ISM MP, Mathématiques
Année 2025/2026

Feuille d’exercices n°59

Exercice 1 (**)
Soit E euclidien et u € . (E). Montrer

HSl|1p [u(z)]] = ISup [(u(x), 2)| = max {|A], A € Sp (u)}

z||=1 z||=1
Corrigé : D’aprés le théoréme spectral, il existe une base orthonormée % = (e;)1<i<n de vec-
teurs propres de wu associés aux valeurs propres (\;)i<i<n. Soit ig € [1;n] tel que |\;,| =
max {|\|, A € Sp (u)}. Pour z € S(0,1), on a

(), 2)] = | SN2

i=1

n
<|Aio|21x?=|&o| et [(ules), ein)| = [Nl
1=

d’oit Sup [(u(z), z)| = max {|A], A € Sp (u)}
[[=]I=1
Puis Ju()|? = A2 < 0 ol = X, et flutes)| = |
=1
On conclut Sup ||u(z)|| = Sup [{(u(z),z)| = max {|\|, A € Sp (u)}
[J]|=1 [l=]|=1

Exercice 2 (***)

Soit E euclidien et f € .T(E). Montrer qu’il existe un unique g € . (E) tel que f = ¢°.

Corrigé : Soit # = (ey,...,e,) une base orthonormée de diagonalisation de f (une telle base
existe d’aprés le théoréme spectral). On a f(e;) = N\e; pour tout i € [1; n] avec \; = 0. On
définit ¢ € Z(E) par g(e;) = v/ Ae; pour tout i € [1;n]. On a f et g qui coincident sur
une base d’ou f = ¢ et ¢ € ST(E) puisque matzg € .7, (R). Montrons 'unicité dun tel
endomorphisme. Soit h € .1 (E) tel que f = h% Comme f est un polynoéme en h, alors f
et h commutent. Par suite, les sous-espaces propres de f sont stables par h. Pour A € Sp (f),
on note E, le sous-espace propre de f pour la valeur propre A et hy '’endomorphisme induit
par h sur Ey. On a clairement hy € *(E)) et h3 = XNidg, d’ou (X* — \) annulateur de h,.
D’aprés le théoréme spectral, Uendomorphisme h, est diagonalisable avec v/A comme unique
valeur propre possible (car —v/A < 0) ce qui prouve que hy = vV Aidg,. Comme E= @ E,,

A€Sp (f)
I’endomorphisme A est donc caractérisé et on conclut

Vfe.sHE) Nge SHE) | f=g°

Remarque : On peut établir g € R[f] et comme h et f commutent, alors h et g commutent et
sont donc diagonalisables dans une méme base. Pour z un vecteur de cette base, on a h(z) = Az
et g(x) = px avec \, p = 0. Avec I'égalité h%(z) = f(z) = ¢*(), il s’ensuit A\? = p? d'ou A = p
et les endomorphismes h et g coincident donc sur cette base d’oli 'unicité. Cet argument est
moins efficace que celui présenté ci-avant puisqu’il s’appuie notamment sur la diagonalisation
simultanée (a refaire).



Exercice 3 (***)

Pour A € .7+ (R), on note B = v/A 'unique matrice B € .77 (R) solution de B> = A. Montrer
la continuité de cette application /-

Corrigé : On munit E = .#,(R) de son produit scalaire canonique. Soit (Ay), € 7, (R)Y

telle que Ay k—> A. Pour tout k entier, il existe une unique matrice By, € .7 (R) telle que
—+00

B} = Ay. Tl vient
VEeN  ||Bi)? = Tr (B 'By) = Tr (B?) = Tr (A)

Or, application Tr est linéaire donc continue sur 'espace E de dimension finie. Par conséquent,
on a Tr(Ag) — Tr (A) et cette suite est donc bornée. Il en résulte que la suite (By)g est
—+00

bornée. Soit ¢ une extractrice telle que By T B. La matrice B est dans .7 (R) par
—+00

fermeture de cet ensemble (voir décomposition de Cartan). Par continuité du produit matriciel,
on a
— R2 2 _
Asp(k) a Bso(k) k—+o0 BT=A
Ainsi, la suite (Bg)x est bornée et admet B = VA pour unique valeur d’adhérence dans E espace

de dimension finie. Il en résulte que By k—) B et on conclut
—+00

[’application /- est continue sur .7, (R).

