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Feuille d'exercices n°59

Exercice 1 (**)

Soit E euclidien et u ∈ S (E). Montrer

Sup
∥x∥=1

∥u(x)∥ = Sup
∥x∥=1

|⟨u(x), x⟩| = max {|λ| , λ ∈ Sp (u)}

Corrigé : D'après le théorème spectral, il existe une base orthonormée B = (ei)1⩽i⩽n de vec-
teurs propres de u associés aux valeurs propres (λi)1⩽i⩽n. Soit i0 ∈ [[ 1 ; n ]] tel que |λi0| =
max {|λ| , λ ∈ Sp (u)}. Pour x ∈ S(0, 1), on a

|⟨u(x), x⟩| =
∣∣∣∣ n∑
i=1

λix
2
i

∣∣∣∣ ⩽ |λi0|
n∑

i=1

x2
i = |λi0| et |⟨u(ei0), ei0⟩| = |λi0|

d'où Sup
∥x∥=1

|⟨u(x), x⟩| = max {|λ| , λ ∈ Sp (u)}

Puis ∥u(x)∥2 =
n∑

i=1

λ2
ix

2
i ⩽ λ2

i0
∥x∥2 = λ2

i0
et ∥u(ei0)∥ = |λi0 |

On conclut Sup
∥x∥=1

∥u(x)∥ = Sup
∥x∥=1

|⟨u(x), x⟩| = max {|λ| , λ ∈ Sp (u)}

Exercice 2 (***)

Soit E euclidien et f ∈ S +(E). Montrer qu'il existe un unique g ∈ S +(E) tel que f = g2.

Corrigé : Soit B = (e1, . . . , en) une base orthonormée de diagonalisation de f (une telle base
existe d'après le théorème spectral). On a f(ei) = λiei pour tout i ∈ [[ 1 ; n ]] avec λi ⩾ 0. On
dé�nit g ∈ L (E) par g(ei) =

√
λiei pour tout i ∈ [[ 1 ; n ]]. On a f et g2 qui coïncident sur

une base d'où f = g2 et g ∈ S +(E) puisque matBg ∈ S +
n (R). Montrons l'unicité d'un tel

endomorphisme. Soit h ∈ S +(E) tel que f = h2. Comme f est un polynôme en h, alors f
et h commutent. Par suite, les sous-espaces propres de f sont stables par h. Pour λ ∈ Sp (f),
on note Eλ le sous-espace propre de f pour la valeur propre λ et hλ l'endomorphisme induit
par h sur Eλ. On a clairement hλ ∈ S +(Eλ) et h2

λ = λ id Eλ
d'où (X2 − λ) annulateur de hλ.

D'après le théorème spectral, l'endomorphisme hλ est diagonalisable avec
√
λ comme unique

valeur propre possible (car −
√
λ ⩽ 0) ce qui prouve que hλ =

√
λ id Eλ

. Comme E =
⊕

λ∈Sp (f)

Eλ,

l'endomorphisme h est donc caractérisé et on conclut

∀f ∈ S +(E) ∃!g ∈ S +(E) | f = g2

Remarque : On peut établir g ∈ R[f ] et comme h et f commutent, alors h et g commutent et
sont donc diagonalisables dans une même base. Pour x un vecteur de cette base, on a h(x) = λx
et g(x) = µx avec λ, µ ⩾ 0. Avec l'égalité h2(x) = f(x) = g2(x), il s'ensuit λ2 = µ2 d'où λ = µ
et les endomorphismes h et g coïncident donc sur cette base d'où l'unicité. Cet argument est
moins e�cace que celui présenté ci-avant puisqu'il s'appuie notamment sur la diagonalisation
simultanée (à refaire).
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Exercice 3 (***)

Pour A ∈ S +
n (R), on note B =

√
A l'unique matrice B ∈ S +

n (R) solution de B2 = A. Montrer
la continuité de cette application

√
·.

