ISM MP, Mathématiques
Année 2025/2026

Feuille d’exercices n°58
Exercice 1 (*)
Soit A € o7, (R). Que vaut (AX,X) pour X € 4,1 (R)?

Corrigé : Soit X € 4, 1(R). Par symétrie du produit scalaire, on a
(AX,X) = (X, AX) = XTAX

puis (AX,X) = (AX)"X = XTATX = -XTAX

Ainsi Acd,(R) = VX€EMiMR) (AX,X)=0

Exercice 2 (*)

Montrer que le théoréme spectral est une équivalence, a savoir pour u € Z(E) avec E euclidien
u € . (E) <= il existe une base orthonormée de vecteurs propres de u

Corrigé : Le sens direct est un résultat du cours. Réciproquement, s’il existe une base 4 ortho-
normée de vecteurs propres de u, alors matzu est diagonale et donc en particulier symétrique
réelle ce qui prouve que u € .(E). On conclut

’Le théoréme spectral est une équivalence.

Exercice 3 (*)

Déterminer u € . (E) vérifiant (u(z),z) = 0 pour tout x € E.

Corrigé : Soit x vecteur propre de u associé & la valeur propre A. On a
(u(z),z) =Afz|?=0 = X=0
#
0

D’apres le théoréme spectral, I’endomorphisme u est diagonalisable avec 0 comme unique valeur
propre. On conclut

u=20
Variante : Soit (z,y) € E% On a
(u(z +y),x+y) = (u),x) + (u(@),y) + (uly), z) + (uly),y) = 2{ulx),y) =0
—— ~—
=0 =0 ues (E)
Ceci prouve que u(z) € EY = {0g} pour tout # € E d’ou la nullité de u. Cette variante

élémentaire ne nécessite pas 'usage du théoréme spectral.



Exercice 4 (*)
) 1
Soit E euclidien et u € Z(E). Etablir 'égalité E = Im u® Ker w.

Corrigé : Soit (y,z) € Im u x Ker u. Il existe t € E tel que y = u(t). Puis, comme u est un
endomorphisme auto-adjoint, il vient

<y,:1:> = (u(t),x) = <t,u(:13)> = <t,OE> =0

On a donc Im ul Ker u et d’apres le théoréme du rang, on sait dim E = rg v+ dim Ker u. Ainsi,
le noyau et 'image sont supplémentaires et orthogonaux et on conclut

1
E=Im u® Ker u

Variante : On a

reKeru «— YyeE (uz),y)=0 <= YWebE (zuly)=0 = zec(mu)"

1
Et comme le sev Im u est de dimension finie, on a E = Im u®(Im u)* et le résultat suit.

Exercice 5 (*)

Déterminer les matrices M € .7, (R) telles que M? + M? + M = 0.

Corrigé : D’aprés le théoréme spectral, la matrice M est ortho-diagonalisable. En particulier,
le spectre de M est non vide et inclus dans R. Le polynome P = X? + X2 + X = X(X? + X + 1)
admet zéro pour unique racine réelle d’ott Sp (M) C {0} et donc Sp (M) = {0}. Ainsi, la matrice
M est semblable a la matrice nulle et on conclut

’La matrice nulle est 'unique solution.‘

Exercice 6 (*)

Soit u € Z(E) avec E euclidien. Montrer
ue S(E)NO(E) <= wu symétrie orthogonale

Corrigé : Soit z € E. Siu e Z(E)NnO(E), on a

* 1

u=u" et u=u"

d’ou u? = id et u isométrie. C’est donc une symétrique orthogonale. Réciproquement , si u est
une symétrie orthogonale, alors ¢’est une isométrie et comme u? = id, alors u™! = v et u=! = u*

car u € O(E) d’ot u € .¥(E). On conclut

ue S (E)NOE) < u symétrie orthogonale

Variantes : (1) Si on ne pense pas a utiliser 'adjoint, on peut procéder ainsi : pour u €

L (E)NO(E), on a
[u*(z) — z[* = [[w*(@)]]* = 2 (u?(), 2) + [lz]| = 2||=[]* - 2 (u(z), u(z)) = 0

d’ott u? = id et u isométrie donc c’est une symétrique orthogonale. Réciproquement , si u est
une symeétrie orthogonale, alors ¢’est une isométrie et pour (z,y) € E?

