) = P(X + Y = 2,X− Y = 2) = P(X = 2,Y = 0) = 0

et P(U = 2) = P(X = 1,Y = 1) =

Å
1

2

ã2
, P(V = 2) = P(X = 1,Y = −1) =

Å
1

2

ã2
Si on veut un contre-exemple avec des variables non centrées, il su�t de considérer a + U et
b+V avec a et b non nuls. On a

E(U + a)E(V + b) = ab et E((U + a)(V + b)) = E(UV + aV+ bU+ ab) = ab

(2) Pour X, Y variables indépendantes, on a l'équivalence :

X,Y dans L1 ⇐⇒ XY ∈ L1

En e�et, on a

XY ∈ L1 ⇐⇒ (xP(X = x)yP(Y = y))(x,y)∈X(Ω)×Y(Ω) sommable

⇐⇒ (xP(X = x))x∈X(Ω) et (yP(Y = y))y∈Y(Ω) sommables

la dernière équivalence résultant du théorème de Fubini.

Corollaire 2. Soit (Ω,A ,P) un espace probabilisé. Soient X1, . . . ,Xn dans L1 et indépendantes.

Alors on a
n∏

i=1

Xi ∈ L1 et

E
Å

n∏
i=1

Xi

ã
=

n∏
i=1

E(Xi)

Démonstration. On procède par récurrence. Le cas n = 1 est immédiat et s'il a lieu au rang

n− 1 ⩾ 1 �xé, on applique le théorème 8 à
n−1∏
i=1

Xi et Xn qui sont indépendantes par coalition.

L'hérédité suit.

Proposition 38. Soit (Ω,A ,P) un espace probabilisé et X,Y des variables aléatoires discrètes
telles que Y ∈ RΩ

+ ∩ L1 et |X| ⩽ Y. Alors on a X ∈ L1 et E(|X|) ⩽ E(Y).

Démonstration. Considérons Z = (|X| ,Y) et p1, p2 dé�nies sur Z(Ω) par p1 : (x, y) 7→ x,
p2 : (x, y) 7→ y. La variable Y = p2(Z) est d'espérance �nie d'où, par transfert, la sommabilité
de (p2(z)P(Z = z))z∈Z(Ω). Or, on a l'encadrement 0 ⩽ p1(Z) ⩽ p2(Z) par hypothèse. On en
déduit

∀z ∈ Z(Ω) 0 ⩽ p1(Z)1{Z=z} ⩽ p2(Z)1{Z=z}

Et passant à l'espérance

∀z ∈ Z(Ω) 0 ⩽ p1(z)P(Z = z) ⩽ p2(z)P(Z = z)

La sommabilité de (p2(z)P(Z = z))z∈Z(Ω) implique celle de (p1(z)P(Z = z))z∈Z(Ω). Par compa-
raison et transfert, on conclut∑

z∈Z(Ω)

p1(z)P(Z = z) = E(p1(Z)) = E(|X|) ⩽
∑

z∈Z(Ω)

p2(z)P(Z = z) = E(p2(Z)) = E(Y)

Variante. Par transfert, on peut aussi annoncer que |X| est d'espérance �nie et conclure par
croissance de l'espérance.
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Remarque : Si X est une variable aléatoire réelle ou complexe discrète bornée, alors elle est
d'espérance �nie. En e�et, il existe C ⩾ 0 tel que |X| ⩽ C et C est d'espérance �nie d'où le
résultat.

Proposition 39. Soit (Ω,A ,P) un espace probabilisé et X variable aléatoire réelle discrète
positive. On a

E(X) = 0 ⇐⇒ X = 0 p.s.

Démonstration. On a E(X) =
∑

x∈X(Ω)

xP(X = x)︸ ︷︷ ︸
⩾0

d'où

E(X) = 0 ⇐⇒ ∀x ∈ X(Ω) xP(X = x) = 0

⇐⇒ ∀x ∈ X(Ω)∖ {0} P(X = x) = 0 ⇐⇒ P(X = 0) = 1

la dernière équivalence résultant de 1 = P(X = 0) +
∑

x∈X(Ω)∖{0}
P(X = x).

2 Variance et écart-type

Théorème 9. Soit (Ω,A ,P) un espace probabilisé et X une variable aléatoire réelle discrète.
Si X2 est d'espérance �nie, alors X est également d'espérance �nie.

