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Feuille d’exercices n°66

Exercice 1 (**)

Soit (€2, o7, IP) un espace probabilisé, (X,,),>1 une suite de variables aléatoires indépendantes de
méme loi géométrique de paramétre p € [0;1[ et Y,, = min(Xy,...,X,) pour tout n entier non
nul.

1. Déterminer P(Y,, > k) pour tout (n,k) € N* x N.

2. En déduire que pour n entier non nul, la variable aléatoire Y, suit une loi usuelle dont
on précisera le paramétre.

Corrigé : 1. Soit (n,k) € N* x N. On a

P(Xn>k):IP’< || {Xn:€}>: fP(Xn:@: +Zojop(l—p)z‘1

(—Ft1 t=k+1 t=k+1
1
Puis {Y, >k} = {min(Xy,...,X,) > k} = [ {X; > k}
=1

Comme les X; sont indépendantes, il s’ensuit

P(Y, > k) = [[P(X: > k) = [[(1 - p)*

i=1 =1

Ainsi V(n,k) e N*x N  P(Y,>k)=(1-p)*n

2.0n a o=k} ={Y, >k -1} ~{Y, >k} et {Y,>k}C{Y,>k-1}
d’ou
P(Y, = k) = P(Y, > k= 1) =B(Y, > k) = (1=p)& D" — (1= p)" = (1 =) (1 = (1= p)")

On conclut

La variable aléatoire Y,, suit une loi géométrique de paramétre 1 — (1 — p)™.

Exercice 2 (***)

On effectue une succession infinie de lancers indépendants d’une piéce donnant pile avec proba-
bilité p € ]0; 1| et face avec probabilité ¢ = 1 — p. On dit que la premiére série est de longueur
n > 1 si les n premiers lancers ont donné le méme coté et le n+ 1 I'autre co6té. La deuxiéme série
commence au lancer suivant la fin de la premiére série et se termine (si elle se termine) au lancer
précédant un changement de coté. Pour & > 1, on note Py 1'événement pile au k-iéme lancer Fy
face au k-iéme lancer et L; et Ly les longueurs respectives des deux séries.

1. Déterminer la loi de L;.

2. Justifier que L; est d’espérance finie puis la calculer.
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3. Déterminer la loi de L.
4. Justifier que Ly est d’espérance finie puis la calculer.
5. Les variables aléatoires L; et Ly sont-elles indépendantes ?
Corrigé : 1. On a L;(2) C N* puis
Vk > 1 {Li=k} =P1...PpFraa UF; .. FyPri

Dol VE>1 P(Ly=k)=p"¢+ "

2. Les séries entiéres » " et » na™ ont méme rayon de convergence égal a 1 ce qui prouve la
convergence (absolue) de > kP(L; = k). Par dérivation d’une série, on trouve

+00 1 too X
V.%‘E]—l;l[ S(Z’):nZ::Ox :E et a;S’(:L‘):;::Unx :m
Ainsi E(L;) = b + 1
q P
3. On a Ly(2) C N* puis
Vnz1 {Lp=n}=||{la=nLi=k}
keN*
= |_| (P1. . PiFry1 o FognPrgni UF L FiPigr o P Frgng)
keN*
+00
Ainsi Yn>1 Ply=n)=Y [p¢"p+q"p"q]
k=1
Dot Vn>1  P(Ly=n)=p" " +¢*p""

4. Par les mémes arguments que pour L, la variable aléatoire Ly est d’espérance finie et on
trouve

2 2
E(L2):%+%:2
5.0n a
P(Li =1Ly =1) =P(Ly = )P(Ly = 1) <= pap + qpq = 2pq(p* + ¢°)
, o, 1 1 1
= p*+q =§<:>p(1—p)=;1<:>p=§

1 1
Donc, pour p # 2 les variables aléatoires L; et Lo sont dépendantes. Supposons p = 3 Soit
(k,n) € (N*)2. On a

1 1 1
P(Ly =k, Ly = n) = oktn+1 + ok+ntl  ok+n
1 1 1 1 1 1
et P(Ly = k) = il T okil T ok P(Ly = n) = 52rn 1 T 9atn 1l on
Ainsi ‘v’(k;,n) € (N*)Z ]P(Ll = l{i, L2 = n) = ]P)(Ll = ]C)P(LQ = n)
. . . . 1
On conclut Les variables Ly, sont indépendantes si et seulement si p = 5




