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I Espaces probabilisés

1 Tribu, événements

Définition 1. Soit Q un ensemble non vide appelé univers. Une tribu sur € est une partie of
de P(Q) telle que :

1. Qe o ; (événement certain dans la tribu)

2. Pour tout A € o/, on a A € o/ ; (stabilité par complémentation)
+00o

3. Pour toute suite (A,)neny € Y, on a U A, € <. (stabilité par union dénombrable)

n=0

Le couple (2, o7) est dit espace probabilisable.

Exemples : La famille {@, 2} est une tribu dite grossieére.
La famille P(Q2) est une tribu dite discréte (celle sous-jacente au cas d’un univers fini).

Remarques : (1) On a @ € & par stabilité par complémentation.

(2) Si Q est fini ou dénombrable, la tribu discréte est la tribu naturelle pour travailler dans le
cadre probabiliste. Il existe en revanche des situations plus élaborées (2 = R par exemple) ot
le choix de tribu adaptée n’est plus P(£2) mais ceci dépasse le cadre de ce cours.

Définition 2. Soit (£, .97) un espace probabilisable. On appelle événement un élément de la
tribu o .

Définition 3. Soit (2, /) un espace probabilisable. Deuzr événements A et B sont dits incom-
patibles ou disjoints si

AnNnB=go

Définition 4. Soit (2,.27) un espace probabilisable. On appelle systéme complet d’événements
une famille d’événements (A,,)nen vérifiant

+00o

UAn:Q et V(i,j) EN? avec i#j ANA =0
n=0
+oo
Notation : On note |_| A, 'union disjointe des A,,, notation non officielle mais bien commode.
n=0

Remarque : Le cas d’une famille finie d’événements est couvert par la définition en prenant
A,, = @ pour n supérieur & un certain rang.

Exemple : On lance une piéce indéfiniment. Soit ’événement A, : obtenir pile en k£ lancers
exactement et A, : ne pas obtenir pile. La famille (Aj)ren-u{oc} €St un systéme complet d’évé-
nements. Formellement, on a Q = {0,1}"", pour k entier non nul A, = {0} 711  {13% &
{0, 1}[[]”1;”0[I et Ay = {0}V, Cette situation, trés simple en apparence, est délicate : I'univers
2 n’est pas dénombrable (argument diagonale de Cantor).
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2 Probabilité

Définition 5. Soit (2,.97) un espace probabilisable. On appelle probabilité sur (£2,.e/) une
application P : o/ — [0;1] vérifiant :

1. P(Q) =1

2. pour toute suite (A,)nen d’événements (deuz & deuz) incompatibles, on a

e +00
P <|_| An) = S P(A,) o-additivité
n=0 n=0

Remarque : La propriété de o-additivité donne implicitement la convergence de la série

> P(A,,) pour des A,, incompatibles. Comme précédemment, le cas d’une famille finie est couvert
+00

en considérant A, = @ pour n plus grand qu’un certain rang (P(2) = 0 puisque @ = |_| %)
n=0

Définition 6. Soit (2, .o/) un espace probabilisable et P une probabilité sur (0, 7). Le triplet
(Q, o7, P) est appelé espace probabilisé.

Remarque : Cette définition étend celle du cas d’un univers €2 fini muni de la tribu P(2).

Proposition 1. Soit (2, o/, P) un espace probabilisé. On a

L V(A,B) € @2 P(AUB)=P(A)+P(B) — P(ANB)
2. VAeg  PA)=1-P(A)
3. V(A,B)e #? A CB=P(A) <P(B) Croissance

Démonstration. 1. On a AUB = A LU (BN A) et cette union est disjointe d’oil
P(AUB) =P(A)+P(BNA)

Puis, avec I'union disjointe B = (BN A) LU (BN A), on obtient
PBNA)=PB)-PBNA)

d’ou le résultat.
2. 0On a Q = AU A et cette union est disjointe. Le résultat suit.
3. Comme A C B, on a B=AU(BNA), union disjointe d’ot

P(B) = P(A) + P(BNA) > P(A)
O

Proposition 2 (Inégalité de Boole finie ou sous-additivité). Soit (2, o7, P) un espace
probabilisé et (Ay)rejo;n] une suite d’événements. On a

(U Ak) i]P (Ax)

Démonstration. Par récurrence. OJ
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Proposition 3. Soit (2, o/, P) un espace probabilisé. On a
V(A,B) € &2 P(ANB)=P(A) —P(ANB)

En particulier V(A,B) e #? BC A= P(A\B)=P(A) —P(B)

Démonstration. On a 'union disjointe
A=(ANB)U(ANB)=(ANB)U(A\B)
Le résultat suit. O

Théoréme 1. Soit (2, .o/, P) un espace probabilisé. Pour toute suite (A, )nen d’événements, on

a
+00o

1. ﬂ A, € o ; (stabilité par intersection dénombrable)
n=0
2. continuité croissante : st A,, C A, 11 pour tout n, alors

i, Bl (UA)

3. continuité décroissante : si A, 1 C A, pour tout n, alors

i, Bl (ﬂA)

Démonstration. 1. On a A, € o/ pour tout n entier (stabilité par complémentation). Puis, par
+00

union dénombrable, U A,, € o et par stabilité par complémentation, O~ U A, m A, e .

n=0 n=0 n=0

2. Posons A_; = @ puis B,, = A,, ~\ A,,_; pour tout n € N. Pour n entier non nul, on a B,, C A,
et B,NA,_1 =9 dou B, NB, = & pour tout k£ < n. Par suite, les B,, sont incompatibles et
n

par construction, on a A,, = |_| By pour tout n € N (par récurrence ou pour z € A,,, considérer

k=0
+00 +00
k=min{i € [0;n] |z € A;})et U A, = |_| B,,. Par suite

n=0 n=0

n +0o0

=P (| |B:] = Bk)—>ZIP>Bk:IP’ |_|Bn =P(JA.
k=0 " k=0 n=0
As

FIGURE 1 — Famille croissante (A,),, famille disjointe (B,,),
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3. 11 suffit d’appliquer le résultat précédent sur les ensembles A,,

]

Corollaire 1. Soit (2, o7, P) un espace probabilisé. Pour toute suite (A, )nen d’événements, on

() < (0 e (0

n +oo n n
Démonstration. La suite (ﬂ A,g) décroit avec ﬂ m A, = ﬂ A et la suite <U Ak>
k=0 k=0 n

n=0 k=0 k=0
+o00 n

croit avec U U AL = U Ay. Ainsi, par continuité décroissante et croissante
n=0 k=0 k=0

(04) () = (04) (04

[]

Proposition 4 (Inégalité de Boole ou sous-additivité). Soit (2, o7, P) un espace proba-
bilisé. Pour toute suite (A,)nen d’événements, on a

P <DO An> < Y B(A)

Démonstration. D’aprés 'inégalité de Boole finie, on a

N N +00
VWeN P (U An> < S P(A,) < S P(A,)
n—0 n=0 n=0

——

€[0;+00]

Faisant tendre N — +o0 d’aprés le résultat du corollaire précédent, 'inégalité suit. O

Définition 7. Soit (0,97, P) un espace probabilisé. Un événement A est dit négligeable si
P(A) =0.

Proposition 5. Soit (Q, .o/, P) un espace probabilisé.
1. Un événement inclus dans un événement négligeable est négligeable.

2. Une réunion finie ou dénombrable d’événements négligeables est négligeable.

Démonstration. 1. Immédiate par croissance de P.
2. Conséquence de I'inégalité de Boole. O

Définition 8. Soit (2, ./, P) un espace probabilisé. Un événement A est dit presque slr si
P(A) = 1. Une propriété & est dite presque stre ou réalisée presque sirement si [’événement
{2 vraie} est presque sir.

Proposition 6. Soit (2, .o/, P) un espace probabilisé.
1. Un événement contenant un événement presque Sir est presque Sur.

2. Une intersection finie ou dénombrable d’événements presque sirs est un événement
presque SUr.
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Démonstration. Par complémentation avec le résultat de la proposition [5 O]

Définition 9. Soit (2, o7, P) un espace probabilisé. On appelle systéme quasi-complet d’événe-

ments une famille (A,,), d’événements incompatibles telle que |_| A, est un événement presque

neN
SUT.

Remarque : Un systéme complet est quasi-complet.

Définition 10. Soit 2 un ensemble. Une distribution de probabilité discréte sur €2 est une

famille (P({w})),cq @ valeurs dans R, telle que ) P({w}) = 1. Le support d’une distribution
wel

de probabilité discréte est [’ensemble

(weq : PHw)) > 0}

Remarque : L’existence d’'une distribution de probabilité discréte sur €2 impose 2 # & sans
quoi on aurait ) P({w}) = 0.

weN

Proposition 7. Soit ) un ensemble et (P({w})),cq une distribution de probabilité discréte sur
Q. Son support est au plus dénombrable.