Démonstration. On a (|X| − 1)2 ⩾ 0 ⇐⇒ |X| ⩽ 1

2
(1 + X2)

Le résultat suit d'après le théorème 7 et la proposition 38.

Notation : On note X ∈ L2 pour signi�er que X est réelle avec X2 d'espérance �nie.
Ainsi, on a L2 ⊂ L1.

Remarque : L'inclusion réciproque est fausse. Considérer X variable aléatoire avec X(Ω) = N∗

et P(X = n) =
1

ζ(3)n3
pour n entier non nul.

Dé�nition 28. Soit (Ω,A ,P) un espace probabilisé et X ∈ L2. on dé�nit la variance de X
notée V(X) et l'écart-type de X noté σ(X) par

V(X) = E [(X− E(X))2] et σ(X) =
√
V(X)

Remarque : D'après les théorèmes 7 et 9, (X − E(X))2 = X2 − 2X × E(X) + E(X)2 est d'es-
pérance �nie.

Commentaire : La variance de X est la moyenne en probabilité des écarts quadratiques de X
par rapport à sa moyenne en probabilité. Cette grandeur mesure la dispersion de X autour de
son espérance.

Proposition 40 (Relation de König-Huygens). Soit (Ω,A ,P) un espace probabilisé et
X ∈ L2. On a

V(X) = E(X2)− E(X)2
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Démonstration. On a par linéarité

V(X) = E [X2 − 2XE(X) + E(X)2] = E(X2)− 2E(X)E(X) + E(X)2 = E(X2)− E(X)2

Proposition 41. Soit (Ω,A ,P) un espace probabilisé et X ∈ L2. On a

∀(a, b) ∈ R2 aX+ b ∈ L2 et V(aX+ b) = a2V(X)

Démonstration. On a (aX + b)2 = a2X2 + 2abX + b2 d'espérance �nie d'après les théorèmes 7
et 9. On a par propriété sur l'espérance

V(aX+ b) = E
î
(aX+ b− E(aX+ b))2

ó
= E
î
(aX+ b− (aE(X) + b))2

ó
= a2V(X)

Dé�nition 29. Soit (Ω,A ,P) un espace probabilisé et X ∈ L2. On dit que X est réduite si
V(X) = 1.

Proposition 42. Soit (Ω,A ,P) un espace probabilisé et X ∈ L2. Si σ(X) > 0, alors la variable

aléatoire
X− E(X)

σ(X)
est centrée réduite.

Démonstration. Immédiate.

Proposition 43. Soit (Ω,A ,P) un espace probabilisé et X,Y dans L2. Alors, on a XY ∈ L1.

Démonstration. On a (|X| − |Y|)2 ⩾ 0 ⇐⇒ |XY| ⩽ 1

2
(X2 +Y2)

D'après le théorème 7, la variable aléatoire
1

2
(X2 +Y2) est d'espérance �nie puis on conclut

avec la proposition 38.

Théorème 10. Soit (Ω,A ,P) un espace probabilisé . L'ensemble L2 est un R-ev.

Démonstration. La variable aléatoire nulle est dans L2. Soient X,Y dans L2 et λ réel. On
a (X + λY)2 = X2 + 2λXY + λ2Y2 et, d'après la proposition précédente, chaque terme est
d'espérance �nie d'où (X+ λY)2 ∈ L1 d'après le théorème 7. Il en résulte que l'ensemble L2 est
un sev de RΩ ∩ L1.

Théorème 11 (Inégalité de Cauchy-Schwarz). Soit (Ω,A ,P) un espace probabilisé et X,Y
dans L2. Alors

E(XY)2 ⩽ E(X2)E(Y2)

Démonstration. L'application (X,Y) 7→ E(XY) est une forme bilinéaire, symétrique, positive
sur L2. L'inégalité de Cauchy-Schwarz s'applique donc (voir cours Espaces préhilbertiens
réels).

Dé�nition 30. Soit (Ω,A ,P) un espace probabilisé et X,Y dans L2. On dé�nit la covariance
de X et Y notée Cov(X,Y) par

Cov(X,Y) = E [(X− E(X))(Y − E(Y))]
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Commentaire : La covariance de X et Y mesure partiellement la manière dont X et Y sont
dépendantes.

