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Feuille d'exercices n°58

Exercice 1 (*)

Soit A ∈ An(R). Que vaut ⟨AX,X⟩ pour X ∈ Mn,1(R) ?

Corrigé : Soit X ∈ Mn,1(R). Par symétrie du produit scalaire, on a

⟨AX,X⟩ = ⟨X,AX⟩ = X⊤AX

puis ⟨AX,X⟩ = (AX)⊤X = X⊤A⊤X = −X⊤AX

Ainsi A ∈ An(R) =⇒ ∀X ∈ Mn,1(R) ⟨AX,X⟩ = 0

Exercice 2 (*)

Montrer que le théorème spectral est une équivalence, à savoir pour u ∈ L (E) avec E euclidien

u ∈ S (E) ⇐⇒ il existe une base orthonormée de vecteurs propres de u

Corrigé : Le sens direct est un résultat du cours. Réciproquement, s'il existe une base B ortho-
normée de vecteurs propres de u, alors matBu est diagonale et donc en particulier symétrique
réelle ce qui prouve que u ∈ S (E). On conclut

Le théorème spectral est une équivalence.

Exercice 3 (*)

Déterminer u ∈ S (E) véri�ant ⟨u(x), x⟩ = 0 pour tout x ∈ E.

Corrigé : Soit x vecteur propre de u associé à la valeur propre λ. On a

⟨u(x), x⟩ = λ ∥x∥2︸︷︷︸
̸=0

= 0 =⇒ λ = 0

D'après le théorème spectral, l'endomorphisme u est diagonalisable avec 0 comme unique valeur
propre. On conclut

u = 0

Variante : Soit (x, y) ∈ E2. On a

⟨u(x+ y), x+ y⟩ = ⟨u(x), x⟩︸ ︷︷ ︸
=0

+ ⟨u(x), y⟩+ ⟨u(y), x⟩+ ⟨u(y), y⟩︸ ︷︷ ︸
=0

=︸︷︷︸
u∈S (E)

2 ⟨u(x), y⟩ = 0

Ceci prouve que u(x) ∈ E⊥ = {0E} pour tout x ∈ E d'où la nullité de u. Cette variante
élémentaire ne nécessite pas l'usage du théorème spectral.
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Exercice 4 (*)

Soit E euclidien et u ∈ S (E). Établir l'égalité E = Im u
⊥
⊕Ker u.

Corrigé : Soit (y, x) ∈ Im u × Ker u. Il existe t ∈ E tel que y = u(t). Puis, comme u est un
endomorphisme auto-adjoint, il vient

⟨y, x⟩ = ⟨u(t), x⟩ = ⟨t, u(x)⟩ = ⟨t, 0E⟩ = 0

On a donc Im u⊥Ker u et d'après le théorème du rang, on sait dimE = rg u+dimKer u. Ainsi,
le noyau et l'image sont supplémentaires et orthogonaux et on conclut

E = Im u
⊥
⊕Ker u

Variante : On a

x ∈ Ker u ⇐⇒ ∀y ∈ E ⟨u(x), y⟩ = 0 ⇐⇒ ∀y ∈ E ⟨x, u(y)⟩ = 0 ⇐⇒ x ∈ (Im u)⊥

Et comme le sev Im u est de dimension �nie, on a E = Im u
⊥
⊕(Im u)⊥ et le résultat suit.

Exercice 5 (*)

Déterminer les matrices M ∈ Sn(R) telles que M3 +M2 +M = 0.

Corrigé : D'après le théorème spectral, la matrice M est ortho-diagonalisable. En particulier,
le spectre de M est non vide et inclus dans R. Le polynôme P = X3 +X2 +X = X(X2 +X+ 1)
admet zéro pour unique racine réelle d'où Sp (M) ⊂ {0} et donc Sp (M) = {0}. Ainsi, la matrice
M est semblable à la matrice nulle et on conclut

La matrice nulle est l'unique solution.