Corrigé : On munit E = Mn(R) de son produit scalaire canonique. Soit (Ak)k ∈ S +
n (R)N

telle que Ak −−−−→
k→+∞

A. Pour tout k entier, il existe une unique matrice Bk ∈ S +
n (R) telle que

B2
k = Ak. Il vient

∀k ∈ N ∥Bk∥2 = Tr (Bk
⊤Bk) = Tr (B2

k) = Tr (Ak)

Or, l'application Tr est linéaire donc continue sur l'espace E de dimension �nie. Par conséquent,
on a Tr (Ak) −−−−→

k→+∞
Tr (A) et cette suite est donc bornée. Il en résulte que la suite (Bk)k est

bornée. Soit φ une extractrice telle que Bφ(k) −−−−→
k→+∞

B. La matrice B est dans S +
n (R) par

fermeture de cet ensemble (voir décomposition de Cartan). Par continuité du produit matriciel,
on a

Aφ(k) = B2
φ(k) −−−−→k→+∞

B2 = A

Ainsi, la suite (Bk)k est bornée et admet B =
√
A pour unique valeur d'adhérence dans E espace

de dimension �nie. Il en résulte que Bk −−−−→
k→+∞

B et on conclut

L'application
√
· est continue sur S +

n (R).

Exercice 4 (***)

Soit S ∈ S ++
n (R), B ∈ Mn,1(R) et φ dé�nie sur Mn,1(R) par

∀X ∈ Mn,1(R) φ(X) = X⊤SX− 2X⊤B

Montrer que φ admet un minimum et préciser où il est atteint.

Corrigé : Soit ∆ ∈ S +
n (R) telle que S = ∆2. On a ∆ ∈ S ++

n (R) puisque det(∆)2 = det S > 0.
Pour X et C dans Mn,1(R), en pensant à un début de � carré �, on observe que

∥∆X− C∥2 = X⊤∆2X− 2 ⟨∆X,C⟩+ ∥C∥2 = X⊤SX− 2X⊤∆C+ ∥C∥2

On pose alors C = ∆−1B. Il vient

∀X ∈ Mn,1(R) φ(X) = ∥∆X−∆−1B∥2 − ∥B∥2

et ∥∆X−∆−1B∥2 ⩾ 0 et ∥∆X−∆−1B∥2 = 0 ⇐⇒ ∆X = ∆−1B ⇐⇒ X = S−1B

Ainsi La fonction φ admet un minimum atteint en S−1B.

Exercice 5 (***)

Soit E euclidien de dimension n, (u1, . . . , un) ∈ En etG ∈ Mn(R) dé�nie parG =
(
⟨ui, uj⟩

)
1⩽i,j⩽n

.

1. Montrer que G ∈ S +
n (R).

2. Application : Montrer qu'il existe (v1, . . . , vn) famille de vecteurs normés de E telle que
∥vi − vj∥ = 1 pour tout i ̸= j.
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Corrigé : 1. Soit X ∈ Mn,1(R). On trouve

X⊤GX =
∑

1⩽i,j⩽n

xixj ⟨ui, uj⟩ = ∥
n∑

i=1

xiui∥2 ⩾ 0

On conclut G ∈ S +
n (R)

2. Supposons qu'il existe (v1, . . . , vn) ∈ En. Pour (i, j) ∈ [[ 1 ; n ]]2 avec i ̸= j, on obtient par
polarisation

⟨vi, vj⟩ =
1

2
[∥vi∥2 + ∥vj∥2 − ∥vi − vj∥2] =

1

2

Soit G la matrice de Gram de la famille (v1, . . . , vn). On a

G =
1

2

à
2 1 . . . 1

1
. . .

. . .
...

. . .
. . .

. . . 1
1 . . . 1 2

í
=

1

2
(J + In) avec J =

(
1
)
1⩽i,j⩽n

Pour X ∈ Mn,1(R), on trouve

X⊤GX =
1

2

(
X⊤JX + X⊤X

)
=

1

2

Ç ∑
1⩽i,j⩽n

xixj +
n∑

i=1

x2
i

å
=

1

2

ÇÅ
n∑

i=1

xi

ã2

+
n∑

i=1

x2
i

å
⩾ 0

Par conséquent, il existe une matrice S ∈ S +
n (R) telle que G = S2 = S⊤S. Soit B = (e1, . . . , en)

une base orthonormée de E. On choisit alors (v1, . . . , vn) ∈ En tel que S = matB(v1, . . . , vn) et
G = S⊤S. Avec ces choix, on a pour (i, j) ∈ [[ 1 ; n ]]2(

S⊤S
)
i,j

=
n∑

k=1

⟨vi, ek⟩ ⟨vj, ek⟩ = ⟨vi, vj⟩

On conclut

Il existe une famille de vecteurs normés et équidistants dans E euclidien de dimension n.

