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Feuille d'exercices n°66

Exercice 1 (**)

Soit (Ω,A ,P) un espace probabilisé, (Xn)n⩾1 une suite de variables aléatoires indépendantes de
même loi géométrique de paramètre p ∈ ] 0 ; 1 [ et Yn = min(X1, . . . ,Xn) pour tout n entier non
nul.

1. Déterminer P(Yn > k) pour tout (n, k) ∈ N∗ × N.
2. En déduire que pour n entier non nul, la variable aléatoire Yn suit une loi usuelle dont

on précisera le paramètre.

Corrigé : 1. Soit (n, k) ∈ N∗ × N. On a

P(Xn > k) = P

(
+∞⊔

ℓ=k+1

{Xn = ℓ}

)
=

+∞∑
ℓ=k+1

P(Xn = ℓ) =
+∞∑

ℓ=k+1

p(1− p)ℓ−1

d'où ∀(n, k) ∈ N∗ × N P(Xn > k) = p(1− p)k × 1

1− (1− p)
= (1− p)k

Puis {Yn > k} = {min(X1, . . . ,Xn) > k} =
n⋂
i=1

{Xi > k}

Comme les Xi sont indépendantes, il s'ensuit

P(Yn > k) =
n∏
i=1

P(Xi > k) =
n∏
i=1

(1− p)k

Ainsi ∀(n, k) ∈ N∗ × N P(Yn > k) = (1− p)kn

2. On a {Yn = k} = {Yn > k − 1}∖ {Yn > k} et {Yn > k} ⊂ {Yn > k − 1}
d'où

P(Yn = k) = P(Yn > k− 1)−P(Yn > k) = (1− p)(k−1)n− (1− p)kn = (1− p)(k−1)n(1− (1− p)n)

On conclut

La variable aléatoire Yn suit une loi géométrique de paramètre 1− (1− p)n.

Exercice 2 (***)

On e�ectue une succession in�nie de lancers indépendants d'une pièce donnant pile avec proba-
bilité p ∈ ] 0 ; 1 [ et face avec probabilité q = 1− p. On dit que la première série est de longueur
n ⩾ 1 si les n premiers lancers ont donné le même côté et le n+1 l'autre côté. La deuxième série
commence au lancer suivant la �n de la première série et se termine (si elle se termine) au lancer
précédant un changement de côté. Pour k ⩾ 1, on note Pk l'événement pile au k-ième lancer Fk
face au k-ième lancer et L1 et L2 les longueurs respectives des deux séries.

1. Déterminer la loi de L1.

2. Justi�er que L1 est d'espérance �nie puis la calculer.
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3. Déterminer la loi de L2.

4. Justi�er que L2 est d'espérance �nie puis la calculer.

5. Les variables aléatoires L1 et L2 sont-elles indépendantes ?

Corrigé : 1. On a L1(Ω) ⊂ N∗ puis

∀k ⩾ 1 {L1 = k} = P1 . . .PkFk+1 ⊔ F1 . . .FkPk+1

D'où ∀k ⩾ 1 P(L1 = k) = pkq + qkp

2. Les séries entières
∑
xn et

∑
nxn ont même rayon de convergence égal à 1 ce qui prouve la

convergence (absolue) de
∑
kP(L1 = k). Par dérivation d'une série, on trouve

∀x ∈ ]−1 ; 1 [ S(x) =
+∞∑
n=0

xn =
1

1− x
et xS′(x) =

+∞∑
n=0

nxn =
x

(1− x)2

Ainsi E(L1) =
p

q
+
q

p

3. On a L2(Ω) ⊂ N∗ puis

∀n ⩾ 1 {L2 = n} =
⊔
k∈N∗

{L2 = n,L1 = k}

=
⊔
k∈N∗

(P1 . . .PkFk+1 . . .Fk+nPk+n+1 ⊔ F1 . . .FkPk+1 . . .Pk+nFk+n+1)

Ainsi ∀n ⩾ 1 P(L2 = n) =
+∞∑
k=1

[
pkqnp+ qkpnq

]
D'où ∀n ⩾ 1 P(L2 = n) = p2qn−1 + q2pn−1

4. Par les mêmes arguments que pour L1, la variable aléatoire L2 est d'espérance �nie et on
trouve

E(L2) =
p2

p2
+
q2

q2
= 2

5. On a

P(L1 = 1,L2 = 1) = P(L1 = 1)P(L2 = 1) ⇐⇒ pqp+ qpq = 2pq(p2 + q2)