Exercice 3 (***)

Soit (€2, 47, P) un espace probabilisé et Y une variable aléatoire réelle discréte centrée telle que
Y(w) C [a;b]. Montrer

VAeR InE(e?Y) < M
Corrigé : Soit Z=Y — GT—H). On trouve
V(Y) = V(2) < B(Z2) < _4“)2
e XY
Soit A réel. On pose VA € &/ Q(A)=E <1Am)

On vérifie sans difficulté que Q définit une probabilité sur (£2,.27). Soit f : R — R telle que f(Y)
est d’espérance finie. Par transfert, il vient
P(Y=y) _E(f(Y)e")
E Y)) = Y = = Ay —
Q(f< )) Z f(y)(@( y) Z f(y>e E(e)\y) E(e)\y)

yEY(Q) yEY(Q)

Puis, d’aprés la relation de Kénig-Huygens
E(Y2eMY) (E(\ﬁﬂ))2

Vo(Y) = EQ(Y2) - EQ(Y)2 = E(eMY) E(e?Y)

On pose V(in,A) eENxR  u,(\) =eP(Y =y,)
Les u,, sont de classe €* avec k entier et
Vn e N u,(lk)()\) = yFervn
La fonction (A, y) — e est bornée sur le compact [a; 3] x [a;b] d’ou
V€N o ass) = OB(Y = y))

ce qui prouve la convergence normale et donc uniforme de Zu% ). Par dérivation d’une série de
fonction, il vient

d" oy d* = =, kA ko Y
d—)\kE(e )= d_)\kn;oe wP(Y =y,) = n;oyne wP(Y = y,) =E(YFe?)
Puis on trouve Vo(Y) = ¢"(\) avec ¢()\) =InE(e?Y)

b—a)?
En observant ¢(0) = ¢'(0) = 0 et avec Vg(Y) < ( 4a)

90/(/\):/0 ©"(s) ds</0 (b—a) ds — (b —4@) A

, il vient par intégration

4
A A h— 2)\ bh— 2)\2
et ©(N) :/ ¢'(s) ds é/ (b=a) ds = (b=a)
0 0 4 8
2(p _ )2
On conclut VAeR InE(e*Y) < M

Remarque : Il s’agit du résultat intermédiaire délicat pour établir I'inégalité de concentration
dite inégalité de Hoeffding



P (S, — E(S,) > €) < exp (—n(ffﬂ

n
avec Xy,...,X,, variables aléatoires discrétes a valeurs dans [a;b], S, = > X; et ¢ > 0.
i=1

Exercice 4 (***)

Soit (€2, 7, P) un espace probabilisé et X une variable aléatoire réelle positive d’espérance finie.
1
Montrer PX>z) = ol-—

T—+00 T

On pourra commencer par le cas X(2) C N.

Corrigé : Soit x > 0. En s’inspirant de la démonstration de I'inégalité de Markov, on écrit

X 2 Xlixzay 2 vlixsay
La variable X1 x>,} est donc d’espérance finie avec

E(X]l{x%c}) > IP(X > CC)
Supposons X(2) C N. On a

0 S EXLpeay) SEXLpcepy) = 20 MP(X =F)
k=|z|

La série Y kP(X = k) converge et par conséquent, son reste est de limite nulle d’oil

S KP(X = k) —— 0

k= LxJ r—+00

Et dans le cas particulier ou X(2) C N, on a donc¢ prouvé

P(X>1) — o(1>

r—+00 T

On ne suppose plus désormais que X est a valeurs dans N. Si X(€2) est fini, alors X1 x>,} est
nulle pour x assez grand et le résultat est trivial. Sinon, on note X(§2) = {x,,n € N}. Il vient

+00o
E(XLixza}) = 2 Tnljo, | (@)P(X = z,)
n=0

On pose V(n,z) e Nx]0;+00] Un () = Tplio0, () P(X = zp)

La série de fonctions ) u, converge normalement et donc uniformément sur | 0;+oo [ puisqu’on
a pour n entier ||u, |0 = ,P(X = z,,), terme de série convergente du fait de I’espérance finie.
Et on a