(u(z),y) = W), uy)) = (z,uy))
ueO(E)



(2) Pour le sens direct, soit # une base orthonormée de E. On a A = matgzu € .7,(R)NO,(R).
D’aprés le théoréme spectral, la matrice A est ortho-diagonalisable et comme elle est orthogonale,
son spectre est inclus dans {—1, 1}. Il s’agit donc d’une matrice de symétrie qui est une isométrie
d’ou le résultat. Réciproguement, on considére une base 4 orthonormée adaptée a la symétrie s.
On a matygs = diag(l,, —I,) matrice symétrique réelle et clairement orthogonale d’ou le résultat.

Exercice 7 (*)

Soit M € ., (R) vérifiant MM = M. Caractériser M.

Corrigé : On a clairement M symétrique d’ott M? = M. La matrice M est, dans la base cano-
nique de R™ orthonormée pour le produit scalaire canonique, la matrice d’un projecteur qui est
symétrique. C’est donc la matrice d’un projecteur orthogonal dans une base orthonormée. La
réciproque est immédiate. On conclut

Une matrice M vérifiant MM = M est la matrice d'un pro-
jecteur orthogonal dans une base orthonormeée.

Exercice 8 (**)

Soit E euclidien et p, g des projecteurs orthogonaux. Montrer
poq=0 <= qop=20
Corrigé : Soit (z,y) € E% On a p, ¢ dans .¥(E) d’ou
(poq(x),y) = (a(x),p(y)) = (x,q°p(y))

Il s’ensuit ’poq:O<:>qu:0‘

Remarque : Si E est seulement préhilbertien, le résultat vaut encore. Comme p et ¢ sont
projecteurs orthogonaux, on a

1 1
E=ImpdKerp et E=Im qPbKer q
Puis pog=0 <= ImqgCKerp = KerptClImqgt

D’ou pog=0 =— ImpCKerq =— qop=0

L’autre sens vient par symétrie des roles et on conclut

poqg=0 <= gop=10]

Exercice 9 (**)

Soit A € .F(R). Montrer qu’il existe S € .7 (R) telle que A = S? puis montrer qu’on peut
choisir S € R[A].

Corrigé : D’aprés le théoréme spectral, il existe P € O, (R) et D = diag(Aq, ..., \,) avec les \;

positifs tels que A = PDPT. Posant A = diag(v/A1,...,vA,) puis S=PAP" on a S € .7} (R)

et S = A. Notons Sp (D) = {p1,...,puq} avec d < n et les y; deux a deux distincts. On note
d

(Li)ier1;a7 la famille de polynomes de Lagrange associés aux f; et on pose R = > /11, L;. Ainsi,
i=1

on a R(\;) = v/\; pour tout i € [1; n] et par suite



R(A) = R(PDPT) = PR(D)PT = PAPT =§

Ainsi IS e SHR)NRA] | A=8

Exercice 10 (**)

Soit M € ., (R).
1. Pour X € #,1(R), calculer X"MX.

2. Montrer qu'’il existe une unique matrice symétrique S € .7, (R) telle que
VX e #,1(R) XTMX = XTSX
Préciser S en fonction de M.
3. Montrer Spr(M) C [minSp (S) ; max Sp (S) |

Corrigé : 1. Tous calculs effectués, on trouve

VX € %n,l(R) XTMX = Z my; ;L5

1<i,5<n

2. Par analyse-synthése, on établit qu’il existe un unique couple (A, S) € o, (R) x .7, (R) tel que
M = A + S. Soit X € 4, 1(R). On vérifie sans difficulté que X" AX = 0 puis

XTMX = XTAX + XTSX = XTSX
Supposons qu’il existe une autre matrice 3 € .7, (R) vérifiant cette égalité. La matrice S — 3 est
symétrique réelle donc ortho-diagonalisable et pour X € ., ;1 (R) ~ {0} tel que (S — X)X = AX,
il vient
VX € M,1(R) 0=X"S-D)X=)X|? = X=0
La matrice S — X est donc semblable & la matrice nulle ce qui prouve 'unicité. Enfin, 'analyse-

1
synthése permet d’obtenir la partie symétrique de M avec S = 5(1\/[ +M"). On conclut

La partie symétrique S de M est I'unique matrice symétrique vérifiant la condition demandée.