⇐⇒ p2 + q2 =
1

2
⇐⇒ p(1− p) =

1

4
⇐⇒ p =

1

2

Donc, pour p ̸= 1

2
, les variables aléatoires L1 et L2 sont dépendantes. Supposons p =

1

2
. Soit

(k, n) ∈ (N∗)2. On a

P(L1 = k,L2 = n) =
1

2k+n+1
+

1

2k+n+1
=

1

2k+n

et P(L1 = k) =
1

2k+1
+

1

2k+1
=

1

2k
P(L2 = n) =

1

22+n−1
+

1

22+n−1
=

1

2n

Ainsi ∀(k, n) ∈ (N∗)2 P(L1 = k,L2 = n) = P(L1 = k)P(L2 = n)

On conclut Les variables L1,2 sont indépendantes si et seulement si p =
1

2
.
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Exercice 3 (***)

Soit (Ω,A ,P) un espace probabilisé et Y une variable aléatoire réelle discrète centrée telle que
Y(ω) ⊂ [ a ; b ]. Montrer

∀λ ∈ R lnE(eλY) ⩽
λ2(b− a)2

8

Corrigé : Soit Z = Y − a+ b

2
. On trouve

V(Y) = V(Z) ⩽ E(Z2) ⩽
(b− a)2

4

Soit λ réel. On pose ∀A ∈ A Q(A) = E
Å
1A

eλY

E(eλY)

ã
On véri�e sans di�culté que Q dé�nit une probabilité sur (Ω,A ). Soit f : R → R telle que f(Y)
est d'espérance �nie. Par transfert, il vient

EQ(f(Y)) =
∑

y∈Y(Ω)

f(y)Q(Y = y) =
∑

y∈Y(Ω)

f(y)eλy
P(Y = y)

E(eλY)
=

E(f(Y)eλY)
E(eλY)

Puis, d'après la relation de König-Huygens

VQ(Y) = EQ(Y
2)− EQ(Y)

2 =
E(Y2eλY)

E(eλY)
−
Å
E(YeλY)
E(eλY)

ã2
On pose ∀(n, λ) ∈ N× R un(λ) = eλynP(Y = yn)

Les un sont de classe C k avec k entier et

∀n ∈ N u
(k)
n (λ) = ykne

λyn

La fonction (λ, y) 7→ eλy est bornée sur le compact [α ; β ]× [ a ; b ] d'où

∀n ∈ N ∥u(k)n ∥∞,[α ;β ] = O(P(Y = yn))

ce qui prouve la convergence normale et donc uniforme de
∑
u
(k)
n . Par dérivation d'une série de

fonction, il vient

dk

dλk
E(eλY) =

dk

dλk

+∞∑
n=0

eλynP(Y = yn) =
+∞∑
n=0

ykne
λynP(Y = yn) = E(YkeλY)

Puis on trouve VQ(Y) = φ′′(λ) avec φ(λ) = lnE(eλY)

En observant φ(0) = φ′(0) = 0 et avec VQ(Y) ⩽
(b− a)2

4
, il vient par intégration

φ′(λ) =

∫ λ

0

φ′′(s) ds ⩽
∫ λ

0

(b− a)2

4
ds =

(b− a)2λ

4

et φ(λ) =

∫ λ

0

φ′(s) ds ⩽
∫ λ

0

(b− a)2λ

4
ds =

(b− a)2λ2

8

On conclut ∀λ ∈ R lnE(eλY) ⩽
λ2(b− a)2

8

Remarque : Il s'agit du résultat intermédiaire délicat pour établir l'inégalité de concentration
dite inégalité de Hoe�ding
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P (Sn − E(Sn) ⩾ ε) ⩽ exp

Å
− 2ε2

n(b− a)2

ã
avec X1, . . . ,Xn variables aléatoires discrètes à valeurs dans [ a ; b ], Sn =

n∑
i=1

Xi et ε > 0.

Exercice 4 (***)

Soit (Ω,A ,P) un espace probabilisé et X une variable aléatoire réelle positive d'espérance �nie.

Montrer P(X ⩾ x) =
x→+∞

o
Å
1

x

ã
On pourra commencer par le cas X(Ω) ⊂ N.