Remarques : (1) Les variables X − E(X) et Y − E(Y) sont dans L2 (proposition 41) et on
applique la proposition 43 pour justi�er (X− E(X))(Y − E(Y)) ∈ L1.
(2) La covariance est une forme bilinéaire symétrique positive sur L2. On peut donc écrire
l'inégalité de Cauchy-Schwarz pour la covariance et on obtient :

|Cov(X,Y)| ⩽ σ(X)σ(Y)

Proposition 44 (Relation de König-Huygens). Soit (Ω,A ,P) un espace probabilisé et
X,Y dans L2. On a

Cov(X,Y) = E(XY)− E(X)E(Y)

Démonstration. On développe le produit puis on utilise la linéarité de l'espérance, chaque terme
étant d'espérance �nie d'après le théorème 9.

Proposition 45. Soit (Ω,A ,P) un espace probabilisé et X,Y dans RΩ ∩ L1 indépendantes.
Alors, on peut dé�nir Cov(X,Y) et on a Cov(X,Y) = 0.

Démonstration. D'après le théorème 8, la variable (X− E(X))(Y− E(Y)) est d'espérance �nie
et on a

E [(X− E(X))(Y − E(Y))] = E(X− E(X))E(Y − E(Y)) = 0

Remarque : La réciproque est fausse.
Reprenons le contre-exemple du théorème 8. Soient X,Y deux variables aléatoires indépendantes
de même loi U{−1,1} et posons U = X + Y, V = X− Y. On a E(U) = E(V) = E(UV) = 0 d'où
Cov(U,V) = 0 mais U et V ne sont pas indépendantes.

Théorème 12. Soit (Ω,A ,P) un espace probabilisé.

1. Soient X,Y dans L2. On a

V(X + Y) = V(X) + 2Cov(X,Y) + V(Y)

2. Soient X1, . . . ,Xn dans L2. On a

V
Å

n∑
i=1

Xi

ã
=

∑
1⩽i,j⩽n

Cov(Xi,Xj)

=
n∑

i=1

V(Xi) + 2
∑

1⩽i<j⩽n

Cov(Xi,Xj)

Démonstration. 1. Notons U = X− E(X) et V = Y − E(Y). Les variable U, V sont dans L2 et
par linéarité de l'espérance

V(X + Y) = E [(U + V)2] = E(U2) + 2E(UV) + E(V2)

Autrement dit V(X + Y) = V(X) + 2Cov(X,Y) + V(Y)

2. C'est juste une généralisation de ce qui précède. Notons Ui = Xi − E(Xi) pour i ∈ [[ 1 ; n ]].
Les Ui sont dans L2 et par linéarité de l'espérance
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V
Å

n∑
i=1

Xi

ã
= E
ñÅ

n∑
i=1

Ui

ã2ô
= E
Ç ∑

1⩽i,j⩽n

UiUj

å
=

∑
1⩽i,j⩽n

E(UiUj)

=
∑

1⩽i,j⩽n

Cov(Xi,Xj) =
n∑

i=1

V(Xi) + 2
∑

1⩽i<j⩽n

Cov(Xi,Xj)

Corollaire 3. Soit (Ω,A ,P) un espace probabilisé. Soient X1, . . . ,Xn dans L2 et décorrelées,
c'est-à-dire Cov(Xi,Xj) = 0 pour i ̸= j. Alors

V
Å

n∑
i=1

Xi

ã
=

n∑
i=1

V(Xi)

Démonstration. Conséquence immédiate du théorème précédent.

Commentaire : Si les variables X1, . . . ,Xn sont indépendantes ou même simplement indépen-
dantes deux à deux, alors elles sont décorrelées.

3 Inégalités en probabilités

Théorème 13 (Inégalité de Markov). Soit (Ω,A ,P) un espace probabilisé et X ∈ L1

positive. On a

∀ε > 0 P(X ⩾ ε) ⩽
E(X)
ε

Démonstration. Soit ε > 0. On a les inégalités

X = X1{X<ε} +X1{X⩾ε} ⩾ X1{X⩾ε} ⩾ ε1{X⩾ε}

la première résultant de la positivité de X. Par croissance et linéarité de l'espérance, il s'ensuit

E(X) ⩾ E(X1{X⩾ε}) ⩾ E(ε1{X⩾ε}) = εP(X ⩾ ε)

d'où le résultat.