Variante : Posons VX € M1 (R) (X)) =XTMX

et VX, Y) € Aa(RY oK, Y) = 2 [a(X +Y) — g(X) — a(Y)]

On dit que ¢ est une forme quadratique et @ une forme bilinéaire symétrique appelée forme
polaire associée a la forme quadratique g. On pose également

V(i,j) € [1;n]? sy =9(E, Ey)
L<ijen €St symétrique relle et vérifie XTSX = XTMX pour tout X €

My, 1 (R). Par ailleurs, la matrice S est déterminée de maniére unique par 'application ¢ : si S
vérifie les conditions imposées, alors ¢(X,Y) = XTSY pour tout (X,Y) € 4, ;(R)?. Et la forme
bilinéaire ¢ est elle-méme déterminée par la forme quadratique ¢ ce qui prouve son unicité et
donc celle de S. Cette approche ne requiert pas l'utilisation du théoréme spectral.

La matrice S = (sm-)

3. Soit P € O,(R) et D = diag(A1,...,\,) € A,(R) telles que S = PDP'. On suppose
A < ..o < A, Soit X € #,1(R) normé, vecteur propre associé a A réel et X = PY. La
colonne Y est également normée puisque la matrice P est une matrice d’isométrie. Il vient

4



XTMX = A[[X[2=A et XTMX=YTDY =Y \y?
i=1

On conclut Spr(M) C [minSp (S) ; max Sp (S) |

Exercice 11 (**)

1
Soit E = R,,[X] muni du produit scalaire (P, Q) = / P(t)Q(t) dt pour (P,Q) € E? .On pose

1
VPEE  o(P) = (X2 — 1)P" + 2XP’
Montrer que ¢ € . (E).

Corrigé : L’application ¢ est linéaire par linéarité de la dérivation et du produit a gauche et
a valeurs dans R[X]. Pour P € E, on a degP < n d’ou degP’ < n—1, degP” < n — 2 et par
conséquent

deg p(P) = max(deg(X? — 1)P”, deg 2XP’') < n
ce qui prouve que ¢ € Z(E). Soit (P, Q) € E?. En intégrant par parties, il vient
1
(#P).Q) = [ 17~ 1P + 2P ) Qo) dt

:4W—npwmm;—/jﬁ—Mﬂmwwm=—/yhﬁwwMWMt

L’expression est symétrique en P et Q et on conclut

p € S (E)
Exercice 12 (*%*)
1
Soit A € .7F(R). Montrer det(A)Y/™ < —Tr (A)
n
Corrigé : D’aprés le théoréme spectral, la matrice A est orthogonalement semblable a diag(Ay, ..., A,).

Comme A € .ZF(R), on ales \; > 0. La trace et le déterminant étant invariants par similitude,
on a

det(A) = [T N et Tr(A) =S\

=1 =1

Si les \; sont strictement positifs, il vient, d’aprés I'inégalité de Jensen appliquée a la fonction
concave x — Inx

1. n 1/n 1.

=1 i=1 =1

n 1/n 1.
Ainsi (H AZ») <=2\
i=1 Ni=1

L’inégalité (fameuse, c’est I'inégalité arithmético-géométrique) vaut toujours si les \; sont positifs
largement. On conclut

n

det(A)Y/™ 1 Tr (A)




Exercice 13 (**)

1

Montrer (—
1+7—1

) esrm
1<6,j<n

1
Corrigé : Notons H,, = (—) la matrice de Hilbert d’ordre n. On remarque
i+7—1 1<i,j<n
1 1
\V/l',. S 1,n2 —:/tlJr]zdt
GieltnP  ——=

1
Posons E = R[X] muni du produit scalaire (P, Q) / P(t)Q(t) dt (a vérifier!). On a
0

H, = ({(X',X7))

1<i,5<n

La matrice de Hilbert H,, est donc un cas particulier de matrice de Gram. Pour U € ., ;(R),
on trouve

UTH,U = |SwX/|? > 0
=1

Puis UH,U=0 < | uX|?=0 < YSuX'=0 < U=0
=1 i=1
Ainsi VU € A, 1 (R) \ {0} UTH,U >0
1
On conclut <—) € M (R)
i+J =1/ 1gij<n

Exercice 14 (**)

b
Déterminer a et b réels non nuls tels que A = b | € O3(R) puis décrire I'isométrie
a

>~ o Q
> o

associée dans R? euclidien orienté.