Exercice 4 (***)
Soit S € .77 (R), B € 4#,1(R) et ¢ définie sur .4, 1(R) par

VX € A, 1 (R) p(X) =XTSX —2X"B
Montrer que ¢ admet un minimum et préciser ou il est atteint.

Corrigé : Soit A € .ZF(R) telle que S = A?. On a A € ., (R) puisque det(A)? = det S > 0.
Pour X et C dans ., 1(R), en pensant a un début de « carré », on observe que

|AX — C||? = XTAZX — 2(AX, C) + ||C||> = XTSX — 2XTAC + [|C||?
On pose alors C = A7'B. 1l vient
VX € Mn(R)  ¢(X) = [|[AX — A7'B|]> — [IB|?

et [AX —A7'B|I?>0 et [AX-—A'B|)=0 <= AX=A"'B < X=5"'B

Ainsi La fonction ¢ admet un minimum atteint en S™!B.

Exercice 5 (***)

Soit E euclidien de dimension n, (uy, ..., u,) € E" et G € #,(R) définie par G = ({u;,u;))

1<ij<n’
1. Montrer que G € .7 (R).

2. Application : Montrer qu'il existe (vy,...,v,) famille de vecteurs normés de E telle que
|vi — v;|| = 1 pour tout i # j.



Corrigé : 1. Soit X € ., 1(R). On trouve

XTGX = > mwy (i, uy) = | wawl* 2 0
i=1

1<i,j<n

On conclut G e “ (R)

2. Supposons qu'il existe (vy,...,v,) € E" Pour (i,7) € [1;n]* avec i # j, on obtient par
polarisation

1 1
(vi, v5) = 2 Hosll? + 1Jvs]1* = Nlvi = v;1°] = 2

Soit G la matrice de Gram de la famille (vy,...,v,). On a
2 1 1
1 1 1
G:§ . :§(J+In) avec J:(l)ngn
1 1 2

Pour X € ,,1(R), on trouve

1 n 1 n 2 n
(XTIX+X'X) = 5 ( > omixy+ fo) =5 <<Zx,> + Z:pf) >0
i=1 i=1

1<, g<n i=1

XTGX =

N | —

Par conséquent, il existe une matrice S € .7, (R) telle que G = S?> = STS. Soit & = (e1,...,¢e,)
une base orthonormée de E. On choisit alors (vq,...,v,) € E" tel que S = matg(vy,...,v,) et
G = STS. Avec ces choix, on a pour (i,5) € [1; n]?

(S™S),, = kznjl (vi, ex) (v, ex) = (i, v5)

On conclut

Il existe une famille de vecteurs normés et équidistants dans E euclidien de dimension n‘

Remarque : Si dim E > n, le résultat vaut aussi : il suffit de considérer une famille (vq,...,v,) €
E” libre.

Exercice 6 (**)

Soient A, B € .%,(R) telles que A® = B®. Montrer que A = B.

Corrigé : Notons E = R". D’apreés le théoréme spectral, on a
D Ex(A)=E
AESP (A)
Soit A € Sp(A). On a clairement Ey(A) C Ey3(A%). Puis, par injectivité de u — u® sur R, les
valeurs prises par A\*> quand A\ parcourt Sp (A) sont deux & deux distinctes et par conséquent
E= @ EA)C @ Es(A’)CE
AESP (A) AESP (A)
avec la derniére inclusion qui est en fait une égalité. Soit 1 € Sp(A) et € E,3(A%). On

note x = > xy sa décomposition dans € E,(A). C’est aussi une décomposition dans
AESp (A) AESP (A)



@ Es(A3) du fait des inclusions des espaces propres et par unicité de la décomposition
AESP (A)

dans une somme directe, on en déduit x = z, d’ott z € E,(A). Ainsi, on a
Sp(A) ={N XAeSp(A)} et VAeSp(A) E,(A)=Ey(A3)

On a de méme pour la matrice B. Comme A® = B3, il en résulte que Sp (A) = Sp(B) par
injectivité de u — u? avec égalité des sous-espaces propres. On conclut

Remarque : On peut aussi considérer les dimensions dans la suite d’inclusions

E= @ E.(A)C P Es(A’)CE
AeSp (A) AESp (A)

On en déduit que toutes les inclusions sont des égalités et notamment Ey(A) = Eys(A?) pour
tout A € Sp (A).