Démonstration. Résultat établi dans le chapitre Familles sommables. O

Proposition 8. Soit Q un ensemble, o7 = P(Q) et (P({w})),cq une distribution de probabilité
discréte. On définit une probabilité P sur (2, o) par

VAco  P(A)= 3 PHw))

wEA

Démonstration. Par construction de P, on a P a valeurs dans [0;1], P(©2) = 1 et pour (A,),
une suite d’événements incompatibles, il vient par sommation par paquets pour une famille &
termes positifs

P <|_| An> - Y Puh=> < 5 P<{w}>> - :zimm

UJGUISOAn n=0 \we€A,

[]

Remarques : (1) Si © est au plus dénombrable, toute probabilité sur (2, .o7) avec & = Z(Q)
est obtenue & partir d’une distribution de probabilités discrétes selon la construction ci-avant.
En effet, étant donnée P une probabilité sur (2, .47), pour A € o, I'événement A est au plus
dénombrable et par o-additivité

P(A) =P <|_| {w}> = 2 P({w})
WEA w€eA
(2) Cette notion de distribution de probabilité discréte est trés limitée. Par exemple, elle ne
couvre pas le cas du jeu de pile/face infini : on a Q = {0, 1}N non dénombrable, univers pour
lequel on ne choisit pas Z(£2) comme tribu afin d’éviter des situations paradoxales.
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3 Probabilité conditionnelle

Définition 11. Soit (2,7, [P) un espace probabilisé et B un événement vérifiant P(B) > 0.
Pour A événement, on définit la probabilité conditionnelle de A sachant B notée P(A|B) ou
Ps(A) par

P(ANB)

P(AIB) = 5

Théoréme 2. Soit (2, o7,P) un espace probabilisé et B un événement vérifiant P(B) > 0.
L’application Py est une probabilité sur (2, o).

Démonstration. On a Py & valeurs dans [0;1] puisque P(A N B) < P(B) pour A € & par
croissance de P puis Pg(Q2) = P(Q N B)/P(B) = P(B)/P(B) = 1 et la propriété de o-additivité
est clairement héritée. O

Vocabulaire : La probabilité Py est dite probabilité a priori.

Proposition 9 (Formules des probabilités composées). Soit (Q, o7, P) un espace proba-
bilisé et (A;)ic[1;n] des événements tels que P(AyN...NA,_1) >0. On a

]P(Al ﬂﬁAn) :P<A1) X ]P(Ag’Al) X ... X ]P’(An|AlﬁﬂAn,1)

Démonstration. Comme A;N...NA,_1 CAIN...NA, o C...CAetP(A;N...NA,1)>
0, on peut conditionner par chacun de ces événements. Il s’agit ensuite d’un simple produit
téléscopique :

P(A1> X P(AQ‘Al) X ... X P(A7L|A1 N...N An—l)

P(A;NAy) PA;NAyNA;j) P(A;N...NA,)
X X ... X
P(Ay) P(A; NAy) PAjN...NA,)

= P(A)) x =P(A,N...NA,)

[]

Remarque : La situation typique d’utilisation des probabilités composées est celle de tirages
successifs dans une urne avec évolution de la composition de 'urne (sans remise, ou avec remise
selon résultat du tirage).

Théoréme 3 (Formules des probabilités totales). Soit (2, o7, P) un espace probabilisé et
(A )nen un systéeme quasi-complet d’événements. Pour B € o7, on a

P(B) = S-P(BNA,) = 3. P(BA,)P(A,)

avec pour convention P(B|A,)P(A,) =0 si P(A,) =0.

+00o
Démonstration. Notons A = |_| A,,. Considérant le systéme complet {A, A}, il vient
n=0
B +0o0 +o0
PB)=PBNA)+ PBNA) =PBNA)=P (I_l(BﬂAn)> = > P(BNA,)
S— 0 n=0
<P(A)=1—P(A)=0
d’ou le résultat annoncé. O
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Théoréme 4 (Formules de Bayes). Soit (2, o7, IP) un espace probabilisé.
1. Soient A, B des événements tels que P(B) > 0. On a

P(A[B) = —P(B]L/?%I;D(A)

2. Soit (A,)nen un systéme quasi-complet d’événements et B un événement tel que P(B) >
0. On a
P(BJA)P(Ax)

+00

> P(BIA,)P(A,)

VkeN  P(AyB) =

avec la convention mentionnée dans le théoréme [3.

Démonstration. 1. Par définition, on a

P(A|B) = P(A N B) _ P(BJA)P(A)
P(B) P(B)
2. On procéde comme au 1 et on applique en plus la formule des probabilités totales au déno-
minateur. ]

4 Indépendance

Définition 12. Soit (2, o7, P) un espace probabilisé. Des événements A et B sont dits indé-
pendants si

P(ANB) = P(A) x P(B)

Proposition 10. Soit (Q,%,]ED) un espace probabilisé et deur événements A et B. Si A et B
sont indépendants, alors A et B le sont aussi.

Démonstration. On a
P(ANB)=P(A) —P(ANB) =P(A)(1 - P(B)) = P(A)P(B)
O

Proposition 11. Soit (2, 7, P) un espace probabilisé. Les événements presque sirs et négli-
geables sont indépendants de tout autre événement.

Démonstration. Soit A € o et B un événement négligeable. L’événement A N B est négligeable
car contenu dans B et

P(ANB) =0 = P(A)P(B)

Puis, soit B un événement presque siir. On a B négligeable donc indépendant de A d’ou B
indépendant de A d’aprés le résultat de la proposition précédente. O

Remarque : En particulier, les événements & et () sont indépendants de tout autre événement.

Proposition 12. Soit (2, o7, P) un espace probabilisé et deux événements A et B avec P(B) > 0.
On a

A, B indépendants <= P(A|B) =P(A)
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Démonstration. On a
P(ANB)

A, B indépendants <= P(ANB)=P(A) x P(B) «— F(B)

= P(A)

O

Définition 13. Soit (2, o7, IP) un espace probabilisé. La famille (A,)nen est constituée d’évé-
nements dits indépendants si

VIfini CN P (ﬂ Ai> = [ P(A)

i€l i€l

Remarque : Cette définition couvre le cas d’une famille finie d’événements en prenant A, = )
pour n supérieur a un certain rang.

Proposition 13. Soit (2, o/, P) un espace probabilisé et (A,)nen une famille d’événements
indépendants. Alors les événements A,, sont deux & deux indépendants.

Démonstration. 1l suffit de considérer I = {7, j} avec (4, j) € N? et ¢ # j pour établir I'indépen-
dance de A; et A;. O

Remarque importante : La réciproque est fausse : des événements peuvent étre deux a deux
indépendants sans étre indépendants.

On lance deux fois de suite une piéce. On note P; ’événement pile au i-éme lancer et F;
I’événement face au i-éme lancer. Les événements P;,Py et A = PPy, U F1Fy sont deux a
deux indépendants mais non mutuellement indépendants (pour alléger, on note PPy au lieu
de P; NPy et de méme avec les F;).

Proposition 14. Soit (€2, .o/, P) un espace probabilisé et (A,)nen une famille d’événements
indépendants. Considérons la famille d’événements (B, )nen telle que B, = A, ou A,, pour tout
n € N, alors les B,, sont indépendants.

Démonstration. Pour p entier, on note
P(p): V(Bn)n € {An,A_n}N Vlan C N | Card {z €l|B; = E} =p P (ﬂ BZ-) =11P(B;)
icl i€l

L’initialisation 22(0) est vraie puisque pour toute suite (B,), avec B, = A, ou A, pour tout
n entier, pour I C N tel que Card {z €el|B; = Ai} =0, on a A; = B; pour tout i € I d’ou

P (ﬂ Bi) =P (ﬂ AZ-) = [IP(A) = [[P(B;)

On suppose le résultat vrai au rang p entier fixé. Soit I C N tel que Card {z €l|B;= KL} =
p+ 1. Soit k €1 tel que By = A;. On a

P(ﬂBZ):IP’ AN ﬂ B, | =P ﬂ B, | -P[ Ay ﬂ B,

1€l ielN{k} ielnN{k} 1eIN{k}

Par hypothése de récurrence avec la famille (B,,), et la partie I \ {k}, on a
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Pl () B |= TI P®)

iel{k} el {k}
On pose C; = B, pour tout i € NN\ {k} et C;, = Ag. On a
Card {iel|C;=A;} =Card {i e I~{k} |Bi=A;} =p
Ainsi, par hypothése de récurrence appliquée avec la famille (C,,),, et la partie I, il vient
Pl Acn () B | =P (ﬂ ci> =[IP(C) =P(Ay) [] P(B))
el {k} i€l tel i€l {k}

Il vient ensuite

P((WBZ-): [T B@B)-BA) [ PB)=(1-FA)) I B(B)=[]BB)

icl ieIN{k} 1€IN{k} ieIN{k} i€l

ce qui clot la récurrence. O

II Variables aléatoires discrétes

1 Définitions
Pour une application X : Q — E, I'ensemble X(Q2) désigne ’ensemble image par X avec
X(Q) = {X(w), w e}

On appelle aléa un élément w € ().

Définition 14. Soit (2, 97) un espace probabilisable. On appelle variable aléatoire discréte sur
(Q, %) une application X définie sur Q) a valeurs dans un ensemble E telle que X(Q) est fini
ou dénombrable et

V€ X(Q) X1{z}) ={X=z2}={weQ|X(w) =2}

Si E C R, on parle de variable aléatoire réelle discréte.

Remarques : (1) Cette définition généralise le cas de Q fini puisque la condition X' ({z}) € &
est nécessairement réalisée si &7 = P(Q).
(2) Pour x € E X X(Q), on a aussi {X =z} € & puisque {X =z} = .

Exemple : Soit A € &/. L’application 1, est une variable aléatoire discréte : 14(Q2) C {0, 1}
avec 1,1 ({1}) = A et 1;'({0}) = A.

