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Problème I

1. Soit x ∈ Ker u. On a ⟨u(x), x⟩ = 0 d'où x = 0E ce qui prouve l'injectivité de l'endomorphisme
u dans E espace de dimension �nie et par conséquent

u ∈ GL(E)

Soit (x, y) ∈ E2. Par bijectivité de u, on dispose d'un unique couple (a, b) ∈ E2 tel que x = u(a)
et y = u(b). Il vient

⟨u−1(x), y⟩ = ⟨u−1(u(a)), u(b)⟩ = ⟨a, u(b)⟩ =︸︷︷︸
u∈S (E)

⟨u(a), b⟩ = ⟨x, u−1(y)⟩

ce qui prouve u−1 ∈ S (E). Pour x ∈ E ∖ {0E}, on dispose d'un unique a ∈ E ∖ {0E} tel que
x = u(a) puisque u(0E) = 0E et

⟨u−1(x), x⟩ = ⟨u−1(u(a)), u(a)⟩ = ⟨a, u(a)⟩ > 0

puisque u ∈ S ++(E). Ainsi, on a prouvé

u−1 ∈ S ++(E)

Remarque : Pour établir u−1 ∈ S(E), on peut aussi passer par l'adjoint en observant

(u−1)∗ = (u∗)−1 = u−1

2. D'après le théorème spectral, on dispose de B = (e1, . . . , en) une base orthonormée de vecteurs
propres de u associée aux valeurs propres λ1, . . . , λn et pour i ∈ [[ 1 ; n ]], on a

⟨u(ei), ei⟩ = λi∥ei∥2 = λi > 0

On conclut

Il existe une base orthonormée de vecteurs propres de u et Sp (u) ⊂ ] 0 ; +∞ [.

3.(a) La fonction θ est dérivable sur ] 0 ; +∞ [ avec

∀λ > 0 θ′(λ) =
1

α
− α

λ2
=

(λ+ α)(λ− α)

αλ2

Ainsi La fonction θ décroît sur ] 0 ;α ] puis croît sur [α ; +∞ [.

3.(b) On a clairement 0 < λmin ⩽ α ⩽ λmax

et d'après l'étude de variations, la fonction θ atteint son maximum sur [λmin ;λmax ] en λ = λmin

ou λmax. En�n, on observe

θ(λmin) = θ(λmax) =

 
λmax

λmin

+

 
λmin

λmax

Par conséquent ∀λ ∈ Sp (u) θ(λ) ⩽

 
λmax

λmin

+

 
λmin

λmax
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4. Pour a, b ⩾ 0, on a
Ä√

a−
√
b
ä2

= a+ b− 2
√
ab ⩾ 0 d'où

∀(a, b) ∈ R2
+

√
ab ⩽

1

2
(a+ b)

Soit x ∈ E. On a par linéarité du produit scalaire en la première variable√
⟨u(x), x⟩ ⟨u−1(x), x⟩ =

 ≠
1

α
u(x), x

∑
⟨αu−1(x), x⟩

et d'après l'inégalité précédemment établie ≠
1

α
u(x), x

∑
⟨αu−1(x), x⟩ ⩽ 1

2

Å≠
1

α
u(x), x

∑
+ ⟨αu−1(x), x⟩

ã
Par linéarité du produit scalaire en la première variable, on conclut

∀x ∈ E
√
⟨u(x), x⟩ ⟨u−1(x), x⟩ ⩽ 1

2

≠Å
1

α
u+ αu−1

ã
(x), x

∑
5. On a matBu = diag(λ1, . . . , λn) et matBu

−1 = (matBu)
−1 = diag

Å
1

λ1

, . . . ,
1

λn

ã
Ainsi matB

Å
1

α
u+ αu−1

ã
= diag (θ(λ1), . . . , θ(λn))

Ainsi, pour x =
n∑

i=1

xiei avec les xi réels, on obtient≠Å
1

α
u+ αu−1

ã
(x), x

∑
=

Æ
n∑

i=1

θ(λi)xiei,
n∑

j=1

xjej

∏
=

∑
1⩽i,j⩽n

θ(λi)xixj ⟨ei, ej⟩︸ ︷︷ ︸
=δi,j

On conclut ∀x =
n∑

i=1

xiei ∈ E

≠Å
1

α
u+ αu−1

ã
(x), x

∑
=

n∑
i=1

θ(λi)x
2
i

6. D'après la majoration établie à la question 3.(b), il vient pour x =
n∑

i=1

xiei ∈ E

n∑
i=1

θ(λi)x
2
i ⩽

Ç 
λmax

λmin

+

 
λmin

λmax

å
n∑

i=1

x2
i︸ ︷︷ ︸

=∥x∥2

Passant au carré dans cette inégalité et celle obtenue à la question 4, on conclut