VneN  wu,(z) ——0
T—+00

Ainsi, par double limite, il vient
+00

+00
2 un(®) T 2, lim () =0

autrement dit E(X1xs,) —— 0
T—+00
1
On conclut PX>z) = o <—>
Tr—+00 €T




Exercice 5 (***%*)

Soit (2,27, P) un espace probabilisé, (X,,), et X des variables aléatoires réelles discrétes telles
que

Ve >0 P(IX, —X|>¢e) —0

n—oo

Pour z point de continuité de Fx : ¢ — P(X < ¢), montrer que
Fx, () —— Fx(2)
Corrigé : Soit ¢ > 0. On a
P(X, <) =P(X, <,[X, = X| <) + P(X, < ,]X,, — X| > ¢)

=o(1)

Notons A,, = {|X,, — X| < ¢}. On a donc
Fx, (2) = P({X, <} N1 A,) + (1)
Puis {Xp <o, |X, =X <e} C{X, <2, X <X, +e} C{X <z +¢}
d’ou Fx,(x) < Fx(x+¢)+o(1)
Comme {|X,, — X| < e} C {X,, < X+ ¢}, on a également
X<r—¢, X, - X|<e} c{X<zr—6X,<X+¢ X, —X| < ¢}
C{X, <z, X, - X| <¢}

d’ou PU{X<z—¢e}nA,) <P{X,<z}NnA,) =Fx,(x)+0o(1)

Enfin Fx(z —e)=P{X <z —-¢c}NA,)+P{X <z —-¢}nA,)
—o(1)

d’ou Fx(z —¢)+o(l) < Fx,(z) < Fx(z+¢) +0o(1)

Soit 7 > 0. Par continuité de Fx en x, on peut choisir € > 0 tel que
[Fx(z) —Fx(z —¢)|<n et [Fx(z) -Fx(z+e)[<n

Enfin, on choisit N suffisamment grand pour que les termes en o(1) soient bornés par n pour
n > N. Ainsi, on a trouvé N entier tel que

V=N |Fx,(z) - Fx(z)] <2

Ainsi Pour z point de continuité de Fx, on a Fx, (z) —— Fx(x).

n—o0

Exercice 6 (****)

Soient (X,,), et X des variables aléatoires a valeurs dans N. On note
Vin, k) eN?  pp,=PX,=k) et pr=PX=k)
1. Définir la fonction génératrice Gx et justifier qu’elle est de classe € sur [0;1].
2. On suppose que py,, — pj, pour tout k entier. Montrer que la suite de fonctions (Gx,,),,
converge simplement n\;;g Gx sur [0;1].

3. Etudier la réciproque.



Corrigé : 1. On définit la fonction génératrice de X notée Gx par

vie[0:1]  Cx(t) = E(F) = Y rP(X = n)

La série entiére définissant Gx a un rayon de convergence supérieur ou égal a 1 puisque 0 <
P(X = k) < 1 pour tout k entier. D’apreés le théoréme de dérivation des séries entiéres, on obtient

GX 6‘5“’([0;1[,]1%)
2. Soit t € [0;1]. On note uy, : n +— P(X,, = k)t*. On a up(n) —— P(X = k)tk et |up(n)| < ¥
n—oo

avec Y _t* convergente. Ainsi, la série > _u;, converge normalement donc uniformément et d’aprés
le théoréme de double limite, on obtient

’guk(n) - Jio lim wug(n)

n—oo k=0 n—+oo

Ainsi Gx, 5 Gx sur [0;1]
n—oo

3. Supposons Gx,, & Gy sur [0;1[. On va utiliser un procédé diagonal sur la suite de suites
n—oo

((Pkn),),- Soit k entier. La suite (ppn)n est & valeurs dans [0;1]. Ainsi, on dispose de ¢
extractrice telle que

Proim) —— @1 € [0;1]
n—0o0
puis de ¢, extractrice telle que
D2,p1002(n) m g €[0;1]
et en itérant ce procédé, on dispose de ¢y tel que

Phpro..opiin) ——— Qk € [0;1]

On pose Vn € N o(n)=pro...0¢0,(n)

L’application ¢ est clairement une extractrice (injection de N — N strictement croissante). Pour
n >k, ona

p(n) =gio...op(r(n)) avec Yp(n) = @ry10...pn(n) —— +00

n—»00
Ainsi Vk € N Prp(n) — 7 4k
n—00
+00o
On pose Vte[0;1] G(t) = > qut"
n=0

La fonction G est bien définie sur [0;1] puisqu’'on 0 < ¢; < 1 pour tout k entier. D’aprés le
résultat de la deuxiéme question, on obtient