Exercice 6 (*)

Soit u ∈ L (E) avec E euclidien. Montrer

u ∈ S (E) ∩ O(E) ⇐⇒ u symétrie orthogonale

Corrigé : Soit x ∈ E. Si u ∈ S (E) ∩ O(E), on a

u = u∗ et u∗ = u−1

d'où u2 = id et u isométrie. C'est donc une symétrique orthogonale. Réciproquement , si u est
une symétrie orthogonale, alors c'est une isométrie et comme u2 = id , alors u−1 = u et u−1 = u∗

car u ∈ O(E) d'où u ∈ S (E). On conclut

u ∈ S (E) ∩ O(E) ⇐⇒ u symétrie orthogonale

Variantes : (1) Si on ne pense pas à utiliser l'adjoint, on peut procéder ainsi : pour u ∈
S (E) ∩ O(E), on a

∥u2(x)− x∥2 = ∥u2(x)∥2 − 2 ⟨u2(x), x⟩+ ∥x∥ = 2∥x∥2 − 2 ⟨u(x), u(x)⟩ = 0

d'où u2 = id et u isométrie donc c'est une symétrique orthogonale. Réciproquement , si u est
une symétrie orthogonale, alors c'est une isométrie et pour (x, y) ∈ E2

⟨u(x), y⟩ =︸︷︷︸
u∈O(E)

⟨u2(x), u(y)⟩ = ⟨x, u(y)⟩
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(2) Pour le sens direct, soit B une base orthonormée de E. On a A = matBu ∈ Sn(R)∩On(R).
D'après le théorème spectral, la matrice A est ortho-diagonalisable et comme elle est orthogonale,
son spectre est inclus dans {−1, 1}. Il s'agit donc d'une matrice de symétrie qui est une isométrie
d'où le résultat. Réciproguement, on considère une base B orthonormée adaptée à la symétrie s.
On a matBs = diag(Is,−Ir) matrice symétrique réelle et clairement orthogonale d'où le résultat.

Exercice 7 (*)

Soit M ∈ Mn(R) véri�ant M⊤M = M. Caractériser M.

Corrigé : On a clairement M symétrique d'où M2 = M. La matrice M est, dans la base cano-
nique de Rn orthonormée pour le produit scalaire canonique, la matrice d'un projecteur qui est
symétrique. C'est donc la matrice d'un projecteur orthogonal dans une base orthonormée. La
réciproque est immédiate. On conclut

Une matrice M véri�ant M⊤M = M est la matrice d'un pro-
jecteur orthogonal dans une base orthonormée.

Exercice 8 (**)

Soit E euclidien et p, q des projecteurs orthogonaux. Montrer

p ◦ q = 0 ⇐⇒ q ◦ p = 0

Corrigé : Soit (x, y) ∈ E2. On a p, q dans S (E) d'où

⟨p ◦ q(x), y⟩ = ⟨q(x), p(y)⟩ = ⟨x, q ◦ p(y)⟩

Il s'ensuit p ◦ q = 0 ⇐⇒ q ◦ p = 0

Remarque : Si E est seulement préhilbertien, le résultat vaut encore. Comme p et q sont
projecteurs orthogonaux, on a

E = Im p
⊥
⊕Ker p et E = Im q

⊥
⊕Ker q

Puis p ◦ q = 0 ⇐⇒ Im q ⊂ Ker p =⇒ Ker p⊥ ⊂ Im q⊥

D'où p ◦ q = 0 =⇒ Im p ⊂ Ker q =⇒ q ◦ p = 0

L'autre sens vient par symétrie des rôles et on conclut

p ◦ q = 0 ⇐⇒ q ◦ p = 0

Exercice 9 (**)

Soit A ∈ S +
n (R). Montrer qu'il existe S ∈ S +

n (R) telle que A = S2 puis montrer qu'on peut
choisir S ∈ R[A].

Corrigé : D'après le théorème spectral, il existe P ∈ On(R) et D = diag(λ1, . . . , λn) avec les λi

positifs tels que A = PDP⊤. Posant ∆ = diag(
√
λ1, . . . ,

√
λn) puis S = P∆P⊤, on a S ∈ S +

n (R)
et S2 = A. Notons Sp (D) = {µ1, . . . , µd} avec d ⩽ n et les µi deux à deux distincts. On note

(Li)i∈[[ 1 ; d ]] la famille de polynômes de Lagrange associés aux µi et on pose R =
d∑

i=1

√
µiLi. Ainsi,

on a R(λi) =
√
λi pour tout i ∈ [[ 1 ; n ]] et par suite
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R(A) = R(PDP⊤) = PR(D)P⊤ = P∆P⊤ = S

Ainsi ∃S ∈ S +
n (R) ∩ R[A] | A = S2

Exercice 10 (**)

Soit M ∈ Mn(R).