Remarques : (1) On peut assouplir les hypothèses en exigeant seulement que X soit une
variable aléatoire discrète positive même si ça ne présente pas réellement d'intérêt de travailler
avec X /∈ L1.
(2) On peut majorer de même P(X > ε) avec ε > 0 en utilisant {X > ε} ⊂ {X ⩾ ε}.
(3) Pour le même e�ort, on peut écrire une inégalité plus �ne que celle de Markov :

∀ε > 0 P(X ⩾ ε) ⩽
E(X1{X⩾ε})

ε

Par double-limite, on peut en déduire

P(X ⩾ ε) =
ε→+∞

o
Å
1

ε

ã
Application importante : La méthode de Cherno�

Soient X1, . . . ,Xn des variables aléatoires réelles discrètes indépendantes et t > 0 tel que e tXi ∈
L1 pour tout i ∈ [[ 1 ; n ]]. Soit m réel. On a par croissance stricte de u 7→ e tu sur Rß

n∑
i=1

Xi ⩾ m

™
=

ß
exp

Å
t

n∑
i=1

Xi

ã
⩾ e tm

™
=

ß
n∏

i=1

e tXi ⩾ e tm

™
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La variable
n∏

i=1

e tXi est positive, dans L1 en tant que produit de variables aléatoires indépen-

dantes dans L1 et il vient d'après l'inégalité de Markov

P
Å

n∑
i=1

Xi ⩾ m

ã
⩽ e−tmE

Å
n∏

i=1

e tXi

ã
= e−tm

n∏
i=1

E(e tXi)

Cette méthode est très utilisée pour obtenir des inégalités de type grandes déviations.

Théorème 14 (Inégalité de Bienaymé-Tchebychev). Soit (Ω,A ,P) un espace probabilisé
et X ∈ L2. On a

∀ε > 0 P(|X− E(X)| ⩾ ε) ⩽
V(X)
ε2

Démonstration. On a X ∈ L2 d'où (X−E(X))2 ∈ L1 (proposition 41) et on applique l'inégalité
de Markov en remarquant par croissance stricte de u 7→ u2 sur R+ l'égalité pour ε > 0

{|X− E(X)| ⩾ ε} = {(X− E(X))2 ⩾ ε2}

IV Fonctions génératrices

1 Dé�nition

Théorème 15. Soit (Ω,A ,P) un espace probabilisé et X une variable aléatoire discrète à va-
leurs dans N. Le rayon de convergence de la série entière

∑
tnP(X = n) est supérieur ou égal

à 1 et la série converge normalement sur [−1 ; 1 ].

Démonstration. On a P(X = n) = O(1) pour tout n entier d'où un rayon de convergence
supérieure ou égal à 1 (rayon de

∑
tn). Notant un : t 7→ tnP(X = n) pour n entier, on a

∥un∥∞,[−1 ;1 ] = P(X = n) et la convergence normale suit par σ-additivité.

Remarque : Si X(Ω) est �ni, la série entière est polynomiale et son rayon de convergence est
+∞.

Dé�nition 31. Soit (Ω,A ,P) un espace probabilisé et X une variable aléatoire discrète à va-
leurs dans N. On dé�nit la fonction génératrice de X notée GX par

∀t ∈ [ 0 ; 1 ] GX(t) = E(tX) =
+∞∑
n=0

tnP(X = n)

Remarques : (1) L'égalité entre les deux écritures résulte du théorème de transfert. La fonction
est bien dé�nie sur [ 0 ; 1 ] d'après le théorème précédent.
(2) On pourrait étendre la dé�nition au segment [−1 ; 1 ] mais travailler sur [ 0 ; 1 ] présente un
intérêt majeur : on ne manipule que des séries à termes positifs ce qui s'avère, en pratique,
extrêmement confortable.