Remarque : Si dimE ⩾ n, le résultat vaut aussi : il su�t de considérer une famille (v1, . . . , vn) ∈
En libre.

Exercice 6 (**)

Soient A,B ∈ Sn(R) telles que A3 = B3. Montrer que A = B.

Corrigé : Notons E = Rn. D'après le théorème spectral, on a⊕
λ∈Sp (A)

Eλ(A) = E

Soit λ ∈ Sp (A). On a clairement Eλ(A) ⊂ Eλ3(A3). Puis, par injectivité de u 7→ u3 sur R, les
valeurs prises par λ3 quand λ parcourt Sp (A) sont deux à deux distinctes et par conséquent

E =
⊕

λ∈Sp (A)

Eλ(A) ⊂
⊕

λ∈Sp (A)

Eλ3(A3) ⊂ E

avec la dernière inclusion qui est en fait une égalité. Soit µ ∈ Sp (A) et x ∈ Eµ3(A3). On

note x =
∑

λ∈Sp (A)

xλ sa décomposition dans
⊕

λ∈Sp (A)

Eλ(A). C'est aussi une décomposition dans
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⊕
λ∈Sp (A)

Eλ3(A3) du fait des inclusions des espaces propres et par unicité de la décomposition

dans une somme directe, on en déduit x = xµ d'où x ∈ Eµ(A). Ainsi, on a

Sp (A3) = {λ3, λ ∈ Sp (A)} et ∀λ ∈ Sp (A) Eλ(A) = Eλ3(A3)

On a de même pour la matrice B. Comme A3 = B3, il en résulte que Sp (A) = Sp (B) par
injectivité de u 7→ u3 avec égalité des sous-espaces propres. On conclut

A = B

Remarque : On peut aussi considérer les dimensions dans la suite d'inclusions

E =
⊕

λ∈Sp (A)

Eλ(A) ⊂
⊕

λ∈Sp (A)

Eλ3(A3) ⊂ E

On en déduit que toutes les inclusions sont des égalités et notamment Eλ(A) = Eλ3(A3) pour
tout λ ∈ Sp (A).

Exercice 7 (***)

Soit E euclidien et (u1, . . . , un) une base de E. On pose

∀x ∈ E f(x) =
n∑

i=1

⟨x, ui⟩ui

1. Montrer que f ∈ S ++(E).

2. Justi�er l'existence de g ∈ S (E) tel que g2 = f−1.

3. Montrer que (g(u1), . . . , g(un)) est une base orthonormée de E.

Corrigé : 1. On a clairement f ∈ L (E) puis pour (x, y) ∈ E2

⟨f(x), y⟩ =
n∑

i=1

⟨x, ui⟩ ⟨y, ui⟩

expression symétrique en x et y et

⟨f(x), x⟩ =
n∑

i=1

⟨x, ui⟩2 ⩾ 0

avec ⟨f(x), x⟩ = 0 ⇐⇒ x ∈ Vect (u1, . . . , un)
⊥ = E⊥ ⇐⇒ x = 0E

Ainsi f ∈ S ++(E)

2. Soit B une base orthonormée de vecteurs propres de f . On notematBf = diag(λ1, . . . , λn). On
a f inversible puisque Sp (f) ⊂ ] 0 ; +∞ [ et matBf

−1 est diagonale avec des termes diagonaux
1

λi

strictement positifs ce qui prouve f−1 ∈ S ++(E). On dé�nit g ∈ L (E) avec matBg =

diag(1/
√
λ1, . . . , 1/

√
λn) diagonale donc symétrique dans une base orthonormée. On a matBg

2 =
matBf

−1 d'où

Il existe g ∈ S (E) tel que g2 = f .