1. Pour X ∈ Mn,1(R), calculer X⊤MX.

2. Montrer qu'il existe une unique matrice symétrique S ∈ Sn(R) telle que

∀X ∈ Mn,1(R) X⊤MX = X⊤SX

Préciser S en fonction de M.

3. Montrer Sp R(M) ⊂ [ min Sp (S) ;max Sp (S) ]

Corrigé : 1. Tous calculs e�ectués, on trouve

∀X ∈ Mn,1(R) X⊤MX =
∑

1⩽i,j⩽n

mi,jxixj

2. Par analyse-synthèse, on établit qu'il existe un unique couple (A, S) ∈ An(R)×Sn(R) tel que
M = A+ S. Soit X ∈ Mn,1(R). On véri�e sans di�culté que X⊤AX = 0 puis

X⊤MX = X⊤AX+X⊤SX = X⊤SX

Supposons qu'il existe une autre matrice Σ ∈ Sn(R) véri�ant cette égalité. La matrice S−Σ est
symétrique réelle donc ortho-diagonalisable et pour X ∈ Mn,1(R)∖ {0} tel que (S−Σ)X = λX,
il vient

∀X ∈ Mn,1(R) 0 = X⊤(S− Σ)X = λ∥X∥2 =⇒ λ = 0

La matrice S−Σ est donc semblable à la matrice nulle ce qui prouve l'unicité. En�n, l'analyse-

synthèse permet d'obtenir la partie symétrique de M avec S =
1

2
(M +M⊤). On conclut

La partie symétrique S de M est l'unique matrice symétrique véri�ant la condition demandée.

Variante : Posons ∀X ∈ Mn,1(R) q(X) = X⊤MX

et ∀(X,Y) ∈ Mn,1(R)2 φ(X,Y) =
1

2
[q(X + Y)− q(X)− q(Y)]

On dit que q est une forme quadratique et φ une forme bilinéaire symétrique appelée forme

polaire associée à la forme quadratique q. On pose également

∀(i, j) ∈ [[ 1 ; n ]]2 si,j = φ(Ei,Ej)

La matrice S =
(
si,j

)
1⩽i,j⩽n

est symétrique réelle et véri�e X⊤SX = X⊤MX pour tout X ∈
Mn,1(R). Par ailleurs, la matrice S est déterminée de manière unique par l'application φ : si S
véri�e les conditions imposées, alors φ(X,Y) = X⊤SY pour tout (X,Y) ∈ Mn,1(R)2. Et la forme
bilinéaire φ est elle-même déterminée par la forme quadratique q ce qui prouve son unicité et
donc celle de S. Cette approche ne requiert pas l'utilisation du théorème spectral.

3. Soit P ∈ On(R) et D = diag(λ1, . . . , λn) ∈ Mn(R) telles que S = PDP⊤. On suppose
λ1 ⩽ . . . ⩽ λn. Soit X ∈ Mn,1(R) normé, vecteur propre associé à λ réel et X = PY. La
colonne Y est également normée puisque la matrice P est une matrice d'isométrie. Il vient
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X⊤MX = λ∥X∥2 = λ et X⊤MX = Y⊤DY =
n∑

i=1

λiy
2
i

On conclut Sp R(M) ⊂ [ min Sp (S) ;max Sp (S) ]

Exercice 11 (**)

Soit E = Rn[X] muni du produit scalaire ⟨P,Q⟩ =
∫ 1

−1

P(t)Q(t) dt pour (P,Q) ∈ E2 .On pose

∀P ∈ E φ(P) = (X2 − 1)P′′ + 2XP′

Montrer que φ ∈ S (E).