Gx.  —25G sur [0;1]

() oo

Or, la suite de fonctions (wa(m) est extraite de la suite (Gx,, ), simplement convergente. Par
n
unicité de la limite pour la convergence simple, il s’ensuit G = Gy, autrement dit

+oo +oo
vee [051]  Yath = X pitt
n=0 n=0



Par unicité du développement en série entiére, il vient
VEeN  qu=px

Par récurrence forte sur k, on obtient que la suite bornée (py,), admet p, pour unique valeur
d’adhérence. L’initialisation pour &k = 1 est vraie puisque p; = ¢; avec ¢; une valeur d’adhérence
de (p1n)n. On suppose le résultat vrai jusqu'au rang k — 1. Les suite (p1,)n, - -+ (Pk—1.)n SOt
bornées avec une unique valeur d’adhérence donc convergentes et on choisit comme extractrice
Y1 = ... = pr_1 = id et @ une extractrice quelconque telle que (pk,wlo...oapk(n))n = (pk,sok(n))n
converge. L’hérédité suit et on conclut

Vk € N Pkyn — Dk
n—00

Variante : Si on ne pense pas a la diagonale de Cantor, on peut encore aboutir au résultat
mais c’est technique. Supposons Gy, S, Gx sur [0;1[. On va montrer qu’il y a en réalité
n—oo

convergence normale sur tout segment de [0;1[ pour (Gx,),, et ses dérivées. Soit a € ]0;1[. Les
fonctions Gy, et Gx sont continues. On peut alors considérer

Vn € N On = [|Gx,, — Gxls0,0:a]
Par continuité sur un segment, on a
Vn e N dt, €[0;a] | 9, =]|Gx,(tn) — Gx(t,)|
Par compacité de [0; a], il existe ¢ extractrice telle que ¢, — t* € [0;a]. Puis, par inégalité

triangulaire

On < |Gx,. (tn) — Gx,, (17)] + |Gx,, (1) — Gx(t7)| + |Gx (£") — Gx ()]

> (.

Vv Vv Vv
=an =0n =Yn

Par convergence simple, on a (3, = o(1) et par continuité de Gx, on a 7y,x,) = o(1). Puis, par
linéarité du symbole 3, convergence absolue par convergence de > a* et inégalité triangulaire, il
vient

Ay =

+00
Zpk,n (tﬁ - t*k)
k=0

En commencant la somme a k = 1 et avec I'identité de Bernoulli

+00
k=0

k—1 A
th—tF = (t, — )t =tk — M <t — ¢ kab !
=0

La série Y ka"~1 converge (série entiére dérivée) et par suite
k>1

+00
an < |t — ] D kar!
k=1
d’otl avy(ny = 0(1) et par conséquent dy,y = o(1). Puis, on a
+00 +00
We[O,l[ OgGXn(t)<Zpk7n:1 et OéG;dt)gZpk:l
k=0 k=0

d’ou Vn e N 0<6,<2

La suite (6,),, est donc a valeurs dans le compact [0;2]. Soit ¢ une extractrice telle que (dy))
converge. Le résultat précédemment établi sur (6,), vaut pour (5w(n))n~ Ainsi, il existe ¢ ex-
tractrice telle que dyoumy = 0(1). Il s’ensuit que dyp) = o(1) et zéro est donc l'unique valeur
d’adhérence de la suite (6,),,. Ainsi, on a d,, = o(1). On procéde ensuite par récurrence au rang
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¢ pour établir 6% = o(1) avec 5P = ||G§3 - G§f)||oo,[0;a]. On suit un schéma de preuve analogue
et le seul terme délicat a controler est

0 _ | - ket pk—t XU+R)
an’ = Pen7— g\t — 1 = iy —1
Sy e =[S e
Toujours avec l'identité de Bernoulli, on obtient
S € k s 04 1 k)!
k=0
(+1+k)!
grace a la converge de la série Z%ak, série entiére dérivée a 'ordre ¢ + 1. L’hérédité
s’ensuit. On en déduit '
(k) (k)
x,(0) Gx'(0)
Vk € N A —— I
Et finalement Vk e N Dkyn — Pk
n—oo




