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Corrigé du devoir en temps libre n°13

Probléme 1

1. Soit z € Ker u. On a (u(z),z) = 0 d’ott & = Og ce qui prouve l'injectivité de I'endomorphisme
u dans E espace de dimension finie et par conséquent

u € GL(E)

Soit (z,y) € E% Par bijectivité de u, on dispose d’un unique couple (a,b) € E? tel que x = u(a)
et y = u(b). Il vient

(™ (2),y) = (™ (u(a)),u(b)) = (a,ub)) = (u(a),b) = (z,u'(y))
ue. (E)

ce qui prouve u~' € S(E). Pour z € E \ {0g}, on dispose d'un unique a € E \ {0g} tel que
x = u(a) puisque u(0g) = Og et

(™ (2), 2) = (u(u(a), u(a)) = (a,u(a)) >0

puisque u € *T(E). Ainsi, on a prouvé

u ! e STHE)

Remarque : Pour établir u=! € S(E), on peut aussi passer par Padjoint en observant
(U_l)* — (u*>—l — u—l

2. D’apreés le théoréme spectral, on dispose de & = (eq, . .., e,) une base orthonormée de vecteurs
propres de u associée aux valeurs propres Aj,..., A\, et pour i € [1; n], on a

(ule;), ei) = Nleil|* =X\ >0

On conclut

Il existe une base orthonormée de vecteurs propres de u et Sp (u) C ]0;+00 .

3.(a) La fonction 0 est dérivable sur | 0; +oo [ avec

1 a A+ao)A—a)
A PN = — — > =
VA= 0 ) a A a?
Ainsi La fonction 6 décroit sur |0; «| puis croit sur [a;+00 .
3.(b) On a clairement 0 < Amin < @ < Apax

et d’aprés 'étude de variations, la fonction 6 atteint son maximum sur [ Apin ; Amax | €0 A = Apin

OU Amax. Enfin, on observe
A Ami
9 )\mln —_ 9 )\max — max min
( ) ( ) \/)\min i \/)\max

)\max + )\min
AInin )\

max

Par conséquent VA € Sp (u) O(\) < \/




4. Pour a, b > 0, on a (\/_—\/l_)>2:a—|—b—2\/%20d’01‘1

Y(a,b) € RZ  Vab< %(a+b)

Soit z € E. On a par linéarité du produit scalaire en la premiére variable

VT8 = Futo). ) o).

o

et d’apres 'inégalité précédemment établie

\/<éu(m),x> (au=1(x),z) < % <<éu(m),x> + <ozu‘1(x),x>)

Par linéarité du produit scalaire en la premiére variable, on conclut

Ve e E V{u(®), z) (u(z),z) < % <(lu + au1> (x),a:>

a
; -1 1 1 1
5. On a matgu = diag(Ay,...,\,) et matgu' = (matgygu) = diag SVLIARIEW
1 n
. 1 1 .
Ainsi maty | —u+ au™' | = diag (0(Ay),...,0(\,))
e
Ainsi, pour z = ) x;e; avec les x; réels, on obtient
i=1
1 n n
(Futou) @),2) = (S000men Sages ) = & 00wy feores)
Q i=1 j=1 1<i,5<n R_éz—/
n ]_ n
On conclut Vo => me; €E <<—u + ozu_l) (x),x> =Y 0(\)z?
i=1 a i=1

6. D’aprés la majoration établie & la question 3.(b), il vient pour z = szel ckE

2 max mlIl
z \ Z ‘T
mlIl max

—Ilr||2

Passant au carré dans cette inégalité et celle obtenue a la question 4, on conclut

VeeE  (u(z),z) (u(z i(\/ ]: \/Z) [l

Probléme 11

Soit M € . F(R) et f € Z(R") canoniquement associée M. On munit E = R” de sa structure
euclidienne canonique. On a f € 7 (E) puisque M = maty f € #,(R), la base canonique ¢
étant une base orthonormée de E et Sp(f) = Sp(M) C R,. Soit & = (ey,...,e,) une base
orthonormée de diagonalisation de f (une telle base existe d’aprés le théoréme spectral). On a




fle;) = Nie; pour tout i € [1; n] avec \; = 0. On définit g € Z(E) par g(e;) = /Ae; pour
tout i € [1; n]. On a f et g? qui coincident sur une base d’oi f = g% et g € .7 (E) puisque
matgg € .7, (R). Montrons I'unicité d’un tel endomorphisme. Soit h € #*(E) tel que f = h2.
Comme f est un polynome en h, alors f et h commutent. Par suite, les sous-espaces propres de f
sont stables par h. Pour A € Sp (f), on note E, le sous-espace propre de f pour la valeur propre
A et hy I'endomorphisme induit par & sur Ey. On a clairement hy € 7 (E,) et h3 = Aid g, d’ou
(X2 — )\) annulateur de hy. D’aprés le théoréme spectral, 'endomorphisme h,, est diagonalisable
avec v A comme unique valeur propre possible (car ERVANES 0) ce qui prouve que hy = VAid B,
Comme E = @ E,, I'endomorphisme h est donc caractérisé et en repassant a ’écriture

AESp (f)
matricielle, on conclut

YMe.ZHR) NSe.SHR) | M=

Soit A € GL,(R). S'il existe (O,S) € O,(R) x .7 (R) tel que A = OS, il s’ensuit S*> = ATA.
Or,on a ATA € . (R). Ainsi, il existe une unique matrice S € .7, (R) telle que ATA = S2.
On a S inversible puisque (det S)? = (det A)? > 0. On pose O = AS™!. Tl vient

OTO = (AS™)TAS 1 =S TATAS =S1828 =11,
Le choix de O est unique puisqu’il découle du choix de S qui est unique. L’application ¢ est
donc bijective et continue par continuité du produit matriciel. Soit (Az)r € GL,(R)Y telle que
Ay = A € GL,(R). Montrons ¢ '(Ay) — ¢ 1(A). D’apreés ce qui précede, pour tout k
—400 —+00
entier, il existe (O, Sg) € O,(R) x 7 (R) tel que Ay, = OxSy et (O,S) €€ O, (R) x Z(R)
tel que A = OS. Par compacité de O,,(R), on dispose d’une extractrice ¢ telle que

Op) ——7= 0" € Ou(R)

Par continuité du produit matriciel, il vient

T T
= A A
Set) = Opt) Ape) O
La suite (Sy)x est a valeurs dans le fermé . (R) d’ou &' = O'TA € .71 (R) et comme il s’agit
d’un produit de matrices inversibles, il s’ensuit S’ € .7+ (R). On a donc

0 =A =08 avec (0,8)€ O,(R) x L+ (R) et (O0,) € On(R) x L+ (R)

Par unicité de la décomposition polaire, il vient O’ = O et S’ = S. Ceci prouve en particulier
que la suite (Og)x & valeurs dans le compact O, (R) admet O comme unique valeur d’adhérence.

Il en résulte que O, —— O et S = Or' A, —— OTA =S. On a donc établi
k—+00 k—+00

¢ M (Ag) = (O, Sk) —— (0,8) = ¢ '(A)

k—+o00

’L’application @ est un homéomorphisme. ‘