Exercice 7 (**%*)

Soit E euclidien et (ug,...,u,) une base de E. On pose

n

Veel  f(z) = (r w)u

i=1
1. Montrer que f € 7 (E).
2. Justifier I'existence de g € . (E) tel que ¢> = f~1.
3. Montrer que (g(uy),...,g(u,)) est une base orthonormée de E.
Corrigé : 1. On a clairement f € .Z(E) puis pour (z,y) € E?

n

(f@),y) = 2 (w,w) {y, wi)

i=1
expression symétrique en x et y et

(F@).2) = 5 {0 > 0

avec (f(x),z) =0 < x € Vect (uy,...,u,)* =Et <= z=0g
Ainsi f e (E)
2. Soit Z une base orthonormée de vecteurs propres de f. On note maty f = diag(A,..., An). On

a f inversible puisque Sp (f) C ]0;+00][ et matyf~! est diagonale avec des termes diagonaux
1
x strictement positifs ce qui prouve f~!' € #TH(E). On définit ¢ € Z(E) avec matzg =

diag(1/+v/A1, ..., 1/4/\,) diagonale donc symétrique dans une base orthonormée. On a matzg? =
matzf 1 d’ot

Il existe g € .7(E) tel que g> = f.

3. On note v; = f~'(u;) pour tout j € [1; n]. Soit (¢,7) € [1; n]* On a
(g(ua), g(uz)) = (ui, g% () = (s, [ (ug)) = (ui, vg)

Or, on a flvy) = Z (v, wi) u; = u;
d’ou (vj,u;) = &, ; par liberté de (uq,...,u,). Ainsi
La famille (g(uq),. ( n)) est une base orthonormée de E.
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Exercice 8 (***)

Montrer V(A,B) € ZFH(R)?  0<Tr(AB) < Tr (A) Tr (B)

Corrigé : On peut trouver S € . (R) telle que A = S?. D’aprés la propriété fondamentale de
la trace, on a

Tr (AB) = Tr (S*B) = Tr (SBS)

et SBS € .7 (R) sans difficulté. On en déduit Tr (SBS) > 0. Puis, considérant le produit scalaire
canonique sur .#,(R), il vient d’aprés I'inégalité de Cauchy-Schwarz

Tr (AB) = (A, B) < [[A[lIIBI|

Notons (A;)ic[1:n] les valeurs propres de A. On a

n n 2
AL = Tr(a2) = Sx < ()
De méme pour ||BJ| et on conclut

V(A,B) € ZF(R)?  0<Tr(AB) < Tr(A) Tr (B)

Variante : On peut faire sans racine carrée matricielle. On dispose, d’aprés le théoréme spectral,
de P € O,(R) et D = diag()\y,...,\,) telles que A = PDP' avec les \; > 0. Par propriété
fondamentale de la trace, il vient

Tr (AB) = Tr (PDP'B) = Tr (DB') avec B’ =PTBP

On vérifie sans difficulté B’ € . (R). Notant B’ = (ﬁi’j)l<ij<n et E; la colonne de ., 1(R) avec
1 en i-éme ligne et des 0 ailleurs pour ¢ € [1; n], on obtient

puis Tt (AB) = Tr (DB') = éw < <ZZ:1)\> (é ﬁm) — Tr (A) Tr (B)

la derniére inégalité résultant de la positivité des \; et 3; ;.

Exercice 9 (***)

Soit A € 7T (R) et B € ., (R). Montrer que AB est diagonalisable avec Sp (AB) C [0;+00 .