Corrigé : Soit x > 0. En s'inspirant de la démonstration de l'inégalité de Markov, on écrit

X ⩾ X1{X⩾x} ⩾ x1{X⩾x}

La variable X1{X⩾x} est donc d'espérance �nie avec

E(X1{X⩾x}) ⩾ xP(X ⩾ x)

Supposons X(Ω) ⊂ N. On a

0 ⩽ E(X1{X⩾x}) ⩽ E(X1{X⩾⌊x⌋}) =
+∞∑
k=⌊x⌋

kP(X = k)

La série
∑
kP(X = k) converge et par conséquent, son reste est de limite nulle d'où

+∞∑
k=⌊x⌋

kP(X = k) −−−−→
x→+∞

0

Et dans le cas particulier où X(Ω) ⊂ N, on a donc prouvé

P(X ⩾ x) =
x→+∞

o
Å
1

x

ã
On ne suppose plus désormais que X est à valeurs dans N. Si X(Ω) est �ni, alors X1{X⩾x} est
nulle pour x assez grand et le résultat est trivial. Sinon, on note X(Ω) = {xn, n ∈ N}. Il vient

E(X1{X⩾x}) =
+∞∑
n=0

xn1[ 0 ;xn ](x)P(X = xn)

On pose ∀(n, x) ∈ N× ] 0 ; +∞ [ un(x) = xn1[ 0 ;xn ](x)P(X = xn)

La série de fonctions
∑
un converge normalement et donc uniformément sur ] 0 ; +∞ [ puisqu'on

a pour n entier ∥un∥∞ = xnP(X = xn), terme de série convergente du fait de l'espérance �nie.
Et on a

∀n ∈ N un(x) −−−−→
x→+∞

0

Ainsi, par double limite, il vient
+∞∑
n=0

un(x) −−−−→
x→+∞

+∞∑
n=0

lim
x→+∞

un(x) = 0

autrement dit E(X1X⩾x) −−−−→
x→+∞

0

On conclut P(X ⩾ x) =
x→+∞

o
Å
1

x

ã
4



Exercice 5 (****)

Soit (Ω,A ,P) un espace probabilisé, (Xn)n et X des variables aléatoires réelles discrètes telles
que

∀ε > 0 P(|Xn − X| ⩾ ε) −−−→
n→∞

0

Pour x point de continuité de FX : t 7→ P(X ⩽ t), montrer que

FXn(x) −−−→
n→∞

FX(x)

Corrigé : Soit ε > 0. On a

P(Xn ⩽ x) = P(Xn ⩽ x, |Xn − X| < ε) + P(Xn ⩽ x, |Xn − X| ⩾ ε)︸ ︷︷ ︸
=o(1)

Notons An = {|Xn − X| < ε}. On a donc

FXn(x) = P({Xn ⩽ x} ∩ An) + o(1)

Puis {Xn ⩽ x, |Xn − X| < ε} ⊂ {Xn ⩽ x,X < Xn + ε} ⊂ {X ⩽ x+ ε}

d'où FXn(x) ⩽ FX(x+ ε) + o(1)

Comme {|Xn − X| < ε} ⊂ {Xn < X+ ε}, on a également

{X ⩽ x− ε, |Xn − X| < ε} ⊂ {X ⩽ x− ε,Xn < X+ ε, |Xn − X| < ε}

⊂ {Xn ⩽ x, |Xn − X| < ε}

d'où P({X ⩽ x− ε} ∩ An) ⩽ P({Xn ⩽ x} ∩ An) = FXn(x) + o(1)

En�n FX(x− ε) = P({X ⩽ x− ε} ∩ An) + P({X ⩽ x− ε} ∩ An)︸ ︷︷ ︸
=o(1)

d'où FX(x− ε) + o(1) ⩽ FXn(x) ⩽ FX(x+ ε) + o(1)

Soit η > 0. Par continuité de FX en x, on peut choisir ε > 0 tel que

|FX(x)− FX(x− ε)| ⩽ η et |FX(x)− FX(x+ ε)| ⩽ η

En�n, on choisit N su�samment grand pour que les termes en o(1) soient bornés par η pour
n ⩾ N. Ainsi, on a trouvé N entier tel que

∀n ⩾ N |FXn(x)− FX(x)| ⩽ 2η

Ainsi Pour x point de continuité de FX, on a FXn(x) −−−→
n→∞

FX(x).