Proposition 15. Soit (Q,.o/) un espace probabilisable et X : Q — E une variable aléatoire
discrete. On a

VACE X' A)={weQ|Xw) eA}ted

Démonstration. On a X71(A) = |_| {X=u}
z€ANX(Q)

avec A N X(Q2) au plus dénombrable. Par stabilité par union dénombrable, le résultat suit. [
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Notations : Soit X : 2 — E variable aléatoire discréte. Pour A C E, on note
X1A)={XeA} ou (Xe€A)

Si X est une variable aléatoire réelle discréte, on note pour z réel

X 1(]-00;2]) ={X <2} ou (X<ux), X H-oosz])={X<z} ou (X<uz) ete

Dans (€2, o7, P) espace probabilisé, on note (abusivement) P(X € A) au lieu de P ({X € A})
et de méme avec P(X < x) au lieu de P({X < z}) pour x réel si X a valeurs réelles (omission
d’accolades délibérée).

Exemple : On lancé un dé indéfiniment. On note T le rang de premiére obtention de 6. On
admet que le résultat X; du k-iéme lancer est une variable aléatoire discréte. Alors, la fonction
T est une variable aléatoire discréte. En effet, on a T a valeurs N* U {+o00} puis

Vn € N* {T:n}:{xn:6}mﬁ{xk<6} et {T:+oo}:ﬁo{Xk<6}

Soit (92, o7, IP) espace probabilisé et X une variable aléatoire discréte. On note supp X (notation
non officielle) son support défini par

suppX ={z € X(Q) | P(X =2z) > 0}

Proposition 16. Soit (0, o7, P) un espace probabilisé et X une variable aléatoire discréte.
L’événement {X € supp X} est presque sar.

Démonstration. L’ensemble X(€2)~supp X est au plus dénombrable car inclus dans X(€2). L’évé-

nement {X ¢ supp X} = |_| {X =z} est négligeable comme union au plus dénom-
z€X(Q)~supp X
brable d’événements négligeables d’ou le résultat sur {X € supp X} par complémentation. [

Proposition 17. Soit (Q, .o/, P) un espace probabilisé et X une variable aléatoire discréte a
valeurs dans E. Pour D C E avec D au plus dénombrable contenant supp X (comme D = X(2)
par exemple), la famille (P(X = x)), ., est une distribution de probabilité discréte dont le support
est supp X.

Démonstration. C’est une famille & valeurs dans R, et par o-additivité, I’ensemble D étant au
plus dénombrable

Z]P(X:x):ﬂv()(e |_|{X:ac}> = P(X € D)

=PXeD,XesuppX)=P(X €suppX) =1

Son support est clairement supp X. ]

Proposition 18. Soit (2, o7, P) un espace probabilisé et X une variable aléatoire discreéte.
L’application notée Px définie sur P(supp X) par Px : A — P(X € A) est une probabilité sur
(supp X, P(supp X)).

Démonstration. La famille (P(X = z)),c ., x €st une distribution de probabilité discréte. Pour
A C supp X qui est donc au plus dénombrable, on a par o-additivité
Px(A) =PX e A)= > PX=ux)
€A

D’aprés la proposition |8, 'application Px est une probabilité sur (supp X, P(supp X)). ]
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Définition 15. Soit (2, .o/, P) un espace probabilisé et X une variable aléatoire discréte. On
appelle loi de la variable aléatoire X la probabilité Px sur (supp X, P(supp X)).

Notation : Si .Z désigne une loi usuelle et que X suit cette loi .Z, on note X ~_Z.

Exemple : Pour A € o7, on a 15 ~ A(P(A)).

Proposition 19. Soit (2, 27, P) un espace probabilisé, X une variable aléatoire discréte a va-
leurs dans E et D partie de E au plus dénombrable contenant supp X. La famille (P(X = x))
caractérise la loi de X.

zeD

Démonstration. Laloi de X est la probabilité construite a partir de la distribution de probabilité
discréte (P(X = 1)), cqppx QUi est une sous-famille de (P(X = z)),.p, de support supp X. Le
résultat suit. O]

Remarque importante : Si’ensemble D est au plus dénombrable et contient X(€2), il convient
pour caractériser la loi. En pratique, on a plus souvent accés a un tel ensemble D qu’au support
de X ou X(2).

Définition 16. Soient (21,94, P1), (o, 9%, Ps) des espaces probabilisés et X, Y des variables
aléatoires discrétes respectivement sur l'un et autre de ces espaces probabilisés et vérifiant
supp X =supp Y. On dit que X et Y suwent la méme loi st Py x = Pay et on note X~Y.

Exemple : Deux personnes lancent chacune un dé équilibré a 6 faces. On note X et Y les
résultats pour chaque dé. Alors, on a X ~Y ~ %16 L’égalité en loi n’est pas I'égalité! Il n'y
aucune raison que les deux dés fournissent le méme résultat.

Proposition 20. Soient (21,94, P1), (Qo, 9, Py) des espaces probabilisés et X, Y des variables
aléatoires discretes respectivement sur l'un et 'autre de ces espaces probabilisés. S’il existe D
au plus dénombrable tel que supp X UsuppY C D et

alors on a X~Y.

Démonstration. Conséquence immédiate de la proposition O

Remarque : Si D au plus dénombrable contient X(€2;) UY(£22), on a le résultat. En particulier
si X(£21) = Y(Q2) et D =X(€) ou D D X(£24), le résultat vaut.

Proposition 21. Soient (24, .94, Py), (Q, o4, Py) des espaces probabilisés et X, Y des variables
aléatoires discretes respectivement sur ['un et l'autre de ces espaces probabilisés et a valeurs dans
E. Sion a X~Y, alors

VACE Pi(XeA)=Py(Y €A)

Démonstration. On a

VACE PiXeA)=P(XeAnsuppX)= > PiX=x2)=...=Py(Ye€A)

x€ANsupp X

]

Proposition 22. Soit (2, o7) un espace probabilisable, X une variable aléatoire discréte a va-
leurs dans E et f : E — F une fonction. Alors f(X) est une variable aléatoire discréte sur
(Q, ).
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Remarque : La notation f(X) est abusive. En toute rigueur, on devrait noter f o X.

Démonstration. Ona f(X(Q)) = {f(x),x € X(2)} au plus dénombrable. Puis, soit y € f(X(2)).
Il vient

(feX)'({y}) ={w e Q| foX(w) € {y}} ={w e Q| X(w) € [T {yh} =X (/T ({y}))
Comme f~'({y}) C E, on conclut grace a la proposition [15] O

Proposition 23. Soient (24, .94, Py), (Qo, o4, Py) des espaces probabilisés et X, Y des variables
aléatoires discretes respectivement sur l'un et ['autre de ces espaces probabilisés a valeurs dans
Eet f:E—=F. SionaX~Y, il sensuit f(X)~ f(Y).

Démonstration. Soit a € supp f(X) Usupp f(Y). On a

Pi(f(X)=a)=P1(X € fT({a})) =P2(Y € f7'({a})) =Po(f(Y) = a)
O

Définition 17. Soit (2, o7, P) un espace probabilisé, X une variable aléatoire discrete et B un
événement vérifiant P(B) > 0. On appelle loi conditionnelle de X sachant B la probabilité sur
(supp X, P(supp X)) notée Pxg définie par

VA € P(supp X) Pxs(A) =P(X € A|B)

Remarque : Cette définition est valide d’aprés la proposition [L8| et le théoréme |2 (Pg est une
probabilité et on regarde la loi de X pour cette probabilité).

Proposition 24. Soit (2, o/, P) un espace probabilisé, X : Q@ — E une variable aléatoire discrete
et B un événement vérifiant P(B) > 0. Pour D C E avec D au plus dénombrable contenant
supp X, la famille (P(X = x|B)),., caractérise la loi de X sachant B.

Démonstration. On applique la proposition [19) & Pxs. O

Définition 18. Soit (Q, o/, IP) un espace probabilisé et X une variable aléatoire réelle discréte.
On définit la fonction de répartition de X notée Fx sur R par

Ve e R Fx(z) =P(X < )

Proposition 25 (A savoir refaire). Soit (Q, o/, P) un espace probabilisé, X une variable
aléatoire réelle discréte de fonction de répartition Fx. On a

1. Fx est croissante;

2. Fx(x) —— 1 et Fx(z) —— 0.

T—r+00 T—r—00

Démonstration. 1. Soit z < y. On a {X < x} C {X <y} d’ou le résultat par croissance de P.
2. La fonction Fx est croissante bornée donc admet une limite finie en +0o et -oo par limite
monotone. Ainsi

lim Fx(z)= lim Fx(n) et lim Fx(z)= lim Fx(—n)

r—r+00 n—+oo T—r—00 n—+o0o

La famille ({X < n}), .y est croissante pour l'inclusion d’oi, par continuité croissante,

Fﬂn)zP(Xén}ﬁP({j{Xgn}) =PXeR)=1
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La famille ({X < —n}), .y est décroissante pour I'inclusion d’oil, par continuité décroissante,

Fx(—n) =P(X < —n) —— P <ﬁo (X < _n}> = P(2) =0

n—00
n=0
]

IMlustration : Soit (€2, <7, P) un espace probabilisé, (X,),>1 une suite de variables aléatoires
n

X, pour n entier. On admet I'égalité
=1

indépendantes de méme loi Z(z) avecx € |0;1[et S, =

+00 Y
/ e~% dt = /27 et on rappelle le résultat du théoreme de Mowvre-Laplace :

o0
S, — nx

1 @ 2
Vo e R Pl ————=<a —>—/ e 2z dt
( nz(l — x) ) n—oo /21 )

On peut donc observer la convergence annoncée par des tracés de fonctions de répartition.

FIGURE 2 — Théoréme de Moivre-Laplance, fonctions de répartition pour n = 100 et n = 1000

1 @ 2
La fonction o +—> \/—_ / e~ 7 dt est la fonction de répartition de la loi normale centrée réduite.
TJ -0

2 Couples de variables aléatoires

Définition 19. Soit (2, .o/) un espace probabilisable. On appelle couple de variables aléatoires
discretes un couple (X,Y) avec X et Y des variables aléatoires discrétes sur (S0, 7).