3. On note vj = f−1(uj) pour tout j ∈ [[ 1 ; n ]]. Soit (i, j) ∈ [[ 1 ; n ]]2. On a

⟨g(ui), g(uj)⟩ = ⟨ui, g
2(uj)⟩ = ⟨ui, f

−1(uj)⟩ = ⟨ui, vj⟩

Or, on a f(vj) =
n∑

i=1

⟨vj, ui⟩ui = uj

d'où ⟨vj, ui⟩ = δi,j par liberté de (u1, . . . , un). Ainsi

La famille (g(u1), . . . , g(un)) est une base orthonormée de E.
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Exercice 8 (***)

Montrer ∀(A,B) ∈ S +
n (R)2 0 ⩽ Tr (AB) ⩽ Tr (A)Tr (B)

Corrigé : On peut trouver S ∈ S +
n (R) telle que A = S2. D'après la propriété fondamentale de

la trace, on a

Tr (AB) = Tr (S2B) = Tr (SBS)

et SBS ∈ S +
n (R) sans di�culté. On en déduit Tr (SBS) ⩾ 0. Puis, considérant le produit scalaire

canonique sur Mn(R), il vient d'après l'inégalité de Cauchy-Schwarz

Tr (AB) = ⟨A,B⟩ ⩽ ∥A∥∥B∥

Notons (λi)i∈[[ 1 ;n ]] les valeurs propres de A. On a

∥A∥2 = Tr (A2) =
n∑

i=1

λ2
i ⩽
Å

n∑
i=1

λi

ã2
De même pour ∥B∥ et on conclut

∀(A,B) ∈ S +
n (R)2 0 ⩽ Tr (AB) ⩽ Tr (A)Tr (B)

Variante : On peut faire sans racine carrée matricielle. On dispose, d'après le théorème spectral,
de P ∈ On(R) et D = diag(λ1, . . . , λn) telles que A = PDP⊤ avec les λi ⩾ 0. Par propriété
fondamentale de la trace, il vient

Tr (AB) = Tr (PDP⊤B) = Tr (DB′) avec B′ = P⊤BP

On véri�e sans di�culté B′ ∈ S +
n (R). Notant B′ =

(
βi,j

)
1⩽i,j⩽n

et Ei la colonne de Mn,1(R) avec
1 en i-ème ligne et des 0 ailleurs pour i ∈ [[ 1 ; n ]], on obtient

∀i ∈ [[ 1 ; n ]] βi,i = Ei
⊤B′Ei ⩾ 0

puis Tr (AB) = Tr (DB′) =
n∑

i=1

λiβi,i ⩽
Å

n∑
i=1

λi

ãÇ
n∑

j=1

βj,j

å
= Tr (A)Tr (B)

la dernière inégalité résultant de la positivité des λi et βj,j.

Exercice 9 (***)

Soit A ∈ S ++
n (R) et B ∈ S +

n (R). Montrer que AB est diagonalisable avec Sp (AB) ⊂ [ 0 ; +∞ [.

Corrigé : Soit S ∈ S +
n (R) telle que A = S2. On a (det S)2 = detA > 0 d'où S ∈ S ++

n (R). On
trouve

AB = S2B = S(SBS)S−1

Ainsi, la matrice AB est semblable à SBS et on véri�e sans di�culté que SBS est symétrique
réelle donc ortho-diagonalisable d'après le théorème spectral. En�n, pour X ∈ Mn,1(R), il vient

⟨X, SBSX⟩ = ⟨Y,BY⟩ ⩾ 0 avec Y = SX

On conclut La matrice AB est diagonalisable avec Sp (AB) ⊂ [ 0 ; +∞ [.
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Exercice 10 (***)

Soit E euclidien et f ∈ S (E). On pose

X = {x ∈ E | ⟨f(x), x⟩ ⩽ 1}
Montrer que X est compact si et seulement si f ∈ S ++(E).

Corrigé : D'après le théorème spectral, on dispose de B = (e1, . . . , en) une base orthonormée
de vecteurs propres de f associés aux valeurs propres λ1 ⩽ . . . ⩽ λn. Pour x ∈ E, on note

x =
n∑

i=1

xiei avec les xi coordonnées de x dans B. On a

⟨f(x), x⟩ =
Æ

n∑
i=1

λixiei,
n∑

j=1

xjej

∏
=

∑
1⩽i,j⩽n

λixixj ⟨ei, ej⟩︸ ︷︷ ︸
=δi,j

=
n∑

i=1

λix
2
i

Ainsi, l'application φ : x 7→ ⟨f(x), x⟩ est polynomiale en les coordonnées de x dans B ce qui
prouve sa continuité et X = φ−1 (] −∞ ; 1 ]) est fermé comme image réciproque d'un fermé par
une application continue. Par ailleurs, on a