Corollaire 4. Soit (Ω,A ,P) un espace probabilisé et X une variable aléatoire discrète à valeurs
dans N. La fonction génératrice GX est continue sur [ 0 ; 1 ], à valeurs dans [ 0 ; 1 ].
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Démonstration. La série de fonctions continues
∑

un converge normalement donc uniformément
sur [ 0 ; 1 ] et on a

∀t ∈ [ 0 ; 1 ] 0 ⩽ GX(t) =
+∞∑
n=0

tnP(X = n) =
+∞∑
n=0

P(X = n) = 1

Exemples : 1. Si X∼B(p), on a GX(t) = pt+ 1− p pour t ∈ [ 0 ; 1 ].
2. Si X∼B(n, p), on a GX(t) = (pt+ 1− p)n pour t ∈ [ 0 ; 1 ].

2 Propriétés

Théorème 16. Soit (Ω,A ,P) un espace probabilisé et X une variable aléatoire discrète à va-
leurs dans N. La fonction génératrice GX caractérise la loi de X.

Démonstration. La fonctionGX coïncide sur [ 0 ; 1 [ avec la somme de la somme de la série entière∑
tnP(X = n) qui est de classe C ∞ sur ]−1 ; 1 [. Ainsi, la fonction GX admet des dérivées en 0

à tout ordre avec

∀n ∈ N G
(n)
X (0) = n!P(X = n)

Le résultat suit.

Proposition 46. Soit (Ω,A ,P) un espace probabilisé et X une variable aléatoire discrète à
valeurs dans N. On a

X ∈ L1 ⇐⇒ GX dérivable en 1

et pour X ∈ L1 E(X) = G′
X(1)

Démonstration. Les fonctions un sont de classe C 1 avec u′
n(t) = ntn−1P(X = n) pour (n, t) ∈

N∗ × [ 0 ; 1 ] et ∥u′
n∥∞ = nP(X = n). Si X ∈ L1, alors la série

∑
nP(X = n) converge d'où la

convergence normale donc uniforme de
∑

u′
n sur [ 0 ; 1 ] et on a la convergence simple de

∑
un.

Il s'ensuit que GX est dérivable sur [ 0 ; 1 ] et

G′
X(1) =

+∞∑
n=1

u′
n(1) =

+∞∑
n=0

nP(X = n) = E(X)

Réciproquement, on a pour t ∈ [ 0 ; 1 [

GX(t)−GX(1)

t− 1
=

+∞∑
n=0

tn − 1

t− 1
P(X = n) =

+∞∑
n=1

(1 + t+ . . .+ tn−1)P(X = n)

D'où, pour N entier
N∑

n=0

nP(X = n) = lim
t→1

N∑
n=0

(1 + t+ . . .+ tn−1)P(X = n)︸ ︷︷ ︸
⩽

+∞∑
n=0

. . .

⩽ lim
t→1

GX(t)−GX(1)

t− 1
= G′

X(1)

Le résultat suit.

Proposition 47. Soit (Ω,A ,P) un espace probabilisé et X une variable aléatoire discrète à
valeurs dans N. Si X ∈ L2, alors GX est dérivable deux fois en 1 et on

V(X) = G′′
X(1) + G′

X(1)−G′
X(1)

2
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Démonstration. Les fonctions un sont de classe C 2 avec u′′
n(t) = n(n − 1)tn−2P(X = n) pour

n ⩾ 2, t ∈ [ 0 ; 1 ] et ∥u′′
n∥∞ = n(n − 1)P(X = n) = O(n2P(X = n)). Si X ∈ L2, alors la série∑

n2P(X = n) et donc aussi
∑

n(n − 1)P(X = n) converge d'où la convergence normale donc
uniforme de

∑
u′′
n sur [ 0 ; 1 ] et on a la convergence simple des séries dérivées d'ordre inférieur

(celle de
∑

u′
n résultant de ∥u′

n∥∞ = O(n2P(X = n)) ou par X d'espérance �nie) d'où GX est
deux fois dérivable et

G′′
X(1) =

+∞∑
n=0

u′′
n(1) =

+∞∑
n=0

n(n− 1)P(X = n) = E(X2)− E(X)

Remarque : On peut établir le résultat plus fort

X ∈ L2 ⇐⇒ GX dérivable deux fois en 1

en suivant une démarche identique à celle de la proposition 46.