Proposition 26. Soit (2, o) un espace probabilisable et (X,Y) un couple de variables aléatoires
discrétes. Le couple (X,Y) est une variable aléatoire discréte sur (§2,.27).

Démonstration. On a (X,Y)(Q) € X(Q) x Y(Q2) au plus dénombrable comme produit fini
d’ensembles au plus dénombrables. Puis, pour (z,y) € (X, Y)(£2), on a

X)) {2y} =X ({2 n Y ({y}) € &

d’out le résultat. O

Proposition 27. Soit (2, &) un espace probabilisable. L’ensemble des variables aléatoires dis-
cretes sur (Q,.97) a valeurs dans K =R ou C est un K-ev.
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Démonstration. La fonction nulle 2 — K,w — 0 est une variable aléatoire scalaire discréte.
Soient X, Y des variables aléatoires scalaires discrétes et \ scalaire. Posant f : K? — K, (z,y) —
x4+ Ay, on a X+ Y = f(X,Y) qui est une variable aléatoire discréte en tant que fonction d’une
variable aléatoire discréte. On en déduit que 'ensemble des variables aléatoires réelles est un
K-ev en tant que sev de K. O

Définition 20. Soit (2, .o/, P) un espace probabilisé et (X,Y) un couple de variables aléatoires
discretes. On appelle loi conjointe de X et Y la loi du couple (X,Y) et lois marginales du couple
(X,Y) les lois de X et Y.

Remarque : En général, les lois marginales ne déterminent pas la loi conjointe.

Par exemple, pour X ~ #(1/2), les lois marginales des couples (X,X) et (X,1 — X) sont
identiques mais les couples n’ont pas méme loi puisque, par exemple, on a

1
Remarque : Etant donné un couple de variables aléatoires discrétes (X,Y), on peut définir la

loi conditionnelle de X sachant {Y = y} avec y € supp Y selon la définition [17]

Définition 21. Soit (2, 97) un espace probabilisable. On appelle vecteur aléatoire discret un
n-uplet (Xq,...,X,) avec les X; des variables aléatoires discrétes sur (€, o).

Proposition 28. Soit (2, &7) un espace probabilisable et (Xq,...,X,) un vecteur aléatoire dis-
cret. Il s’agit d’une variable aléatoire discrete sur (), 7).

Démonstration. Identique & celle de la proposition [26] O

Exemple : Soit (£2, .o7) un espace probabilisable, (X,,),>1 une suite infinie de variables aléatoires
discrétes avec X,,(2) = {0, 1} pour tout n > 1 et N une variable aléatoire discréte avec N(§2) =
N. On pose

N(w)
Yw € Q T(w) = > Xi(w)
i=1

Alors, la fonction T est une variable aléatoire discréte. En effet, 'application T est a valeurs
dans N et

Vk € N {T:k}:DO{N:n}ﬂ{g:lXi:k}

n
et Y X; est une variable aléatoire comme fonction du vecteur aléatoire (X, ..., X,).
i=1

3 Variables aléatoires indépendantes

Définition 22. Soit (2, o7, P) un espace probabilisé. Des variables aléatoires discrétes X et Y
sont dites indépendantes s¢

V(z,y) € X(Q) x Y(2) PX=2zY=y)=PX=2)P(Y =y)
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Notations : On note X LY.
L’événement {X = z,Y = y} désigne 'événement {X =z} N{Y = y}.

Remarque : L’'indépendance de X et Y équivaut a I’égalité entre distributions de probabilité
discréte suivantes :

PX=2Y =) eyexyi@ = PEX=2PY =9)q ) ex@uxve)

Proposition 29. Soit (Q, o/, P) un espace probabilisé. Les variables aléatoires discrétes X et
Y a wvaleurs respectives dans E et F sont indépendantes si et seulement st

V(A,B) € P(E) x P(F) P(Xe A, Y eB)=P(X € A)P(Y € B)

Démonstration. Le sens indirect est immédiat. Soit (A, B) € P(E) x P(F). On a les égalités
{XeA}l={XeAnX( )} et {YeB}={YeBnY(Q)}

On peut donc considérer A C X(Q2) et Y C Y(2) sans perte de généralité et on a alors A et B
au plus dénombrables. L’ensemble A x B est au plus dénombrable comme produit d’ensembles
au plus dénombrables. D’aprés le théoréme de Fubini pour des familles a termes positifs, il vient

PXEAYEB) = Y PX=zY=y)
(z,y)EAXB
— Y PX=a)P(Y —y) = SPX =2) DY = y)
(z,y)€eAxB x€A yeB

]

Définition 23. Soit (9,27, P) un espace probabilisé. Des wvariables aléatoires discrétes
X1,..., X, sont dites indépendantes

V(xi)ie[1;n] € :Hle‘(Q) P <ﬂ Xi= xi}) = :ﬂP(Xi — )

Proposition 30. Soit (2,<7,P) un espace probabilisé. Les wvariables aléatoires discrétes
Xq,..., X, avec X; : Q2 — E; sont indépendantes si et seulement si

V(Adieninl € [ P(E) P (ﬁ {X; A,}) = [[P(X; € A)

ou de maniére équivalente

VIC[1;n] V(A)ier € [T P(E:) P (ﬂ {X; e Az}) =[IP(X; € Ay)

i€l icl i€l

Autrement dit, les événements {X; € Ai}ie[[l'n]] sont indépendants.

’Lemme 1. Soient X1, ..., X, indépendantes, alors Xq,...,X,,_1 le sont aussi.

I suffit en effet de considérer le systéme complet {X,, =z}, x ()

Démonstration. Le sens indirect est immédiat. Pour le sens direct, on procéde par récurrence.
Les variables (X, ..., X, _1) et X,, indépendantes. En effet, pour (z1,...,2,_1) € (X1,...,X,)(Q)
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et z, € X,(Q), on a
P((Xl, c. ,Xn_1> = (1’1, c. ,I’n_l),Xn = [En) =

P (ﬂ {X; = xi}> = HMXZ' —2)=P(X1,.... Xno1) = (21, ..., 201)) P(X,, = z,)

Soit (Ay)icr1;n] € [ P(E;). D’aprés la proposition 29| (on considére (Xy,...,X,_1) & valeurs
i=1

n—1 n—1 n—1
dans ] E; et on a bien [ A; € P([] Ei)), il vient

=1 =1 =1

P (ﬁ (X, € Ai}> —P ((Xl, X)) € 7?[[1 ALX, € An>

i=1
n—1
=P ((X1> s 7Xn—1) S H Az) P(Xn S An)
=1

et le résultat suit par hypothése de récurrence. Pour la derniére équivalence, le sens indirect est
immédiat en prenant I =[1; n] et pour le sens direct, on choisit A; = E; pour j ¢ L. ]

Remarque : La deuxiéme caractérisation garantit que toute sous-famille (X;);cr est constituée
de variables indépendantes.

Proposition 31. Soit (2, o7, P) un espace probabilisé. Si Xy, ...,X,, sont des variables aléa-
toires discretes indépendantes, alors elles sont deur a deuzx indépendantes.

Démonstration. 11 suffit de choisir I = {4, 7} avec i # j dans la derniére caractérisation de la
proposition précédente. O

Remarque : La réciproque est fausse.

On peut reprendre le contre-exemple fourni dans la remarque faisant suite a la proposition
et poser X; = 1p,, Xo = 1p, et X3 = 1. Les variables X;, Xs, X3 sont indépendantes deux a
deux mais non indépendantes.

Définition 24. Soit (2, o/, P) un espace probabilisé et (X,,)n,>1 une suite de variables aléatoires
discrétes. On dit que les variables aléatoires (X,,)n,>1 sont indépendantes si toute sous-famille
finie de (X,,)n>1 est formée de variables aléatoires indépendantes.

Proposition 32. Soit (2, o/, P) un espace probabilisé.
1. 51 X et Y sont des variables aléatoires indépendantes et f et g sont des applications
définies respectivement sur X(2) et Y(Q2), alors f(X) et g(Y) sont indépendantes.

2. 81 Xq,...,X,, sont des variables aléatoires discrétes indépendantes et fi, ..., f, définies
respectivement sur Xq(Q), ..., X, (Q), alors f1(Xy),..., fu(X,) sont indépendantes ;

3. Plus généralement, si (X,,), est une suite de variables aléatoires discrétes indépendantes
et fn une application définie sur X,,(Q) pour tout n entier, alors (f,(X,))n est une suite
de variables aléatoires indépendantes.

Démonstration. 1. Soit (a,b) € f(X(£2)) x g(Y(€2)). On a
P(f(X) =a,9(Y) =b) =P (X € f'({a}),Y € g7 ({0})) = P(f(X) = a)P(9(Y) = 1)
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2. Soit (ai)lgign € H fZ(Xz(Q)) On a
i=1

# (o0 -a1) - P<m St
P (X € £ ({a}) = TTP(A(X) = a)

=1

Il
::]3

-
Il
—

3. Découle du cas précédent.

]
Proposition 33 (Lemme des coalitions). Soit (Q, o7, P) un espace probabilisé.
1. 51 Xq,...,X,, sont des variables aléatoires indépendantes et f et g sont des appli-
p n
cations définies respectivement sur [[ Xi(Q2) et [ Xi(Q), alors f(Xq,...,X,) et

=il i=p+1
9(Xpt1, ..., X,) sont indépendantes.