Corrigé : L'application φ est linéaire par linéarité de la dérivation et du produit à gauche et
à valeurs dans R[X]. Pour P ∈ E, on a deg P ⩽ n d'où deg P′ ⩽ n − 1, deg P′′ ⩽ n − 2 et par
conséquent

degφ(P) = max(deg(X2 − 1)P′′, deg 2XP′) ⩽ n

ce qui prouve que φ ∈ L (E). Soit (P,Q) ∈ E2. En intégrant par parties, il vient

⟨φ(P),Q⟩ =
∫ 1

−1

[(t2 − 1)P′′(t) + 2tP′(t)] Q(t) dt

= [(t2 − 1)P′(t)Q(t)]
1
−1 −

∫ 1

−1

(t2 − 1)P′(t)Q′(t) dt = −
∫ 1

−1

(t2 − 1)P′(t)Q′(t) dt

L'expression est symétrique en P et Q et on conclut

φ ∈ S (E)

Exercice 12 (**)

Soit A ∈ S +
n (R). Montrer det(A)1/n ⩽

1

n
Tr (A)

Corrigé :D'après le théorème spectral, la matriceA est orthogonalement semblable à diag(λ1, . . . , λn).
Comme A ∈ S +

n (R), on a les λi ⩾ 0. La trace et le déterminant étant invariants par similitude,
on a

det(A) =
n∏

i=1

λi et Tr (A) =
n∑

i=1

λi

Si les λi sont strictement positifs, il vient, d'après l'inégalité de Jensen appliquée à la fonction
concave x 7→ lnx

1

n

n∑
i=1

ln(λi) = ln

ÇÅ
n∏

i=1

λi

ã1/nå
⩽ ln

Å
1

n

n∑
i=1

λi

ã
Ainsi

Å
n∏

i=1

λi

ã1/n
⩽

1

n

n∑
i=1

λi

L'inégalité (fameuse, c'est l'inégalité arithmético-géométrique) vaut toujours si les λi sont positifs
largement. On conclut

det(A)1/n ⩽
1

n
Tr (A)
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Exercice 13 (**)

Montrer
Å

1

i+ j − 1

ã
1⩽i,j⩽n

∈ S ++
n (R)

Corrigé : Notons Hn =

Å
1

i+ j − 1

ã
1⩽i,j⩽n

la matrice de Hilbert d'ordre n. On remarque

∀(i, j) ∈ [[ 1 ; n ]]2
1

i+ j − 1
=

∫ 1

0

ti+j−2 dt

Posons E = R[X] muni du produit scalaire (P,Q) 7→
∫ 1

0

P(t)Q(t) dt (à véri�er !). On a

Hn =
(
⟨Xi,Xj⟩

)
1⩽i,j⩽n

La matrice de Hilbert Hn est donc un cas particulier de matrice de Gram. Pour U ∈ Mn,1(R),
on trouve

U⊤HnU = ∥
n∑

i=1

uiX
i∥2 ⩾ 0

Puis U⊤HnU = 0 ⇐⇒ ∥
n∑

i=1

uiX
i∥2 = 0 ⇐⇒

n∑
i=1

uiX
i = 0 ⇐⇒ U = 0

Ainsi ∀U ∈ Mn,1(R)∖ {0} U⊤HnU > 0

On conclut
Å

1

i+ j − 1

ã
1⩽i,j⩽n

∈ S ++
n (R)

Exercice 14 (**)

Déterminer a et b réels non nuls tels que A =

Ñ
a b b
b a b
b b a

é
∈ O3(R) puis décrire l'isométrie

associée dans R3 euclidien orienté.

Corrigé : Une matrice est dans O3(R) si et seulement si ses colonnes (ou lignes) forment une
base orthonormée de R3. On trouve

A ∈ O3(R) ⇐⇒
®
a2 + 2b2 = 1

b2 + 2ab = 0

D'où A ∈ O3(R) ⇐⇒ (a, b) ∈
ß
(1, 0), (−1, 0),

Å
1

3
,−2

3

ã
,

Å
−1

3
,
2

3

ã™
Comme A ∈ S3(R), on a A ∈ O3(R)∩S3(R). Par conséquent, la matrice A est orthogonalement
semblable à diag(+− 1, +− 1, +− 1) d'après le théorème spectral et par localisation du spectre d'une
matrice orthogonale. Un simple calcul de trace permet donc de savoir dans quelle con�guration

on se trouve. Pour (a, b) =

Å
1

3
,−2

3

ã
, on a A semblable à diag(1,−1,−1) matrice d'un demi-

tour d'axe Ker (A − I3) = Vect (1, 1, 1) et pour (a, b) =

Å
−1

3
,
2

3

ã
, on trouve A semblable à
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diag(1, 1,−1) matrice de la ré�exion par rapport à Ker (A− In) d'équation x+ y+ z = 0. Ainsi,
notant u = (1, 1, 1), on conclut