Proposition 48. Soit (Ω,A ,P) un espace probabilisé et X1, . . . ,Xn des variables aléatoires
discrètes indépendantes à valeurs dans N. On a

∀t ∈ [ 0 ; 1 ] GSn(t) =
n∏

i=1

GXi
(t) avec Sn =

n∑
i=1

Xi

Démonstration. Soit t ∈ [ 0 ; 1 ]. On a

GSn(t) = E
Å

n∏
i=1

tXi

ã
Le résultat suit d'après le corollaire 2.

Exemple : Soit Y∼B(n, p) et X1, . . . ,Xn indépendantes de loi B(p) avec n entier non nul et

p ∈ [ 0 ; 1 ]. On a Y∼ Sn =
n∑

i=1

Xi ce qui explique le résultat observé :

GY = GSn =
n∏

i=1

GXi
= Gn

X1

V Lois usuelles

1 Loi géométrique

Dé�nition 32. Soit (Ω,A ,P) un espace probabilisé et X une variable aléatoire discrète. On dit
que X suit une loi géométrique de paramètre p ∈ ] 0 ; 1 [ noté X ∼ G (p) si X(Ω) = N∗ et

∀k ∈ N∗ P(X = k) = p(1− p)k−1

Remarque : Il s'agit bien d'une loi de probabilité puisque p(1 − p)k−1 ⩾ 0 pour k ∈ N∗ et,
d'après le résultat sur les séries géométriques ,

∑
p(1 − p)k−1 converge puisque 1 − p ∈ ] 0 ; 1 [

avec
+∞∑
k=1

p(1− p)k−1 =
p

1− (1− p)
= 1

Interprétation : Une loi géométrique modélise le rang du premier succès d'une suite illimitée
d'épreuves de Bernoulli indépendantes de même paramètre p, par exemple un jeu de pile ou face
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où l'on s'arrête dès qu'on obtient pile. Pour (Xk)k⩾1 suite de variables aléatoires indépendantes
de loi B(p) et

X = inf {k ∈ N∗ | Xk = 1}

on a X(Ω) ⊂ N∗ ∪ {+∞} avec P(X = +∞) = lim
n→+∞

P

(
n⋂

k=1

{Xk = 0}

)
= 0 d'où suppX = N∗ et

l'interprétation est valide.

Proposition 49. Soit (Ω,A ,P) un espace probabilisé et X ∼ G (p) avec p ∈ ] 0 ; 1 [. On a
X ∈ L2 et

E(X) =
1

p
, V(X) =

1− p

p2
, ∀t ∈ [ 0 ; 1 ] GX(t) =

pt

1− t(1− p)

Démonstration. Les séries entières
∑

k2xk et
∑

xk ont même rayon de convergence égal à 1
d'où X ∈ L2. Par dérivation d'une série entière, on a pour x ∈ ]−1 ; 1 [

+∞∑
k=1

kxk−1 =
1

(1− x)2
,

+∞∑
k=2

k(k − 1)xk−2 =
2

(1− x)3

Par linéarité dans l'intervalle de convergence
+∞∑
k=1

k(k − 1)xk−1 +
+∞∑
k=1

kxk−1 =
+∞∑
k=1

k2xk−1 =
2x

(1− x)3
+

1

(1− x)2
=

1 + x

(1− x)3

Prenant x = 1− p, on trouve

E(X) = p
+∞∑
k=1

k(1− p)k−1 =
p

(1− (1− p))2
=

1

p
E(X2) = p

+∞∑
k=1

k2(1− p)k−1 =
p(2− p)

(1− (1− p))3

puis V(X) = E(X2)− E(X)2 =
2− p

p2
− 1

p2
=

1− p

p2

En�n, pour t ∈ [ 0 ; 1 ], il vient

GX(t) =
+∞∑
k=1

tkP(X = k) = tp
+∞∑
k=1

(t(1− p))k−1 =
pt

1− t(1− p)

Exemple : Déterminer la complexité en moyenne du tri suivant d'argument L une liste de n
nombres distincts :

def tri(L):

while not est_triee(L):

rd.shuffle(L)

où est_triee est une fonction qui renvoie True si la liste L est triée et False sinon. L'instruction
rd.shuffle vient du module numpy.random importé en tant tant qu'alias rd. Elle agit en place
en mélangeant la liste aléatoirement. Tant que la liste n'est pas triée, on la mélange. Notant
σ ∈ Sn la permutation permettant de trier la liste L de taille n, on e�ectue des tirages uniformes
dans Sn jusqu'à obtenir σ. Soit (Xk)k⩾1 une suite de variables indépendantes de loi USn et

T = inf {k ∈ N∗ | Xk = σ}
La variable aléatoire T modélise le nombre de mélanges e�ectués par la fonction tri. On a

T∼G (p) avec p =
1

Card Sn
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Le nombre moyen de passages dans la boucle while est donné par E(T). Les complexités de
est_triee et rd.shuffle sont en O(n). Ainsi, la complexité en moyenne est donnée par

E(T)O(n) =
1

p
O(n) = n!O(n)

ce qui est catastrophique.