∀x ∈ E ⟨u(x), x⟩ ⟨u−1(x), x⟩ ⩽ 1
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Ç 
λmax

λmin

+

 
λmin

λmax

å2

∥x∥4

Problème II

Soit M ∈ S +
n (R) et f ∈ L (Rn) canoniquement associée M. On munit E = Rn de sa structure

euclidienne canonique. On a f ∈ S +(E) puisque M = matC f ∈ Sn(R), la base canonique C
étant une base orthonormée de E et Sp (f) = Sp (M) ⊂ R+. Soit B = (e1, . . . , en) une base
orthonormée de diagonalisation de f (une telle base existe d'après le théorème spectral). On a
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f(ei) = λiei pour tout i ∈ [[ 1 ; n ]] avec λi ⩾ 0. On dé�nit g ∈ L (E) par g(ei) =
√
λiei pour

tout i ∈ [[ 1 ; n ]]. On a f et g2 qui coïncident sur une base d'où f = g2 et g ∈ S +(E) puisque
matBg ∈ S +

n (R). Montrons l'unicité d'un tel endomorphisme. Soit h ∈ S +(E) tel que f = h2.
Comme f est un polynôme en h, alors f et h commutent. Par suite, les sous-espaces propres de f
sont stables par h. Pour λ ∈ Sp (f), on note Eλ le sous-espace propre de f pour la valeur propre
λ et hλ l'endomorphisme induit par h sur Eλ. On a clairement hλ ∈ S +(Eλ) et h

2
λ = λ id Eλ

d'où
(X2 − λ) annulateur de hλ. D'après le théorème spectral, l'endomorphisme hλ est diagonalisable
avec

√
λ comme unique valeur propre possible (car −

√
λ ⩽ 0) ce qui prouve que hλ =

√
λ id Eλ

.

Comme E =
⊕

λ∈Sp (f)

Eλ, l'endomorphisme h est donc caractérisé et en repassant à l'écriture

matricielle, on conclut

∀M ∈ S +
n (R) ∃!S ∈ S +

n (R) | M = S2

Soit A ∈ GLn(R). S'il existe (O, S) ∈ On(R) × S ++
n (R) tel que A = OS, il s'ensuit S2 = A⊤A.

Or, on a A⊤A ∈ S +
n (R). Ainsi, il existe une unique matrice S ∈ S +

n (R) telle que A⊤A = S2.
On a S inversible puisque (det S)2 = (detA)2 > 0. On pose O = AS−1. Il vient

O⊤O = (AS−1)
⊤
AS−1 = S−1A⊤AS = S−1S2S = In

Le choix de O est unique puisqu'il découle du choix de S qui est unique. L'application φ est
donc bijective et continue par continuité du produit matriciel. Soit (Ak)k ∈ GLn(R)N telle que
Ak −−−−→

k→+∞
A ∈ GLn(R). Montrons φ−1(Ak) −−−−→

k→+∞
φ−1(A). D'après ce qui précède, pour tout k

entier, il existe (Ok, Sk) ∈ On(R)× S ++
n (R) tel que Ak = OkSk et (O, S) ∈∈ On(R)× S ++

n (R)
tel que A = OS. Par compacité de On(R), on dispose d'une extractrice φ telle que

Oφ(k) −−−−→
k→+∞

O′ ∈ On(R)

Par continuité du produit matriciel, il vient

Sφ(k) = Oφ(k)
⊤Aφ(k) −−−−→

k→+∞
O′⊤A

La suite (Sk)k est à valeurs dans le fermé S +
n (R) d'où S′ = O′⊤A ∈ S +

n (R) et comme il s'agit
d'un produit de matrices inversibles, il s'ensuit S′ ∈ S ++

n (R). On a donc

O′S′ = A = OS avec (O, S) ∈ On(R)× S ++
n (R) et (O′, S′) ∈ On(R)× S ++

n (R)

Par unicité de la décomposition polaire, il vient O′ = O et S′ = S. Ceci prouve en particulier
que la suite (Ok)k à valeurs dans le compact On(R) admet O comme unique valeur d'adhérence.
Il en résulte que Ok −−−−→

k→+∞
O et Sk = Ok

⊤Ak −−−−→
k→+∞

O⊤A = S. On a donc établi

φ−1(Ak) = (Ok, Sk) −−−−→
k→+∞

(O, S) = φ−1(A)

L'application φ est un homéomorphisme.
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