2. Plus généralement, si (X,,), est une suite de variables aléatoires indépendantes , alors

Xy, X)), (Xt Xy )y oo s fp(Xy 15 - -5 Xy ), - - forment une suite de
variables aléatoires indépendantes.

Démonstration. 1. On pose X = (Xy,...,X,) et Y = (X,41,...,X,). Pour z = (z4,...,2,) €
X(Q) et y = (Tps1,.--,Tn) € Y(2), on a sans difficulté

P(X=2,Y=y)=P (ﬂ (X, = m) _ ﬁlmxi — ) = P(X = 2)P(Y = y)

11 suffit ensuite d’appliquer le résultat du 1. de la proposition
2. On procéde a 'identique avec p coalitions puisqu’il suffit de vérifier I'indépendance de toute
sous-famille finie. O

Théoréme 5. [ existe un espace probabilisé (2, o/, P) sur lequel existe une suite (X, )n>1 de
variables aléatoires indépendantes avec X, ~ %, pour tout n > 1, la famille (.ﬁfn)n}1 étant une
famille de lois donnée.

[Admis]

Application : Il existe un espace probabilisé (2, o7, P) sur lequel existe une suite (X,),>1 de
variables aléatoires indépendantes de loi %(p) avec p € [0;1]. Pour p = 1/2, on peut donc
considérer le jeu de pile ou face infini. Le choix d’une tribu est une autre affaire!

IIT Espérance et variance

1 Espérance

Définition 25. Soit (2, &7, P) un espace probabilisé et X une variable aléatoire réelle discréte
a valeurs dans [0;+00]. On définit Uespérance de X notée E(X) a valeurs dans [0;+00] par

EX)= Y 2P(X=uz)

B zeX(Q)
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Proposition 34 (Antirépartition). Soit (2, &7, P) un espace probabilisé et X une variable
aléatoire réelle discréte a valeurs dans NU {+00}. On a dans [0;+00 |

E(X) = S P(X > n)

Démonstration. D’aprés le théoréme de Fubini pour des familles & termes positifs, il vient

ﬁﬂ)(bn): S Y PX=k

neN*ke[n ; +oo [U{+oo}

=2 2 IpymPX=k)

neN*EeN*U{+oo}
+00
Y P(X>n)= > Yo lpe(n)PX=k) = > kKPX =k)
n=1 keN*U{+oo}neN* keN*U{+o0}
d’otu le résultat. O

Définition 26. Soit (2, o7, P) un espace probabilisé et X une variable aléatoire réelle ou com-
pleze discréte. On dit que X est d’espérance finie si la famille (zP(X = 2)),cx ) st sommable.
Dans ce cas, on définit [’espérance de X notée E(X) par

EX)= Y 2P(X=az)

zeX(Q)

La condition de sommabilité et ’égalité valent toujours en remplacant X(2) par D au plus
dénombrable qui contient X(Q) (puisque P(X = x) =0 pour x € D\ X(Q)).

Notation : On note L! I'ensemble des variables complexes discrétes d’espérance finie.

Commentaire : L’espérance est la somme des valeurs prises par la variable aléatoire X pon-
dérées par la probabilité que X prenne ces valeurs. Il s’agit d’'un moyenne en probabilité de X.

Remarques : (1) Si 'univers Q est fini, on retrouve la méme définition.
(2) Dans la pratique, il n’est pas pertinent de chercher X(£2) si celui-ci n’est pas donné. Un
ensemble au plus dénombrable qui le contient suffit.

Définition 27. Soit (Q, o/, P) un espace probabilisé et X € L'. On dit que X est centrée si
E(X) = 0.

Proposition 35. Soit (0, o7, P) un espace probabilisé et X une variable aléatoire constante
égale a un réel ou compleze a. Alors on a X € L! et E(X) = a.

Démonstration. On a X(2) = {a} et le résultat suit. O

Remarque : Le résultat vaut aussi pour une variable constante presque siirement puisque si
X = a presque surement, la famille (zP(X = 2)),ex(q) contient comme seul terme éventuelle-
ment non nul aP(X = a) ¢’est-a-dire a.

Théoréme 6 (Théoréme de transfert). Soit (2, o7, P) un espace probabilisé, X une va-
riable aléatoire discréte et f : X(Q) — C. On a f(X) d’espérance finie si et seulement si
(f(2)P(X = 2)),cx(q) est sommable et dans ce cas

E(f(X) = X f@)PX=x)
zeX(Q)

L’équivalence et ’égalité valent aussi en remplacant X(Q2) par D au plus dénombrable qui
contient X(Q) (puisque P(X =) = 0 pour z € D \ X(2)).
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Démonstration. On considére f : D — C avec D au plus dénombrable qui contient X(€2). On
dispose du recouvrement disjoint de X(€2) :

(T Hyhn X(2)yer 0

En effet, on a

L] sdyhnx@=x@nf{ L v} ) =X@n 7 (FXQ)) =X(Q)

yef(X)(Q) yef(X)(Q) X

Par sommation par paquets pour une famille & termes positifs, il vient dans [0; +00 |

x;)lf(w)IP(X =z)= 2 )If(fv)l]P’(X =)

zeX(2
= 2 ( 2 Y| P(X = w)) = > WIP(UX)=y)
yef(X)(Q) \zef~ ({yHNX(Q2) yef(X)(Q)

On en déduit I’équivalence des sommabilités. Ainsi, quand cette condition est réalisée, on obtient
toujours par sommation par paquets avec le méme recouvrement disjoint que précédemment

Lf@PX =)= > f2)P(X=u1)

zeD zeX(Q)

= 2 yP(X = 95)) = 2 yP(f(X)=vy)

yef(X)(Q) (wefl({y})ﬂX(Q) yef(X)(Q)
d’out le résultat annoncé. O

Remarque : Dans le cas particulier (fréquent) ou X(Q2) C N, on a
fX) el = (f(N)P(X =n)),cy € (N)

<= > f(n)P(X = n) converge absolument

Théoréme 7 (Linéarité de ’espérance). Soit (2, .o/, P) un espace probabilisé. L’ensemble
K® N L' est un K-ev et l'application définie sur cet espace par X — E(X) est lincaire.

Démonstration. La variable aléatoire nulle est clairement d’espérance finie. On pose Z = X +
AY = f(X,Y) avec X et Y variables aléatoires a valeurs dans K d’espérance finie et A € K.
On a (X,Y)(©2) € X(22) x Y(2) et le produit X(2) x Y(2) est au plus dénombrable. On
travaille sur cet ensemble pour la suite, les calculs s’en trouvant grandement simplifiés. Par
transfert (vers la loi du couple (X,Y)), on a Z d’espérance finie si et seulement si la famille

(flz,y)PX=2,Y = y))(z,y)ex(ﬁ)xY(Q) sommable. Or
V(z,y) € X(Q) xY(Q)  [f(z.y)] < |2+ A ]y]
On a la sommabilite de (|2|P(X = z,Y =), yex@xy@ ¢ WPX =2, Y =9)) ¢ ey

En effet, d’aprés le théoréme de Fubini pour une famille & termes positifs et par probabilités
totales, on a

S pPX=sY=y)= ¥ |x|( > P(X:x,yzm)

(z,y)eX()xY(Q) zeX(Q) yeY(Q)
= > |[z|PX=1z) < +00
zeX(Q)

On proceéde de méme pour 'autre famille. Ainsi, par transfert, il vient que Z est d’espérance finie
puis, par transfert, linéarité du symbole somme, théoréme de Fubini et probabilités totales :
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EX+AY)=EZ) = > fle,y)PX=2Y=y)

(z,y)eX(Q)xY(Q)
= > PX=x)+X > yP(Y =y)=EX)+ AE(Y)
zeX(Q) yeY(Q)

O

Remarque : On a utilisé avec succés I'ensemble D = X () x Y(€2) au plus dénombrable qui
contient (X, Y)(Q2) pour appliquer le théoréme de transfert.

Proposition 36 (Positivité, croissance de ’espérance). Soit (2, &7, P) un espace proba-
bilisé.

1. Soit X e RY N LY, alors E(X) > 0.

2. Soient X,Y dans R®NLLY. On a

X <Y = E(X) <E(Y)

Démonstration. 1. Immédiate.
2. Conséquence de la positivité et de la linéarité de 'espérance appliquée a Y — X. O]

Proposition 37 (Inégalité triangulaire). Soit (Q, @/, P) un espace probabilisé et X € L.
On a

[EX)| < E(X])

Démonstration. Par inégalité triangulaire appliquée a la famille sommable (2P(X = 2)),cx(q):

il vient Y. aPX=z)| < > |z|P(X=2x)
zeX(Q) zeX(Q)
c’est-a-dire, aprés transfert IE(X)| < E(]X])

]

Théoréme 8. Soit (2, o7, P) un espace probabilisé. Si X et Y sont dans L' et indépendantes,
alors on a XY € L! et

E(XY) = E(X)E(Y)

Démonstration. On a (X,Y)(Q2) C X(2) x Y(2) et le produit X(2) x Y(Q2) est au plus dé-
nombrable. On travaille sur cet ensemble pour la suite, les calculs s’en trouvant grandement
simplifiés. On pose Z = XY. Par transfert (vers la loi du couple (X,Y)), on a Z d’espérance
finie si et seulement si (zyP(X = 2,Y = y)) (., ex) xv(o) Sommable. On a

V(z,y) € X(Q) x Y(Q) ryP(X =2,Y =y) = 2P(X = 2)yP(Y = y)

Or, les familles (zP(X = 2)),cxq) et (YP(Y =Y)),cy(q) sont sommables d’ou, par théoréme
de Fubini, la sommabilité de (zyP(X =y)P(Y = y)), exv)@)- On conclut par transfert et
théoréme de Fubini

E(Z) = > wyPX=2,Y=y)= > 2PX=2z) > yP(Y=y)=EXE(Y)
(2,9)€X(Q) XY (Q) 2€X(Q) yeEY(Q)
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Remarques : (1) La réciproque est fausse.
Soient X, Y deux variables aléatoires indépendantes de méme loi %_; 1y et posons U = X+,
V=X-Y.0Ona

E(UEV)=0 et E(UV)=E(X?) -E(Y?) =0
Pourtant, les variables U et V ne sont pas indépendantes puisque par exemple
PU=2V=2)=PX+Y=2X-Y=2)=PX=2Y=0)=0

o pU=2-px-1Y-1=(3) Bv-2-rx-1v=-1-(})

Si on veut un contre-exemple avec des variables non centrées, il suffit de considérer a + U et
b+ V avec a et b non nuls. On a

E(U+a)E(V+b) =ab et E(U+a)(V+0D)=EUV+aV+0bU+ab)=ab
(2) Pour X, Y variables indépendantes, on a ’équivalence :
X,Y dans L! < XY e L!
En effet, on a

XY €L <= (aP(X = 2)yP(Y = 9)) b yex@xv(@ Sommable

= (PX=2),ex@ € GPY =9)),cy@ sommables

la derniére équivalence résultant du théoréme de Fubini.