Corrigé : Soit S € .7 (R) telle que A = S On a (detS)? =det A > 0 d’ou S € ., (R). On

trouve
AB = $?B = S(SBS)S™*

Ainsi, la matrice AB est semblable a SBS et on vérifie sans difficulté que SBS est symétrique
réelle donc ortho-diagonalisable d’aprés le théoréme spectral. Enfin, pour X € ., 1(R), il vient

(X,8BSX) = (Y,BY) >0 avec Y =SX

On conclut La matrice AB est diagonalisable avec Sp (AB) C [0;+00 .




Exercice 10 (**%*)

Soit E euclidien et f € (E). On pose
X={reE| (f(x),z) <1}

Montrer que X est compact si et seulement si f € .77 (E).

Corrigé : D’aprés le théoréme spectral, on dispose de & = (ey, ..., e,) une base orthonormée
de vecteurs propres de f associés aux valeurs propres \; < ... < \,. Pour z € E, on note
n

r = Y x;e; avec les x; coordonnées de x dans . On a
i=1

(f(x),z) = <Z>\z‘$i€z‘, Z$j€j> = > Nazj (e, ej) = > Na?
i=1 j=1 N =1

1<i,j<n

=8;,j

Ainsi, Papplication ¢ : x — (f(x),z) est polynomiale en les coordonnées de = dans Z ce qui

prouve sa continuité et X = o' (]-00;1]) est fermé comme image réciproque d'un fermé par
une application continue. Par ailleurs, on a

Ve € E (f(z),x) = M|z
Si f e STH(E), alors
(f(x),z) <1 = M|z|P<1 = =z€By; (0,1/\//\_1)

ce qui prouve X C By (0,1/v/A)

L’ensemble X est donc un fermé borné de E espace de dimension finie. Par conséquent, 'ensemble
X est compact. Si f ¢ STT(E), il existe ig € [1; n] tel que \;; < 0 et par suite

Va € R ae;, € X
ce qui prouve que X est non borné et donc non compact. On conclut

X compact <— f € STT(E)

Exercice 11 (***%*)

1. Soit A € GL,(R). Montrer qu’il existe O € O,(R) et S € ., 7(R) uniques telles que
A = 0S.
2. Soit A € #,(R). Montrer qu’il existe O € O,(R) et S € .77 (R) telles que A = OS.
3. A-t-on I'unicité dans la question précédente ?
Corrigé : 1. S'il existe (0,S) € O,(R) x .ZF(R) tel que A = OS, il s’ensuit S> = ATA. Or,
ona ATA € .ZF(R). Ainsi, il existe une unique matrice S € .7, (R) telle que ATA = S%. On a
S inversible puisque (det S)? = (det A)? > 0. Posons ensuite O = AS™*. On a

OTO = (AS1)"AS™ 1 =S TATAS = §71828 =1,
Le choix de O est unique puisqu’il découle du choix de S qui est unique. On conclut
VA € GL,(R) 31(0,8) € O,(R) x T (R) | A=0S

2. On sait que GL,(R) est dense dans .#,(R). Ainsi, pour A € ., (R), il existe (A,), € GL,(R)Y
telle que A, —— A. D’aprés ce qui précede, on a
p—0o0

YpeN  3(0,,S,) € OuR) x ZFHR) | A,=0,S,
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Par compacité de O, (R), il existe ¢ extractrice telle que

OSD(P) —0c On(R)

p—+0o0

Par ailleurs Vp e N Sp = OpTAp

Par continuité du produit matriciel, la suite (S¢(p))p converge. Montrons la fermeture de .71 (R).