Corrigé : Une matrice est dans O3(R) si et seulement si ses colonnes (ou lignes) forment une
base orthonormée de R3. On trouve

a’+2v* =1

AcO3R) <=
() {b2+2ab:0

v acom® = whe{ao.c10.(55) (55))

Comme A € .73(R), on a A € O3(R)N.75(R). Par conséquent, la matrice A est orthogonalement
semblable a diag(+1,£1,£1) d’aprés le théoréme spectral et par localisation du spectre d’une
matrice orthogonale. Un simple calcul de trace permet donc de savoir dans quelle configuration

1 2
on se trouve. Pour (a,b) = <§, —§>, on a A semblable a diag(1, —1, —1) matrice d’'un demi-
1 2
tour d’axe Ker (A — I3) = Vect(1,1,1) et pour (a,b) = (_5’ §)’ on trouve A semblable &



diag(1, 1, —1) matrice de la réflexion par rapport a Ker (A —1,,) d’équation =+ y + z = 0. Ainsi,
notant u = (1,1, 1), on conclut

A€ O3R) < A=matyf avec [e {+id,rot(u,T), Svecs ()’ }

Exercice 15 (**)

Soit U € 4, 1(R) ~ {0}. On pose M = UU". Montrer que M est diagonalisable puis préciser ses
éléments propres.

Corrigé : On a MT =(@UUT) =UUT =M

’D’aprés le théoréme spectral, la matrice M symétrique réelle est diagonalisable. ‘

Munissons E = ., 1(R) de son produit scalaire canonique (X,Y) = XY pour (X,Y) € E%
Pour X € E, on a MX = U (U, X) d’ou

X eKer M < X € Vect (U)t et MU= ||U|J*U
ce qui prouve
{0,|U[|?} € Sp(M) et Ey(M) = Vect (U)+ Vect (U) C Ejyj(M)
Comme ’espace propre Eo(M) est un hyperplan, pour raison de dimension, on conclut

Sp(M) ={0,]|U[|?} et Eo(M) = Vect (U)* Ejy2(M) = Vect (U)

Remarque : Notant o = ||U||?, on obtient par associativité du produit matriciel
M2 = U(UTU)UT = aM

Comme X(X — «) est annulateur de M, on en déduit la localisation du spectre Sp (M) C {0, o}
ce qui oriente ensuite la rédaction vers la détermination de Ker M comme ci-avant.

Exercice 16 (**)
Soit E euclidien et u € . (E) tel que Tr (u) = 0.
1. Montrer qu’il existe z € E \ {0} tel que u(z) Lx.

2. En déduire l'existence d’une base orthonormée (e;)ic[1;,] de E telle que (u(e;),e;) = 0
pour tout i € [1; n].

n
Corrigé : 1. Soit (e1,...,£,) une base orthonormée de vecteurs propres de u. Avec x = > ¢;

i=1
(non nul car les ¢; sont libres), il vient

n

(u(@),z) = >0 (ule) i) = 20 Aileigg) =2 A =Tr(u) =0

1<i,j<n 1<i,j<n S~ i=1

=i,

Alinsi dre EXA{0} | wu(z)lz

2. D’aprés le résultat précédent, il existe e; que I'on peut normer tel que u(e;)Ley. Soit p le
projecteur orthogonal sur Vect (e;)*. L’application p o u‘v induit un endomorphisme

ect (e1)+
v € Z(Vect (e1)+). On vérifie sans difficulté que
V(z,y) € (Vect (1)) (u(2),9) = (z,0())



et on a Tr u = Tr v = 0 puisque (u(ey),e1) = 0. On peut aussi voir les choses matriciellement.

1
Dans une base 8 = (e;, %) orthonormée adaptée a la décomposition E = Vect (e;)® Vect (e1)*,
on a
*

B

Comme la matrice A est symétrique réelle de trace nulle, il en est de méme pour la matrice B
que l'on peut interpréter comme matrice d’'un endomorphisme de Vect (e;)t auto-adjoint et de
trace nulle. Par récurrence sur la dimension, on peut donc conclure

0
A = matgu = < " ) avec B = matgv

3(e;)ic[1;n] base orthonormée de E | Vie [1;n] (u(e;),e;) =0