Corollaire 2. Soit (2, o ,P) un espace probabilisé. Soient Xy, ..., X, dans L' et indépendantes.
Alors on a [[ X; € L! et

=1

E (15[1 Xi) _ 15[1 E(X,)

Démonstration. On procéde par récurrence. Le cas n = 1 est immédiat et s’il a lieu au rang

n—1
n—1 > 1 fixé, on applique le théoréme |8 & [] X; et X,, qui sont indépendantes par coalition.
i=1
[’hérédité suit. O

Proposition 38. Soit (Q, o7, P) un espace probabilisé et X, Y des variables aléatoires discrétes
telles que Y € RENLL et |X| < Y. Alors on a X € Lt et E(]X|) < E(Y).

Démonstration. Considérons Z = (|X],Y) et p1,ps définies sur Z(Q2) par p; : (z,y) — =,
pe : (x,y) — y. La variable Y = py(Z) est d’espérance finie d’ot, par transfert, la sommabilité
de (p2(2)P(Z = 2)),e(0- Or, on a l'encadrement 0 < pi(Z) < p2(Z) par hypothese. On en
déduit
Vz € Z(Q) 0 < pi(2) 7=y < p2(Z)1iz=1y
Et passant a I’'espérance
Vz € Z(Q) 0 < p1(2)P(Z = z) < po(2)P(Z = 2)
La sommabilité de (p2(2)P(Z = 2)),c5q) implique celle de (p1(2)P(Z = 2)),cyq)- Par compa-
raison et transfert, on conclut
>, m(AP(Z=2)=E(p(2) =E(X]) < X m(2)P(Z = 2) = E(p2(2)) = E(Y)
2€7(Q) 2€7(Q)

Variante. Par transfert, on peut aussi annoncer que |X]| est d’espérance finie et conclure par
croissance de ’espérance. O

B. Landelle 22 ISM MP




Remarque : Si X est une variable aléatoire réelle ou complexe discréte bornée, alors elle est
d’espérance finie. En effet, il existe C > 0 tel que |X| < C et C est d’espérance finie d’ou le
résultat.

Proposition 39. Soit (2, &7, P) un espace probabilisé et X wvariable aléatoire réelle discrete
positive. On a

E(X)=0 < X=0ps.

Démonstration. On a E(X) = > 2P(X =z) d’oi
xEX(Q)T

E(X) =0 <= Vz € X(Q) PX=2)=0
— Vo e X(Q) ~ {0} PX=z)=0 < PX=0)=1

la derniére équivalence résultant de 1 =P(X=0)+ > PX=ux). O
2eX(Q)~{0}

2 Variance et écart-type

Théoréme 9. Soit (2, 7, P) un espace probabilisé et X une variable aléatoire réelle discréte.
Si X2 est d’espérance finie, alors X est également d’espérance finie.

1
Démonstration. On a (IX| =1)* >0 < [X| < 5(1 + X?)
Le résultat suit d’aprés le théoréme [7| et la proposition O

Notation : On note X € L? pour signifier que X est réelle avec X? d’espérance finie.
Ainsi, on a L2 C L.

Remarque : L'inclusion réciproque est fausse. Considérer X variable aléatoire avec X(£2) = N*

et P(X=n) = 5 bour n entier non nul.

¢(3)n

Définition 28. Soit (Q, o, P) un espace probabilisé et X € L?. on définit la variance de X
notée V(X) et I'écart-type de X noté o(X) par

VX) =E[X-EX))?] et oX)=V(X)

Remarque : D’aprés les théoremes [ et [0 (X — E(X))? = X? — 2X x E(X) + E(X)? est d’es-
pérance finie.

Commentaire : La variance de X est la moyenne en probabilité des écarts quadratiques de X
par rapport a sa moyenne en probabilité. Cette grandeur mesure la dispersion de X autour de
son espérance.

Proposition 40 (Relation de Ko6nig-Huygens). Soit (2, 7, P) un espace probabilisé et
Xel2 Ona

V(X) = E(X?) — E(X)?
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Démonstration. On a par linéarité

V(X) = E[X? — 2XE(X) + E(X)?] = E(X?) — 2E(X)E(X) + E(X)? = E(X?) — E(X)?

Proposition 41. Soit (Q,.«/,P) un espace probabilisé et X € L2. On a
V(a,b) € R? aX+bel? et V(aX+0b) =a?V(X)

Démonstration. On a (aX + b)? = a*X? 4 2abX + b? d’espérance finie d’aprés les théorémes
et [9 On a par propriété sur 'espérance

V(aX +b) =E [(aX + b — E(aX +b))’] =E [(aX + b — (aE(X) +1))°| = a?>V(X)

]
Définition 29. Soit (Q, &/, P) un espace probabilisé et X € L2, On dit que X est réduite si
V(X) =1.
Proposition 42. Soit (2,97, P) un espace probabilisé et X € L2. Si o(X) > 0, alors la variable
.. X—E(X) .
aléatoire ————= est centrée réduite.
o(X)
Démonstration. Immédiate. O]

Proposition 43. Soit (Q, .o/, P) un espace probabilisé et X, Y dans L2. Alors, on a XY € L.

1
Démonstration. On a (IX| = [Y])? >0 < |XY|< 3 (X2 +Y?)

1
D’aprés le théorém la variable aléatoire 3 (X2 +Y?) est d’espérance finie puis on conclut

avec la proposition O

’Théoréme 10. Soit (Q, o ,P) un espace probabilisé . L’ensemble L? est un R-ev.

Démonstration. La variable aléatoire nulle est dans L2. Soient X,Y dans L? et A\ réel. On
a (X +AY)? = X? + 20XY + A?Y? et, d’aprés la proposition précédente, chaque terme est
d’espérance finie d’ott (X + AY)? € L d’aprés le théoréme [7] 11 en résulte que I'ensemble L? est
un sev de RN L. O

Théoréme 11 (Inégalité de Cauchy-Schwarz). Soit (€2, o/, P) un espace probabilisé et X, Y
dans L2. Alors

E(XY)? < E(X?)E(Y?)

Démonstration. L’application (X,Y) — E(XY) est une forme bilinéaire, symétrique, positive
sur L2 L’inégalité de Cauchy-Schwarz s’applique donc (voir cours Espaces préhilbertiens
réels). O

Définition 30. Soit (Q, o/, P) un espace probabilisé et X, Y dans L?. On définit la covariance
de X et Y notée Cov(X,Y) par

Cov(X,Y) = E[(X - EX))(Y - E(Y))]
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Commentaire : La covariance de X et Y mesure partiellement la maniére dont X et Y sont
dépendantes.

Remarques : (1) Les variables X — E(X) et Y — E(Y) sont dans L? (proposition et on
applique la proposition 43| pour justifier (X — E(X))(Y —E(Y)) € L.

(2) La covariance est une forme bilinéaire symétrique positive sur L?. On peut donc écrire
I'inégalité de Cauchy-Schwarz pour la covariance et on obtient :

|Cov(X,Y)| < a(X)o(Y)

Proposition 44 (Relation de Ko6nig-Huygens). Soit (2, 7, P) un espace probabilisé et
X,Y dans L2. On a

Cov(X,Y) = E(XY) - EX)E(Y)

Démonstration. On développe le produit puis on utilise la linéarité de I’espérance, chaque terme
étant d’espérance finie d’aprés le théoréme [0 ]

Proposition 45. Soit (Q,.7,P) un espace probabilisé et X,Y dans R® N L' indépendantes.
Alors, on peut définir Cov(X,Y) et on a Cov(X,Y) = 0.

Démonstration. D’aprés le théoréme [8] la variable (X — E(X))(Y — E(Y)) est d’espérance finie
et on a
E[(X - EX))(Y - E(Y))] = EX - E(X))E(Y - E(Y)) =0
[

Remarque : La réciproque est fausse.

Reprenons le contre-exemple du théoréme|[8] Soient X, Y deux variables aléatoires indépendantes
de méme loi %11y et posons U=X+Y,V=X—-Y.OnaE(U)=E(V)=EUV)=0dou
Cov(U,V) = 0 mais U et V ne sont pas indépendantes.