∀x ∈ E ⟨f(x), x⟩ ⩾ λ1∥x∥2

Si f ∈ S ++(E), alors

⟨f(x), x⟩ ⩽ 1 =⇒ λ1∥x∥2 ⩽ 1 =⇒ x ∈ Bf

(
0, 1/

√
λ1

)
ce qui prouve X ⊂ Bf

(
0, 1/

√
λ1

)
L'ensemble X est donc un fermé borné de E espace de dimension �nie. Par conséquent, l'ensemble
X est compact. Si f /∈ S ++(E), il existe i0 ∈ [[ 1 ; n ]] tel que λi0 ⩽ 0 et par suite

∀α ∈ R αei0 ∈ X

ce qui prouve que X est non borné et donc non compact. On conclut

X compact ⇐⇒ f ∈ S ++(E)

Exercice 11 (****)

1. Soit A ∈ GLn(R). Montrer qu'il existe O ∈ On(R) et S ∈ S ++
n (R) uniques telles que

A = OS.

2. Soit A ∈ Mn(R). Montrer qu'il existe O ∈ On(R) et S ∈ S +
n (R) telles que A = OS.

3. A-t-on l'unicité dans la question précédente ?

Corrigé : 1. S'il existe (O, S) ∈ On(R) × S ++
n (R) tel que A = OS, il s'ensuit S2 = A⊤A. Or,

on a A⊤A ∈ S +
n (R). Ainsi, il existe une unique matrice S ∈ S +

n (R) telle que A⊤A = S2. On a
S inversible puisque (det S)2 = (detA)2 > 0. Posons ensuite O = AS−1. On a

O⊤O = (AS−1)
⊤
AS−1 = S−1A⊤AS = S−1S2S = In

Le choix de O est unique puisqu'il découle du choix de S qui est unique. On conclut

∀A ∈ GLn(R) ∃!(O, S) ∈ On(R)× S ++
n (R) | A = OS

2. On sait que GLn(R) est dense dans Mn(R). Ainsi, pour A ∈ Mn(R), il existe (Ap)p ∈ GLn(R)N
telle que Ap −−−→

p→∞
A. D'après ce qui précède, on a

∀p ∈ N ∃(Op, Sp) ∈ On(R)× S +
n (R) | Ap = OpSp
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Par compacité de On(R), il existe φ extractrice telle que

Oφ(p) −−−−→
p→+∞

O ∈ On(R)

Par ailleurs ∀p ∈ N Sp = Op
⊤Ap

Par continuité du produit matriciel, la suite
(
Sφ(p)

)
p
converge. Montrons la fermeture de S +

n (R).
Soit (Mp)p ∈ S +

n (R)N avec Mp −−−−→
p→+∞

M. Par continuité de la transposition (linéaire en dimen-

sion �nie), on a Mp = Mp
⊤ −−−−→

p→+∞
M⊤ d'où M⊤ = M puis, pour X ∈ Mn,1(R), on a X⊤MpX ⩾ 0

pour tout p entier et par continuité du produit matriciel

X⊤MpX −−−−→
p→+∞

X⊤MX ⩾ 0

Il s'ensuit que Sφ(p) −−−−→
p→+∞

S ∈ S +
n (R) et on conclut

∀A ∈ Mn(R) ∃(O, S) ∈ On(R)× S +
n (R) | A = OS

Remarques : (a) Ce résultat est intitulé décomposition polaire ou décomposition de Cartan.
(b) On peut éviter le raisonnement par densité en utilisant le résultat de l'exercice 3 feuille 56.
Tout d'abord, il existe une unique matrice S ∈ S +

n (R) telle que A⊤A = S2. Notant f et s les
endomorphismes de Rn canoniquement associés à A et S, on a

∀(i, j) ∈ [[ 1 ; n ]]2 ⟨f(ei), f(ej)⟩ = ⟨s(ei), s(ej)⟩
Alors, il existe g ∈ O(Rn) tel que g(s(ei)) = f(ei) pour i ∈ [[ 1 ; n ]] et le résultat suit.