A ∈ O3(R) ⇐⇒ A = matC f avec f ∈
{
+− id , rot(u, π), sVect (u)⊥

}
Exercice 15 (**)

Soit U ∈ Mn,1(R)∖ {0}. On pose M = UU⊤. Montrer que M est diagonalisable puis préciser ses
éléments propres.

Corrigé : On a M⊤ = (UU⊤)
⊤
= UU⊤ = M

D'après le théorème spectral, la matrice M symétrique réelle est diagonalisable.

Munissons E = Mn,1(R) de son produit scalaire canonique ⟨X,Y⟩ = X⊤Y pour (X,Y) ∈ E2.
Pour X ∈ E, on a MX = U ⟨U,X⟩ d'où

X ∈ Ker M ⇐⇒ X ∈ Vect (U)⊥ et MU = ∥U∥2U

ce qui prouve

{0, ∥U∥2} ⊂ Sp (M) et E0(M) = Vect (U)⊥ Vect (U) ⊂ E∥U∥2(M)

Comme l'espace propre E0(M) est un hyperplan, pour raison de dimension, on conclut

Sp (M) = {0, ∥U∥2} et E0(M) = Vect (U)⊥ E∥U∥2(M) = Vect (U)

Remarque : Notant α = ∥U∥2, on obtient par associativité du produit matriciel

M2 = U(U⊤U)U⊤ = αM

Comme X(X− α) est annulateur de M, on en déduit la localisation du spectre Sp (M) ⊂ {0, α}
ce qui oriente ensuite la rédaction vers la détermination de Ker M comme ci-avant.

Exercice 16 (**)

Soit E euclidien et u ∈ S (E) tel que Tr (u) = 0.

1. Montrer qu'il existe x ∈ E∖ {0} tel que u(x)⊥x.

2. En déduire l'existence d'une base orthonormée (ei)i∈[[ 1 ;n ]] de E telle que ⟨u(ei), ei⟩ = 0
pour tout i ∈ [[ 1 ; n ]].

Corrigé : 1. Soit (ε1, . . . , εn) une base orthonormée de vecteurs propres de u. Avec x =
n∑

i=1

εi

(non nul car les εi sont libres), il vient

⟨u(x), x⟩ =
∑

1⩽i,j⩽n

⟨u(εi), εj⟩ =
∑

1⩽i,j⩽n

λi ⟨εi, εj⟩︸ ︷︷ ︸
=δi,j

=
n∑

i=1

λi = Tr (u) = 0

Ainsi ∃x ∈ E∖ {0} | u(x)⊥x

2. D'après le résultat précédent, il existe e1 que l'on peut normer tel que u(e1)⊥e1. Soit p le
projecteur orthogonal sur Vect (e1)

⊥. L'application p ◦ u
Vect (e1)⊥

induit un endomorphisme

v ∈ L (Vect (e1)
⊥). On véri�e sans di�culté que

∀(x, y) ∈
(
Vect (e1)

⊥)2 ⟨v(x), y⟩ = ⟨x, v(y)⟩
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et on a Tr u = Tr v = 0 puisque ⟨u(e1), e1⟩ = 0. On peut aussi voir les choses matriciellement.

Dans une base B = (e1,L ) orthonormée adaptée à la décomposition E = Vect (e1)
⊥
⊕Vect (e1)

⊥,
on a

A = matBu =

Å
0 ∗
∗ B

ã
avec B = matL v

Comme la matrice A est symétrique réelle de trace nulle, il en est de même pour la matrice B
que l'on peut interpréter comme matrice d'un endomorphisme de Vect (e1)

⊥ auto-adjoint et de
trace nulle. Par récurrence sur la dimension, on peut donc conclure

∃(ei)i∈[[ 1 ;n ]] base orthonormée de E | ∀i ∈ [[ 1 ; n ]] ⟨u(ei), ei⟩ = 0
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