Théoréme 12. Soit (0, o7, P) un espace probabilisé.
1. Soient X,Y dans L2. On a
VX+Y)=V(X)+2Cov(X,Y) + V(Y)
2. Soient X4,...,X,, dans L2. On a
i=1

1<i,j<n

1 1<i<j<n

N\

-

(2

Démonstration. 1. Notons U =X —E(X) et V=Y — E(Y). Les variable U, V sont dans L? et
par linéarité de 'espérance

V(X +Y) = E[(U+ V)2 = E(U2) + 2E(UV) + E(V2)
Autrement dit V(X+Y)=V(X) +2Cov(X,Y) + V(Y)

2. C’est juste une généralisation de ce qui précéde. Notons U; = X; — E(X;) pour i € [1; n].
Les U; sont dans L? et par linéarité de I’espérance
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V<iji) ~E [(iUﬂ :IE< 5 Uin) - ¥ EUU)

1<i,j<n 1<i,j<n
= > Cov(X;,X;)=>V(X;)+2 Y Cov(X;,X;)
1<ij<n i=1 1<i<j<n

]

Corollaire 3. Soit (2, <7, P) un espace probabilisé. Soient Xy,...,X, dans L? et décorrelées,
c¢’est-a-dire Cov(X;, X;) = 0 pour i # j. Alors

v (;x) = iéV(Xi)

Démonstration. Conséquence immédiate du théoréme précédent. O

Commentaire : Si les variables X4, ..., X,, sont indépendantes ou méme simplement indépen-
dantes deux a deux, alors elles sont décorrelées.

3 Inégalités en probabilités

Théoréme 13 (Inégalité de Markov). Soit (0,27, P) un espace probabilisé et X € L
positiwve. On a
E(X)

Ve >0 P(X>¢) < -

Démonstration. Soit € > 0. On a les inégalités
X = Xlxee + Xlyxzey 2 Xlxze) 2 lixze)

la premiére résultant de la positivité de X. Par croissance et linéarité de ’espérance, il s’ensuit
E(X) 2 E(XLixzq)) 2 E(elixzqy) = eP(X > ¢)

d’ou le résultat. ]

Remarques : (1) On peut assouplir les hypothéses en exigeant seulement que X soit une
variable aléatoire discréte positive méme si ¢a ne présente pas réellement d’intérét de travailler
avec X ¢ L.

(2) On peut majorer de méme P(X > ¢) avec € > 0 en utilisant {X > ¢} C {X > ¢}.

(3) Pour le méme effort, on peut écrire une inégalité plus fine que celle de Markov :

E(XT{xse})

Ve >0 P(X>¢) <
£

Par double-limite, on peut en déduire

PX>e) = 0(1)

£—+00 £

Application importante : La méthode de Chernoff

Soient X4, ..., X, des variables aléatoires réelles discrétes indépendantes et t > 0 tel que e™®i €
L! pour tout ¢ € [1; n]. Soit m réel. On a par croissance stricte de u — e™ sur R

{iilXi > m} = {exp <tz‘i1Xi> > etm} = {ﬁ otXi > etm}

= =1
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n

La variable J] e est positive, dans L' en tant que produit de variables aléatoires indépen-
i=1
dantes dans L! et il vient d’aprés I'inégalité de Markov

P (ZX2 > m) <e ME (H etxi> =e M ] E(e™)
i=1 i=1 i=1

Cette méthode est trés utilisée pour obtenir des inégalités de type grandes déuviations.

Théoréme 14 (Inégalité de Bienaymé-Tchebychev). Soit (2, o/, P) un espace probabilisé
et X €12 Ona
V(X)

Ve>0  P(X-EX)|>e) < —;

Démonstration. On a X € L? d’ou (X —E(X))? € L' (proposition [41)) et on applique l'inégalité
de Markov en remarquant par croissance stricte de u — u? sur R, I’égalité pour € > 0

{X-EX)|>e} ={(X-E(X))* > %}

IV  Fonctions génératrices

1 Définition

Théoréme 15. Soit (2, o/, P) un espace probabilisé et X une variable aléatoire discréte a va-
leurs dans N. Le rayon de convergence de la série entiére Y t"P(X = n) est supérieur ou égal
a 1 et la série converge normalement sur [—1;1].

Démonstration. On a P(X = n) = O(1) pour tout n entier d’ot un rayon de convergence
supérieure ou égal & 1 (rayon de > t"). Notant u, : t — t"P(X = n) pour n entier, on a
|tn]|oo,[—151] = P(X = n) et la convergence normale suit par o-additivité. O

Remarque : Si X(2) est fini, la série entiére est polynomiale et son rayon de convergence est
+00.

Définition 31. Soit (2, o/, P) un espace probabilisé et X une variable aléatoire discréte o va-
leurs dans N. On définit la fonction génératrice de X notée Gx par

Ve [0:1]  Gx(t) = B(X) = S #"B(X = n)

n=0

Remarques : (1) L’égalité entre les deux écritures résulte du théoréme de transfert. La fonction
est bien définie sur [0; 1] d’aprés le théoréme précédent.

(2) On pourrait étendre la définition au segment [ —1; 1] mais travailler sur [0; 1] présente un
intérét majeur : on ne manipule que des séries a termes positifs ce qui s’avére, en pratique,
extrémement confortable.

Corollaire 4. Soit (2, o7, P) un espace probabilisé et X une variable aléatoire discréte o valeurs
dans N. La fonction génératrice Gx est continue sur [0;1], a valeurs dans [0;1].
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Démonstration. La série de fonctions continues » u, converge normalement donc uniformément
sur [0;1] et on a

vie[0:1]  0<Cx(f)= S rB(X=n)= Y B(X =n)=1

n=0

Exemples : 1. Si X~ %(p), on a Gx(t) =pt+1—ppourt e [0;1].
2. Si X~ HB(n,p), on a Gx(t) = (pt +1—p)” pour t € [0;1].

2 Propriétés

Théoréme 16. Soit (2, o/, P) un espace probabilisé et X une variable aléatoire discréte o va-
leurs dans N. La fonction génératrice Gx caractérise la loi de X.

Démonstration. La fonction Gx coincide sur [0; 1 [ avec la somme de la somme de la série entiére
Y t"P(X = n) qui est de classe € sur | —1;1]. Ainsi, la fonction Gx admet des dérivées en 0
a tout ordre avec

VneN  GP(0) =nlP(X = n)

Le résultat suit. O

Proposition 46. Soit (Q, .o/, P) un espace probabilisé et X une variable aléatoire discréte a
valeurs dans N. On a

X e L' < Gx dérivable en 1

et pour X € L! E(X) = G(1)

Démonstration. Les fonctions u, sont de classe € avec v/, (t) = nt" 'P(X = n) pour (n,t) €
N* x [0;1] et ||u, ]| = nP(X = n). Si X € L', alors la série >_nP(X = n) converge d’ou la
convergence normale donc uniforme de ) u/ sur [0;1] et on a la convergence simple de Y “u,,.
Il s’ensuit que Gy est dérivable sur [0;1] et

G (1) = gum) _ :énp(x — n) = E(X)

Réciproquement, on a pour ¢t € [0;1]

GX(tz : ?X(D = —iot;:llp(x = n) = -io (1 +t4 ..+ tnfl) P(X _ TL)

D’ou, pour N entier

N . . Gx(t) — Gx(1)
— — n—1 — < X /
nz::On]P’(X n) 11551/117;0(1—’—t+”.+t JP(X =n) < 11_{111 1 Gk (1)
oo
<.
n=0
Le résultat suit. O

Proposition 47. Soit (Q, o/, P) un espace probabilisé et X une variable aléatoire discréte a
valeurs dans N. Si X € L2, alors Gx est dérivable deux fois en 1 et on

V(X) = Gk(1) + Gx(1) — Gx(1)*
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Démonstration. Les fonctions u, sont de classe € avec u/(t) = n(n — 1)t"?P(X = n) pour
n>2tel0;1]et |t =nn—1PX =n)=0nPX =n)). Si X € L2 alors la série
S"n?P(X = n) et donc aussi >_n(n — 1)P(X = n) converge d’otl la convergence normale donc
uniforme de Y u! sur [0;1] et on a la convergence simple des séries dérivées d’ordre inférieur
(celle de >-u/, résultant de [|u),[|oc = O(n*P(X = n)) ou par X d’espérance finie) d’ou Gx est
deux fois dérivable et

Gx(1) = EZUZ(D = S n(n - DB(X = n) = E(X?) ~ E(X)

n=0

Remarque : On peut établir le résultat plus fort
X € L? <= Gy dérivable deux fois en 1

en suivant une démarche identique a celle de la proposition

Proposition 48. Soit (), o/, P) un espace probabilisé et X;,...,X,, des variables aléatoires
discretes indépendantes a valeurs dans N. On a

Vie[0;1]  Gs. () = [ICGx(t) avec Sn=3X,
=1 =1

Démonstration. Soit t € [0;1]. On a
Gs,(t) =E (H txi>
i=1
Le résultat suit d’aprés le corollaire 2] O

Exemple : Soit Y ~ Z(n,p) et Xy,...,X,, indépendantes de loi A(p) avec n entier non nul et

p€[0;1].OnaY~S, => X, cequi explique le résultat observé :
i=1

GY = Gs'n - H GXz - G§1
=1

V  Lois usuelles

1 Loi géométrique

Définition 32. Soit (Q, o/, IP) un espace probabilisé et X une variable aléatoire discréte. On dit
que X suit une loi géométrique de paramétre p € |0;1[ noté X ~ ¥ (p) si X(Q2) = N* et

Vk € N* P(X = k) =p(1 —p)*!