3. Si 0 est valeur propre, l'unicité n'est plus garantie car n'importe quelle base orthonormée fait
l'a�aire pour l'espace propre E0(A). Par exemple, avec

A = diag(1, 0) P = I2 et Q = diag(1,−1)

On trouve A = PS = QS avec S = A ∈ S +
n (R), (P,Q) ∈ O2(R)2 et P ̸= Q

Ainsi

L'unicité de la décomposition de Cartan n'est pas assurée pour une matrice non inversible.

Variante : Contre-exemple encore plus simple avec A = S = 0, P = In et Q = −In.

Exercice 12 (***)

Soit A ∈ S ++
n (R) et B ∈ Sn(R).

1. Montrer qu'il existe P ∈ GLn(R) et D ∈ Mn(R) diagonale telle que

A = P⊤P et B = P⊤DP

2. Établir ∀(A,B) ∈ S ++
n (R)× S +

n (R) det(A + B) ⩾ det(A) + det(B)

3. Le résultat précédent a-t-il lieu si on suppose seulement A ∈ S +
n (R) ?

Corrigé : 1. Il existe S ∈ S +
n (R) telle que A = S2 et detA = (det S)2 d'où S ∈ GLn(R). On

peut donc écrire B = SCS avec C = S−1BS−1 qui est symétrique. Par suite, avec le théorème
spectral, il existe Q ∈ On(R) et D diagonale réelle telle que C = Q⊤DQ. Posant P = QS, on a

P⊤P = SQ⊤QS = S2 = A et P⊤DP = SQ⊤DQS = SCS = B

et la matrice P est inversible comme produit de matrices inversibles. Ainsi
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Il existe P ∈ GLn(R) et D ∈ Mn(R) diagonale telles que A = P⊤P et B = P⊤DP.

2. On applique le résultat précédent. On a

det(A + B) = det(P⊤P + P⊤DP) = det(P⊤) det(In +D) det(P)

avec D = P−1⊤BP−1 = diag(λ1, . . . , λn). Pour X ∈ Mn,1(R), notant Y = P−1X, on a

⟨X,DX⟩ = Y⊤P⊤DPY = ⟨Y,BY⟩ ⩾ 0

d'où Sp (D) ⊂ R+, autrement dit les λi ⩾ 0. On a

det(In +D) =
n∏

i=1

(1 + λi) ⩾ 1 +
n∏

i=1

λi = 1 + det(D)

Ainsi det(A + B) ⩾ det(P⊤) (1 + det(D)) det(P) = det(P⊤P) + det(P⊤DP)

On conclut ∀(A,B) ∈ S ++
n (R)× S +

n (R) det(A + B) ⩾ detA + detB

3. Si A ou B est dans S ++
n (R), il s'agit du résultat précédemment établi (par symétrie des

rôles). Supposons A et B dans S +
n (R)∖ S ++

n (R). On a A + B ∈ S +
n (R) d'où det(A + B) ⩾ 0

et det(A) = det(B) = 0 et par conséquent

∀(A,B) ∈ S +
n (R)× S +

n (R) det(A + B) ⩾ det(A) + det(B)

Exercice 13 (***)

Pour A ∈ Mn(R), déterminer Max
P∈On(R)

Tr (PA).

Corrigé : L'application φ : P 7→ Tr (PA) est linéaire sur E = Mn(R) espace de dimension �nie
donc continue. Le groupe orthogonal On(R) est un compact de E et d'après le théorème des
bornes atteintes, l'application φ admet un maximum sur On(R). D'après le décomposition de
Cartan, on sait qu'il existe R ∈ On(R) et S ∈ S +

n (R) telles que A = RS. On a A⊤A = S2 et
par unicité de la racine carrée matricielle dans S +

n (R), la matrice S est unique. L'application
P 7→ PR réalise une permutation de On(R) et par conséquent

Max
P∈On(R)

φ(P) = Max
P∈On(R)

Tr (PS)

D'après le théorème spectral et la positivité de S, il existe Q ∈ On(R) et D = diag(λ1, . . . , λn)
avec les λi ⩾ 0 telles que S = QDQ⊤. Avec la propriété fondamentale de la trace, il vient

∀P ∈ On(R) Tr (PS) = Tr (PQDQ⊤) = Tr (Q⊤PQD)

Comme précédemment, l'application P 7→ Q⊤PQ réalise une permutation de On(R). Ainsi, on
obtient