Soit (M,), € Z,F(R)N avec M,, —— M. Par continuité de la transposition (linéaire en dimen-
p—+00

sion finie), on a M, = M,,’ —— MT d’oit M = M puis, pour X € .#,1(R), on a X"M,X >0
p—+o0
pour tout p entier et par continuité du produit matriciel

XTMX —— XTMX >0

p—+o0

Il s’ensuit que Sy, —— S € ZF(R) et on conclut
p—+00

VA € #4,(R)  3(0,S) € O.(R) x ZHR) | A=O0S

Remarques : (a) Ce résultat est intitulé décomposition polaire ou décomposition de Cartan.
(b) On peut éviter le raisonnement par densité en utilisant le résultat de I’exercice 3 feuille 56.
Tout d’abord, il existe une unique matrice S € .7 (R) telle que ATA = S2. Notant f et s les
endomorphismes de R™ canoniquement associés a A et S, on a

V(i j) € [1sn]> (fles), fleg)) = (s(e), s(ej))

Alors, il existe g € O(R") tel que g(s(e;)) = f(e;) pour i € [1; n] et le résultat suit.

3. Si 0 est valeur propre, I'unicité n’est plus garantie car n’importe quelle base orthonormeée fait
I'affaire pour l'espace propre Eg(A). Par exemple, avec

A = diag(1,0) P=1L et Q=diag(l,—1)

On trouve A=PS=QS avec S=A€c .7 (R), (P,Q) €0y(R)? et P#Q

Ainsi

’L’unicité de la décomposition de Cartan n’est pas assurée pour une matrice non inversible.

Variante : Contre-exemple encore plus simple avec A=S=0,P =1, et Q= —1I,.

Exercice 12 (***)
Soit A € ZT(R) et B € .7, (R).
1. Montrer qu’il existe P € GL,(R) et D € ., (R) diagonale telle que
A=P'P et B=P'DP

2. Etablir V(A,B) € Z+(R) x .ZF(R) det(A + B) > det(A) + det(B)

3. Le résultat précédent a-t-il lieu si on suppose seulement A € . (R)?

Corrigé : 1. Tl existe S € .7 (R) telle que A = S? et det A = (det S)? d’out S € GL,(R). On
peut donc écrire B = SCS avec C = S™'BS™! qui est symétrique. Par suite, avec le théoréme
spectral, il existe Q € O, (R) et D diagonale réelle telle que C = Q"DQ. Posant P = QS, on a

PTP=SQTQS=S2=A et P'DP=SQ'DQS=SCS=8

et la matrice P est inversible comme produit de matrices inversibles. Ainsi
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Il existe P € GL,(R) et D € .#,(R) diagonale telles que A = P'P et B = P'DP.
2. On applique le résultat précédent. On a
det(A + B) = det(PTP + PTDP) = det(P ") det(I, + D) det(P)
avec D = P71TBP~! = diag(\1, ..., \,). Pour X € .#,1(R), notant Y = P~'X, on a
(X,DX) = YTPTDPY = (Y,BY) > 0
d’out Sp (D) C R,, autrement dit les A; > 0. On a

n

det(I, + D) = [[(1+X) =1+ [[ \i =1+ det(D)

i=1 i=1

Ainsi det(A + B) > det(P") (1 + det(D)) det(P) = det(P'P) + det(P'DP)

On conclut V(A,B) € ZT(R) x L (R) det(A+ B) > det A + det B

3. Si A ou B est dans .7 " (R), il s’agit du résultat précédemment établi (par symétrie des
roles). Supposons A et B dans .77 (R) ~ ZFT(R). Ona A + B € .“F(R) d’ou det(A +B) > 0
et det(A) = det(B) = 0 et par conséquent

V(A,B) € ZF(R) x ZF(R) det(A + B) > det(A) + det(B)

Exercice 13 (**%*)

Pour A € #,(R), déterminer Max Tr (PA).
PeO,(R)
Corrigé : L’application ¢ : P+ Tr (PA) est linéaire sur E = .#,,(R) espace de dimension finie
donc continue. Le groupe orthogonal O, (R) est un compact de E et d’aprés le théoréme des
bornes atteintes, 'application ¢ admet un maximum sur O,(R). D’aprés le décomposition de
Cartan, on sait qu’il existe R € O,(R) et S € .7 (R) telles que A = RS. On a ATA = 52 et
par unicité de la racine carrée matricielle dans . (R), la matrice S est unique. L’application
P +— PR réalise une permutation de O, (R) et par conséquent
M P)= Max Tr(PS