Remarque : 1l s’agit bien d’une loi de probabilité puisque p(1 — p)*~t > 0 pour k € N* et,
d’aprés le résultat sur les séries géométriques , > p(1 — p)*~! converge puisque 1 —p € ]0;1]
avec

= el P
kZ:flp(l p) ==y 1

Interprétation : Une loi géométrique modélise le rang du premier succés d'une suite illimitée
d’épreuves de Bernoulli indépendantes de méme paramétre p, par exemple un jeu de pile ou face
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ot I'on s’arréte dés qu’on obtient pile. Pour (Xj)x>1 suite de variables aléatoires indépendantes
de loi A(p) et

X = inf {k € N* | X; = 1}

on a X(Q2) C N*U {+00} avec P(X = +00) = lim P (ﬂ {Xi = O}) = 0 d’ott supp X = N* et

n—+oo
k=1

I'interprétation est valide.

Proposition 49. Soit (2, o7, P) un espace probabilisé et X ~ 4 (p) avec p € 10;1]. On a
Xecl?et

V¢ € [0;1] GX(t)I%

Démonstration. Les séries entiéres Y k?z* et > 2% ont méme rayon de convergence égal a 1
d’on X € L2. Par dérivation d’une série entiére, on a pour x € | —1;1]

iok k—1 1 Jiok(k 1) k—2 2
= — — 1" = ——
k=1 (1—x)? k=2 (1—=)?
Par linéarité dans I'intervalle de convergence

+00 +00 +00 2$ 1 1 _|_ T

E(k — Dbt 4+ S kabt = ST k221 = + =

R I > > T—op " i—ep  (-op
Prenant x = 1 — p, on trouve

+00 3 P 1 +00 B p(2 _p)
EX)=pY k(l—-p)tl= ——F =~ E(X?) =pY k21 —p)it= 7

R T LA A A (e ()

puis V(X) = E(XY) ~EX) = 2 — 5= —
Enfin, pour ¢t € [0;1], il vient
G +00 kP k +00 b1 pt
)= HPX =k)=tp> (t(1—p)t=—2>1
)= SRR =0 = 3 (11— ) =

]

Exemple : Déterminer la complexité en moyenne du tri suivant d’argument L une liste de n
nombres distincts :

def tri(L):
while not est_triee(L):
rd.shuffle(L)

ol est_triee est une fonction qui renvoie True si la liste L est triée et False sinon. L’instruction
rd.shuffle vient du module numpy.random importé en tant tant qu’alias rd. Elle agit en place
en mélangeant la liste aléatoirement. Tant que la liste n’est pas triée, on la mélange. Notant
o € S, la permutation permettant de trier la liste L de taille n, on effectue des tirages uniformes
dans S, jusqu’a obtenir o. Soit (Xj)x>1 une suite de variables indépendantes de loi %, et

T =inf{k € N* | X}, =0}
La variable aléatoire T modélise le nombre de mélanges effectués par la fonction tri. On a

1

ng(p) avec p = m
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Le nombre moyen de passages dans la boucle while est donné par E(T). Les complexités de
est_triee et rd.shuffle sont en O(n). Ainsi, la complexité en moyenne est donnée par

E(T)O(n) = ]%O(n) =n!0(n)

ce qui est catastrophique.

2 Loi de Poisson

Définition 33. Soit (€2, o7, P) un espace probabilisé et X une variable aléatoire discréte. On dit
que X suit une loi de Poisson de parameétre X > 0 noté X ~ Z(\) si X(Q) =N et

)\k
Vk e N P(X=k) = k;' e
k
Remarque : Il s’agit bien d’une loi de probabilité puisque — k' A > 0 pour k € N et, d’aprés
k
le résultat sur la série exponentielle, Zye*’\ converge avec
400 )\k
Z—|e*)‘ =e et =1
i=o k!

Proposition 50. Soit (2, o, P) un espace probabilisé et X ~ P (\) avec A > 0. On a X € L2
et

EX)=2) VX)=)  Vte[0;1]  Gx(t) =D

Démonstration. Les séries entiéres ZkQ et Z ont méme rayon de convergence égal & +00

d’on X € L2. Par dérivation d’une série entlere on a pour x réel

+o0 ZL‘kl +o00 xk—Q
ke =e® bk — 1) 5 = ov
k; [ ,§2< ) =

Par linéarité car convergence

+oo iL'k

+0o
Zk:( —1)k‘ + Ly _’;)k2f€' = 2%" + ze® = 2(1 + x)e”

+oo A\
Prenant x = A, on trouve E(X) = Zkﬁe_A = Xete ™ =)\

k

+00
et V(X) = E(X?) - E(X)? = Z:/ﬁge_A —EX)?Z2=X1+Nere ™ = 22=)
k=0 K
Enfin, pour t € [0;1], il vient
+00 +00 k
Gx(t) = TP = k) = 3 O er = pa-
k=0 k=0 K
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VI Résultats asymptotiques

1 Approximation de la loi binomiale par la loi de Poisson

Théoréme 17 (Loi des événements rares). Soit (2, .o/, P) un espace probabilisé. Soit
(Xp)n>1 une suite de variables aléatoires discrétes avee X, ~ HB(n,pn) et np, —— X > 0,
n—0o0

alors
)\k
Vk € N PX,=k) — e

n—o0 k'

Vocabulaire : On dit que la suite (X,,),>1 converge en loi vers la loi de Poisson Z(\) (notion
de convergence hors-programme).

0.30

0.25f

0.20

0.15

0.10-

0.05f

12 14

FIGURE 3 — Approximation de la loi binomiale par la loi de Poisson

Démonstration. On a np, = A+ o(1) d’ott p, —— 0 puis pour n > k
n—oo
P(X, =k) = (Z)p’lfz(l - pn)nik

= %(npn)k <1 - l) X X (1 ko 1) exp [nIn(1 —pn)];

R n n./ (1 —pa)*
, :1;:)(1) =1+o(1)
= (A +o(1) exp [n(=pn + o(pa))] (1 + o(1))
P(X, =k) = %(A +o(1))*exp [-A + o(1)] (1 + o(1)) — %e)‘

Interprétation : Sur un intervalle de temps [0; T| qu’on subdivise en 0 < AT < 2AT < ... <
nAT, on observe sur chaque sous-intervalle des résultats d’expériences aléatoires succés/échec.
Le succés a lieu proportionnellement & la durée du sous intervalle a savoir pAT. Ainsi, sur
[0;T], le nombre total de succés suit une loi A(n,p,) avec p, = pAT ou nAT = T. Faire
tendre n — +oo équivaut a faire tendre AT — 0, autrement dit une subdivision de plus en plus
fine. La probabilité de succés pAT tend vers zéro d’ott cette interprétation de la loi de Poisson
comme [o1 des événements rares.
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2 Loi faible des grands nombres

On note i.i.d. pour : indépendantes identiquement distribuées, c’est-a-dire indépendantes et de
méme loi.

Théoréme 18 (Loi faible des grands nombres). Soit (2, &7, P) un espace probabilisé. Soit

(X, )n>1 une suite de variables aléatoires i.i.d. dans L. Notant S, = > X;, m = E(X;), on a
i=1

Ve >0 P<&—m'>5)—>0

n n—o0

n

1
Vocabulaire : On dit que la suite (—ZXi) converge en probabilité vers m (notion de

Ni=1 n>1

convergence hors-programme).

Remarque : La déclinaison forte de ce résultat (convergence presque sire) est le fondement
des méthodes de Monte-Carlo.

Démonstration. Notons 0 = o(Xj). Soit € > 0 et n entier non nul. D’aprés U'inégalité de
Bienaymé-Tchebychev, on a
2 (

puis, par indépendance deux a deux des X;

— —m| =€
n

S, > < V(S»)

n

V(S,) = Véxi) — V(X)) = no?

i=1

Ainsi P (

Sn o?
ol ze) < —
n

et le résultat suit. O

Remarque : On n’utilise en réalité que la décorrélation des variables aléatoires X;.

Commentaire : La démonstration fournit une inégalité permettant d’exhiber ce qu’on appelle
en statistique un intervalle de confiance. Si (Xy,...,X,,) est un échantillon de mesures et m
une grandeur d’intérét (durée de vie d’un produit par exemple), on veut pouvoir estimer cette
grandeur. En utilisant I'inclusion

Joefrele [Goeee]
——&g;—+e|C|——€g;—+¢
n n n

n
il vient par complémentation

2
P(me [S—”—a;&+€}> 21—0—
n

n ne?

Ainsi, la grandeur d’intérét m est localisée dans un intervalle qui est fonction de 1’échantillon
2

. . o . ,

(Xy,...,X,) avec un niveau de confiance au moins 1 — —. Pour un niveau de confiance fixé
ne

(proche de 1 idéalement), on est face & un compromis : un choix de € petit assure un petit

intervalle de confiance mais il faut choisir un grand échantillon ce qui est cotiteux. On percoit

I'intérét d’avoir ici une minoration aussi fine que possible pour optimiser ce compromis.
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Illustration :

On représente pour des lois uniformes %713 et %]119] le tracé de plusieurs réalisations des

.. . . . n(w) . L
moyennes empiriques, a savoir les termes de la suite [ ———= pour différentes réalisations
n
n>1

de w.

i i i i i i i i
0 200 400 600 800 1000 0 200 400 600 800 1000

FIGURE 4 — Tracé des moyennes empiriques

On rappelle que pour X~ %],;5], on a

a+b (b—a)(2+b—a)
x) =" v =
Dans la simulation illustrée ci-avant, les lois ont méme espérance mais des variances différentes
ce qui apparait clairement dans la dispersion des tracés : plus la variance est grande, plus la

dispersion des trajectoires est élevée.
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