Max
P∈On(R)

φ(P) = Max
P∈On(R)

Tr (PD)

Soit P ∈ On(R). Le calcul donne Tr (PD) =
n∑

i=1

pi,iλi. Comme la matrice P est orthogonale, ses

colonnes forment une base orthonormée de Rn et il en résulte que pi,j ⩽ 1 pour tout (i, j) ∈
[[ 1 ; n ]]2. Par positivité des λi, il vient pour

Tr (PD) =
n∑

i=1

pi,iλi ⩽
n∑

i=1

λi = Tr (D)

majorant qui est atteint pour P = In. Les matrices D et S étant semblables, on conclut

Max
P∈On(R)

Tr (PA) = Tr (S)

Remarque : La matrice S est dé�nie de manière unique par S =
√
A⊤A.
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Exercice 14 (***)

1. Montrer que On(R) est un sous-groupe compact de GLn(R).
2. Montrer que si G est un sous-groupe compact de GLn(R) contenant On(R), alors G =

On(R).

Corrigé : 1. Déjà vu.
2. Soit G sous-groupe compact de GLn(R) contenant On(R) et soit A ∈ G. On utilise le résultat
de la décomposition polaire : il existe O ∈ On(R) et S ∈ S ++

n (R) telles que A = OS. Ainsi,
on a S = O⊤A ∈ G et par conséquent Sk ∈ G pour tout k entier. La suite (Sk)k est à valeurs
dans G compact donc admet une sous-suite convergente. D'après le théorème spectral, il existe
P ∈ On(R) telle que P⊤SP est diagonale. Soit λ ∈ Sp (S) et X ∈ Mn,1(R) normée avec SX = λX.
Si λ > 1, on a 〈

SkX,X
〉
= λk −−−−→

k→+∞
+∞

ce qui contredit l'existence d'une sous-suite convergente. Si λ < 1, on trouve〈
SkX,X

〉
= λk −−−−→

k→+∞
0

et une sous-suite convergente aurait une valeurs propre nulle ce qui contredit l'existence d'une
valeur d'adhérence dans G. Par conséquent, on Sp (S) = {1} et comme S est diagonalisable, elle
est semblable à In et donc S = In, d'où A = O. On conclut

G = On(R)

Exercice 15 (**)

Soit E euclidien et u ∈ L (E) tel que ⟨u(x), x⟩ = 0 pour tout x ∈ E.

1. Montrer ∀(x, y) ∈ E2 ⟨u(x), y⟩ = −⟨x, u(y)⟩

En déduire la forme matBu avec B base orthonormée de E.

2. On suppose u ∈ GL(E). Montrer que dimE est paire.

3. Montrer que u2 est diagonalisable.

Corrigé : 1. Soit (x, y) ∈ E2. Il vient

⟨u(x+ y), x+ y⟩ = 0 ⇐⇒ ⟨u(x), y⟩+ ⟨u(y), x⟩ = 0

D'où ∀(x, y) ∈ E2 ⟨u(x), y⟩ = −⟨x, u(y)⟩

Soit B = (ei)1⩽i⩽n base orthonormée de E et A = matBu. On a

∀(i, j) ∈ [[ 1 ; n ]]2 ai,j = ⟨u(ej), ei⟩ = −⟨u(ei), ej⟩ = −aj,j

Ainsi Dans B base orthonormée de E, la matrice matBu est antisymétrique.

Remarque : La relation établie équivaut à u∗ = −u et le résultat sur matBu s'ensuit.

2. Soit B une base orthonormée de E. On a detu = detA avec A = matBu. Or, la matrice A
est antisymétrique et comme une matrice et sa transposée ont même déterminant, il s'ensuit

detA = detA⊤ = det(−A) = (−1)n detA

Si n est impair, on a detA = − detA d'où u /∈ GL(E). On conclut
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Si u ∈ GL(E), alors la dimension de E est paire.

3. Soit (x, y) ∈ E2. On a avec la propriété établie en première question

⟨u2(x), y⟩ = −⟨u(x), u(y)⟩ = (−1)2 ⟨x, u2(y)⟩

ce qui prouve que u2 ∈ S (E). D'après le théorème spectral, on conclut

L'endomorphisme u2 est diagonalisable.
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