Exercice 6 (****)

Soient (Xn)n et X des variables aléatoires à valeurs dans N. On note

∀(n, k) ∈ N2 pk,n = P(Xn = k) et pk = P(X = k)

1. Dé�nir la fonction génératrice GX et justi�er qu'elle est de classe C ∞ sur [ 0 ; 1 [.

2. On suppose que pk,n −−−→
n→∞

pk pour tout k entier. Montrer que la suite de fonctions (GXn)n
converge simplement vers GX sur [ 0 ; 1 [.

3. Étudier la réciproque.
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Corrigé : 1. On dé�nit la fonction génératrice de X notée GX par

∀t ∈ [ 0 ; 1 ] GX(t) = E(tX) =
+∞∑
n=0

tnP(X = n)

La série entière dé�nissant GX a un rayon de convergence supérieur ou égal à 1 puisque 0 ⩽
P(X = k) ⩽ 1 pour tout k entier. D'après le théorème de dérivation des séries entières, on obtient

GX ∈ C ∞([ 0 ; 1 [ ,R)

2. Soit t ∈ [ 0 ; 1 [. On note uk : n 7→ P(Xn = k)tk. On a uk(n) −−−→
n→∞

P(X = k)tk et |uk(n)| ⩽ tk

avec
∑
tk convergente. Ainsi, la série

∑
uk converge normalement donc uniformément et d'après

le théorème de double limite, on obtient
+∞∑
k=0

uk(n) −−−→
n→∞

+∞∑
k=0

lim
n→+∞

uk(n)

Ainsi GXn

CS−−−→
n→∞

GX sur [ 0 ; 1 [

3. Supposons GXn

CS−−−→
n→∞

GX sur [ 0 ; 1 [. On va utiliser un procédé diagonal sur la suite de suites(
(pk,n)n

)
k
. Soit k entier. La suite (pk,n)n est à valeurs dans [ 0 ; 1 ]. Ainsi, on dispose de φ1

extractrice telle que

p1,φ1(n) −−−→
n→∞

q1 ∈ [ 0 ; 1 ]

puis de φ2 extractrice telle que

p2,φ1◦φ2(n) −−−→
n→∞

q2 ∈ [ 0 ; 1 ]

et en itérant ce procédé, on dispose de φk tel que

pk,φ1◦...◦φk(n) −−−→n→∞
qk ∈ [ 0 ; 1 ]

On pose ∀n ∈ N φ(n) = φ1 ◦ . . . ◦ φn(n)

L'application φ est clairement une extractrice (injection de N → N strictement croissante). Pour
n ⩾ k, on a

φ(n) = φ1 ◦ . . . φk(ψk(n)) avec ψk(n) = φk+1 ◦ . . . φn(n) −−−→
n→∞

+∞

Ainsi ∀k ∈ N pk,φ(n) −−−→
n→∞

qk

On pose ∀t ∈ [ 0 ; 1 [ G(t) =
+∞∑
n=0

qkt
k

La fonction G est bien dé�nie sur [ 0 ; 1 [ puisqu'on 0 ⩽ qk ⩽ 1 pour tout k entier. D'après le
résultat de la deuxième question, on obtient

GXφ(n)

CS−−−→
n→∞

G sur [ 0 ; 1 [

Or, la suite de fonctions
Ä
GXφ(n)

ä
n
est extraite de la suite (GXn)n simplement convergente. Par

unicité de la limite pour la convergence simple, il s'ensuit G = GX, autrement dit

∀t ∈ [ 0 ; 1 [
+∞∑
n=0

qkt
k =

+∞∑
n=0

pkt
k
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Par unicité du développement en série entière, il vient

∀k ∈ N qk = pk

Par récurrence forte sur k, on obtient que la suite bornée (pk,n)n admet pk pour unique valeur
d'adhérence. L'initialisation pour k = 1 est vraie puisque p1 = q1 avec q1 une valeur d'adhérence
de (p1,n)n. On suppose le résultat vrai jusqu'au rang k − 1. Les suite (p1,n)n, . . ., (pk−1,n)n sont
bornées avec une unique valeur d'adhérence donc convergentes et on choisit comme extractrice
φ1 = . . . = φk−1 = id et φk une extractrice quelconque telle que (pk,φ1◦...◦φk(n))n = (pk,φk(n))n
converge. L'hérédité suit et on conclut