2 Loi de Poisson

Dé�nition 33. Soit (Ω,A ,P) un espace probabilisé et X une variable aléatoire discrète. On dit
que X suit une loi de Poisson de paramètre λ > 0 noté X ∼ P(λ) si X(Ω) = N et

∀k ∈ N P(X = k) =
λk

k!
e−λ

Remarque : Il s'agit bien d'une loi de probabilité puisque
λk

k!
e−λ ⩾ 0 pour k ∈ N et, d'après

le résultat sur la série exponentielle,
∑λk

k!
e−λ converge avec

+∞∑
k=0

λk

k!
e−λ = e−λeλ = 1

Proposition 50. Soit (Ω,A ,P) un espace probabilisé et X ∼ P(λ) avec λ > 0. On a X ∈ L2

et

E(X) = λ, V(X) = λ, ∀t ∈ [ 0 ; 1 ] GX(t) = eλ(t−1)

Démonstration. Les séries entières
∑

k2x
k

k!
et
∑xk

k!
ont même rayon de convergence égal à +∞

d'où X ∈ L2. Par dérivation d'une série entière, on a pour x réel
+∞∑
k=1

k
xk−1

k!
= ex,

+∞∑
k=2

k(k − 1)
xk−2

k!
= ex

Par linéarité car convergence
+∞∑
k=0

k(k − 1)
xk

k!
+

+∞∑
k=0

k
xk

k!
=

+∞∑
k=0

k2x
k

k!
= x2ex + xex = x(1 + x)ex

Prenant x = λ, on trouve E(X) =
+∞∑
k=0

k
λk

k!
e−λ = λeλe−λ = λ

et V(X) = E(X2)− E(X)2 =
+∞∑
k=0

k2λ
k

k!
e−λ − E(X)2 = λ(1 + λ)eλe−λ − λ2 = λ

En�n, pour t ∈ [ 0 ; 1 ], il vient

GX(t) =
+∞∑
k=0

tkP(X = k) =
+∞∑
k=0

(λt)k

k!
e−λ = eλ(t−1)
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VI Résultats asymptotiques

1 Approximation de la loi binomiale par la loi de Poisson

Théorème 17 (Loi des événements rares). Soit (Ω,A ,P) un espace probabilisé. Soit
(Xn)n⩾1 une suite de variables aléatoires discrètes avec Xn ∼ B(n, pn) et npn −−−→

n→∞
λ > 0,

alors

∀k ∈ N P(Xn = k) −−−→
n→∞

λk

k!
e−λ

Vocabulaire : On dit que la suite (Xn)n⩾1 converge en loi vers la loi de Poisson P(λ) (notion
de convergence hors-programme).

0 2 4 6 8 10 12 14
0.00

0.05

0.10

0.15

0.20

0.25

0.30

Figure 3 � Approximation de la loi binomiale par la loi de Poisson

Démonstration. On a npn = λ+ o(1) d'où pn −−−→
n→∞

0 puis pour n ⩾ k

P(Xn = k) =
(
n
k

)
pkn(1− pn)

n−k

=
1

k!
(npn)

k

Å
1− 1

n

ã
× . . .×

Å
1− k − 1

n

ã
︸ ︷︷ ︸

=1+o(1)

exp [n ln(1− pn)]
1

(1− pn)k︸ ︷︷ ︸
=1+o(1)

=
1

k!
(λ+ o(1))k exp [n(−pn + o(pn))] (1 + o(1))