Peogi:(KR) gp( ) PeOi%R) r( )
D’aprés le théoréme spectral et la positivité de S, il existe Q € O,(R) et D = diag(Ay, ..., \n)
avec les \; > 0 telles que S = QDQ'. Avec la propriété fondamentale de la trace, il vient

VP € O,(R)  Tr(PS)=Tr(PQDQT) = Tr (Q"PQD)

Comme précédemment, 'application P — QTPQ réalise une permutation de O,(R). Ainsi, on
obtient

M P)= M Tr (PD
PEO{ii{R)(p() Pe@%@) r(PD)

Soit P € O,(R). Le calcul donne Tr (PD) = > p;;A;. Comme la matrice P est orthogonale, ses
i=1

colonnes forment une base orthonormée de R" et il en résulte que p;; < 1 pour tout (i,j) €

[1; n]? Par positivité des \;, il vient pour

i=1 i=1

majorant qui est atteint pour P = [,,. Les matrices D et S étant semblables, on conclut

Max Tr(PA) = T
b, 1T (PA) = Tr (5)

Remarque : La matrice S est définie de maniére unique par S = VATA.
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Exercice 14 (**%*)

1. Montrer que O,(R) est un sous-groupe compact de GL,(R).

2. Montrer que si G est un sous-groupe compact de GL,(R) contenant O, (R), alors G =
O, (R).

Corrigé : 1. Déja vu.

2. Soit G sous-groupe compact de GL,(R) contenant O, (R) et soit A € G. On utilise le résultat
de la décomposition polaire : il existe O € O,(R) et S € .77 (R) telles que A = OS. Ainsi,
onaS=O0TA € G et par conséquent S* € G pour tout k entier. La suite (S¥); est a valeurs
dans G compact donc admet une sous-suite convergente. D’aprés le théoréme spectral, il existe
P € O,(R) telle que PTSP est diagonale. Soit A € Sp (S) et X € .4, ;(R) normée avec SX = \X.
SiA>1,0na

(SFX,X) = A —— 100

k—+o00
ce qui contredit I'existence d’une sous-suite convergente. Si A < 1, on trouve
<SkX,X> =\ ——0
k—+00

et une sous-suite convergente aurait une valeurs propre nulle ce qui contredit 'existence d’une
valeur d’adhérence dans G. Par conséquent, on Sp (S) = {1} et comme S est diagonalisable, elle
est semblable a I,, et donc S =1,,, d’oit A = O. On conclut

G = O,(R)

Exercice 15 (**)

Soit E euclidien et u € Z(E) tel que (u(z),z) = 0 pour tout z € E.

1. Montrer V(z,y) € E? (u(z),y) = — (z,u(y))

En déduire la forme matgu avec £ base orthonormée de E.
2. On suppose u € GL(E). Montrer que dim E est paire.
3. Montrer que u? est diagonalisable.
Corrigé : 1. Soit (z,y) € E% 1l vient
(u(+y),x+y) =0 = (u(z),y) + (u(y),z) =0

Do Viz,y) € B2 (u(x),y) = — (z,u(y))

Soit & = (e;)1<i<n base orthonormée de E et A = matgu. On a

V(i,7) € [1; 0] aiy = (uley), &) = — (ules), e5) = —ay,

Ainsi ’Dans % base orthonormée de E, la matrice matgu est antisymétrique.

Remarque : La relation établie équivaut & u* = —u et le résultat sur mat u s’ensuit.

2. Soit & une base orthonormée de E. On a detu = det A avec A = matgu. Or, la matrice A
est antisymétrique et comme une matrice et sa transposée ont méme déterminant, il s’ensuit

det A = det AT = det(—A) = (—1)"det A
Si n est impair, on a det A = —det A d’on u ¢ GL(E). On conclut



Si u € GL(E), alors la dimension de E est paire.

3. Soit (z,y) € E% On a avec la propriété établie en premiére question

(W?(2),y) = = (u(x),uly)) = (=1)* (z,v*(y))

ce qui prouve que u? € .(E). D’aprés le théoréme spectral, on conclut

L’endomorphisme u? est diagonalisable.
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