∀k ∈ N pk,n −−−→
n→∞

pk

Variante : Si on ne pense pas à la diagonale de Cantor, on peut encore aboutir au résultat

mais c'est technique. Supposons GXn

CS−−−→
n→∞

GX sur [ 0 ; 1 [. On va montrer qu'il y a en réalité

convergence normale sur tout segment de [ 0 ; 1 [ pour (GXn)n et ses dérivées. Soit a ∈ ] 0 ; 1 [. Les
fonctions GXn et GX sont continues. On peut alors considérer

∀n ∈ N δn = ∥GXn −GX∥∞,[ 0 ;a ]

Par continuité sur un segment, on a

∀n ∈ N ∃tn ∈ [ 0 ; a ] | δn = |GXn(tn)−GX(tn)|

Par compacité de [ 0 ; a ], il existe φ extractrice telle que tφ(n) −−−→
n→∞

t⋆ ∈ [ 0 ; a ]. Puis, par inégalité

triangulaire

δn ⩽ |GXn(tn)−GXn(t
⋆)|︸ ︷︷ ︸

=αn

+ |GXn(t
⋆)−GX(t

⋆)|︸ ︷︷ ︸
=βn

+ |GX(t
⋆)−GX(tn)|︸ ︷︷ ︸

=γn

Par convergence simple, on a βn = o(1) et par continuité de GX, on a γφ(n) = o(1). Puis, par
linéarité du symbole Σ, convergence absolue par convergence de

∑
ak et inégalité triangulaire, il

vient

αn =

∣∣∣∣+∞∑
k=0

pk,n(t
k
n − t⋆k)

∣∣∣∣ ⩽ +∞∑
k=0

∣∣tkn − t⋆k
∣∣

En commençant la somme à k = 1 et avec l'identité de Bernoulli

tkn − t⋆k = (tn − t⋆)
k−1∑
j=0

tjnt
⋆k−1−j =⇒

∣∣tkn − t⋆k
∣∣ ⩽ |tn − t⋆| kak−1

La série
∑
k⩾1

kak−1 converge (série entière dérivée) et par suite

αn ⩽ |tn − t⋆|
+∞∑
k=1

kak−1

d'où αφ(n) = o(1) et par conséquent δφ(n) = o(1). Puis, on a

∀t ∈ [ 0 ; 1 [ 0 ⩽ GXn(t) ⩽
+∞∑
k=0

pk,n = 1 et 0 ⩽ GX(t) ⩽
+∞∑
k=0

pk = 1

d'où ∀n ∈ N 0 ⩽ δn ⩽ 2

La suite (δn)n est donc à valeurs dans le compact [ 0 ; 2 ]. Soit ψ une extractrice telle que
(
δψ(n)

)
n

converge. Le résultat précédemment établi sur (δn)n vaut pour
(
δψ(n)

)
n
. Ainsi, il existe φ ex-

tractrice telle que δψ◦φ(n) = o(1). Il s'ensuit que δψ(n) = o(1) et zéro est donc l'unique valeur
d'adhérence de la suite (δn)n. Ainsi, on a δn = o(1). On procède ensuite par récurrence au rang
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ℓ pour établir δ(ℓ)n = o(1) avec δ(ℓ)n = ∥G(ℓ)
Xn

−G
(ℓ)
X ∥∞,[ 0 ;a ]. On suit un schéma de preuve analogue

et le seul terme délicat à contrôler est

α
(ℓ)
n =

∣∣∣∣+∞∑
k=ℓ

pk,n
ℓ!

(k − ℓ)!

(
tk−ℓn − t⋆k−ℓ

)∣∣∣∣ = ∣∣∣∣+∞∑
k=0

(ℓ+ k)!

k!

(
tkn − t⋆k

)∣∣∣∣
Toujours avec l'identité de Bernoulli, on obtient

α
(ℓ)
n ⩽ |tn − t⋆|

+∞∑
k=0

(ℓ+ k)!

k!
kak−1 = |tn − t⋆|

+∞∑
k=0

(ℓ+ 1 + k)!

k!
ak

grâce à la converge de la série
∑(ℓ+ 1 + k)!

k!
ak, série entière dérivée à l'ordre ℓ + 1. L'hérédité

s'ensuit. On en déduit

∀k ∈ N
G

(k)
Xn
(0)

k!
−−−→
n→∞

G
(k)
X (0)

k!

Et �nalement ∀k ∈ N pk,n −−−→
n→∞

pk
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