P(Xn = k) =
1

k!
(λ+ o(1))k exp [−λ+ o(1)] (1 + o(1)) −−−→

n→∞

λk

k!
e−λ

Interprétation : Sur un intervalle de temps [ 0 ; T ] qu'on subdivise en 0 < ∆T < 2∆T < . . . <
n∆T, on observe sur chaque sous-intervalle des résultats d'expériences aléatoires succès/échec.
Le succès a lieu proportionnellement à la durée du sous intervalle à savoir µ∆T. Ainsi, sur
[ 0 ; T ], le nombre total de succès suit une loi B(n, pn) avec pn = µ∆T où n∆T = T. Faire
tendre n → +∞ équivaut à faire tendre ∆T → 0, autrement dit une subdivision de plus en plus
�ne. La probabilité de succès µ∆T tend vers zéro d'où cette interprétation de la loi de Poisson
comme loi des événements rares.
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2 Loi faible des grands nombres

On note i.i.d. pour : indépendantes identiquement distribuées, c'est-à-dire indépendantes et de
même loi.

Théorème 18 (Loi faible des grands nombres). Soit (Ω,A ,P) un espace probabilisé. Soit

(Xn)n⩾1 une suite de variables aléatoires i.i.d. dans L2. Notant Sn =
n∑

i=1

Xi, m = E(X1), on a

∀ε > 0 P
Å∣∣∣∣Sn

n
−m

∣∣∣∣ ⩾ ε

ã
−−−→
n→∞

0

Vocabulaire : On dit que la suite
Å
1

n

n∑
i=1

Xi

ã
n⩾1

converge en probabilité vers m (notion de

convergence hors-programme).

Remarque : La déclinaison forte de ce résultat (convergence presque sûre) est le fondement
des méthodes de Monte-Carlo.

Démonstration. Notons σ = σ(X1). Soit ε > 0 et n entier non nul. D'après l'inégalité de
Bienaymé-Tchebychev, on a

P
Å∣∣∣∣Sn

n
−m

∣∣∣∣ ⩾ ε

ã
⩽

V(Sn)

n2ε2

puis, par indépendance deux à deux des Xi

V(Sn) = V(
n∑

i=1

Xi) =
n∑

i=1

V(Xi) = nσ2

Ainsi P
Å∣∣∣∣Sn

n
−m

∣∣∣∣ ⩾ ε

ã
⩽

σ2

nε2

et le résultat suit.

Remarque : On n'utilise en réalité que la décorrélation des variables aléatoires Xi.

Commentaire : La démonstration fournit une inégalité permettant d'exhiber ce qu'on appelle
en statistique un intervalle de con�ance. Si (X1, . . . ,Xn) est un échantillon de mesures et m
une grandeur d'intérêt (durée de vie d'un produit par exemple), on veut pouvoir estimer cette
grandeur. En utilisant l'inclusionò

Sn

n
− ε ;

Sn

n
+ ε

ï
⊂
ï
Sn

n
− ε ;

Sn

n
+ ε

ò
il vient par complémentation

P
Å
m ∈

ï
Sn

n
− ε ;

Sn

n
+ ε

òã
⩾ 1− σ2

nε2

Ainsi, la grandeur d'intérêt m est localisée dans un intervalle qui est fonction de l'échantillon

(X1, . . . ,Xn) avec un niveau de con�ance au moins 1 − σ2

nε2
. Pour un niveau de con�ance �xé

(proche de 1 idéalement), on est face à un compromis : un choix de ε petit assure un petit
intervalle de con�ance mais il faut choisir un grand échantillon ce qui est coûteux. On perçoit
l'intérêt d'avoir ici une minoration aussi �ne que possible pour optimiser ce compromis.
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Illustration :

On représente pour des lois uniformes U[[ 7 ; 13 ]] et U[[ 1 ; 19 ]] le tracé de plusieurs réalisations des

moyennes empiriques, à savoir les termes de la suite
Å
Sn(ω)

n

ã
n⩾1

pour di�érentes réalisations

de ω.
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Figure 4 � Tracé des moyennes empiriques

On rappelle que pour X∼U[[ a ; b ]], on a

E(X) =
a+ b

2
V(X) =

(b− a)(2 + b− a)

12

Dans la simulation illustrée ci-avant, les lois ont même espérance mais des variances di�érentes
ce qui apparaît clairement dans la dispersion des tracés : plus la variance est grande, plus la
dispersion des trajectoires est élevée.
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