
MP 2025-26

Corrigé

Concours blanc info

Exercice 1.

1.

def cases_noires(cle_l) :1

res=02

for cle in cle_l : # parcours des clés3

for v in cle : # nb de cases noires par clé4

res+=v5

return res6

La complexité est O(nl ×nc) car la première boucle for a au plus nl clés et la seconde au plus
nc valeurs. L’opération dans la boucle étant en O(1).

2.

def compatibles(cle_l,cle_c) :1

return cases_noires(cle_l)==cases_noires(cle_c)2

3.

def taille_minimale(l) :1

n=len(l)2

res=n-1 # nombre de cases blanches minimales3

for v in l : # nb de cases noires de la liste4

res+=v5

return res6

4. 1. C’est le test de la ligne 9 qu’il faut étudier. Contre-exemples donnés avec nl = 1 et nc = 2.

• False pour premier test : sol=[[1,1]] et cle_l=[[]] et i=0 car i_bloc>=len(cle_l[i])
puisque len(cle_l[i])=0.

• False pour deuxième test :sol=[[1,1]]etcle_l=[[1]]eti=0 cartaille>cle_l[i][i_bloc].

2. résultat incorrect : sol=[[0,0]] et cle_l=[[1]] et i=0.
En effet le programme renvoie True dans le cas où il y a des blocs supplémentaires dans
cle_l à la suite des blocs corrects.
On peut aussi donner un exemple de résultat incorrect si l’on trouve autre chose que 0 ou
1 dans sol.
Une modification possible : on remplace la dernière ligne par :
return i_bloc==len(cle_l[i])

5. n = k ∗nc + l donc l est le reste de la division euclidienne de n par nc et k le quotient.

6.

def listes_solutions(cle_l,cle_c) :1

sol_p=init_sol(nl,nc,-1)2

def liste_solutions_aux(n,sol_p,liste) :3

if n==nc*nl :4

if verif(sol_p,cle_l,cle_c) :5

sol_p_copie=copy_sol(sol_p)6

liste.append(sol_p_copie)7

else :8

k=n//nc9

l=n%nc10

sol_p[k][l]=011

liste_solutions_aux(n+1,sol_p,liste)12

sol_p[k][l]=113

liste_solutions_aux(n+1,sol_p,liste)14

liste=[]15

liste_solutions_aux(0,sol_p,liste)16

return liste17

La complexité est en O
(
nc ×nl ×2nl×nc

)
car il y a 2nc×nl matrices à tester, chaque test étant de

complexité O(nl ×nc).

7. Une façon de procéder

• Entre les lignes 1 et 2 on insère un code permettant de calculer le nombre de cases noires
attendues dans chaque colonne et chaque ligne à l’aide de cle_l et cle_c.

tab_l=[cases_noires([cle_l[i]]) for i in range(nl)]
tab_c=[cases_noires([cle_c[j]]) for j in range(nc)]

À la place de la ligne 14 on insère le code suivant, qui ne lance liste_solutions_aux que si
cela vaut le coup en testant si l’on a pas dépassé le nombre de cases noires possible :

noire_l=0
for j in range(l+1) :

noire_l=noire_l+sol_p[k][j]
noire_c=0
for i in range(k+1) :

noire_c=noire_c+sol_p[i][l]
if noire_l<=tab_l[k] and noire_c<=tab_c[l] :

liste_solutions_aux(n+1,sol_p,liste)

1/3

MP 2025-26

8.

def conflit(c,s) :1

if c>0 and sol_p[i_ligne][c-1]==1 :2

return c-13

for j in range(s) :4

if sol_p[i_ligne][c+j]==0 :5

return c+j6

if c+s<nc and sol_p[i_ligne][c+s]==1 :7

return c+s8

return nc9

La complexité est en O(s) par lecture directe de la boucle for.

9.

def prochain(c,s) :1

j=c2

while j+s<=nc : # tant qu'il y a assez de place à droite3

while j>0 and sol_p[i_ligne][j-1]==1 : # tant qu'il y a des cases noires4

j+=1 # à gauche, on décale le pointeur5

if j+s>nc : # si plus de place à droite6

return -1 # échec7

k=0 # calcul de la place disponible pour le bloc8

while k<s and sol_p[i_ligne][j+k]!=0 :9

k+=110

if k==s : # si on a trouvé s cases non blanches11

if j+k==nc : # si on est en bout de ligne12

return j # gagné13

if sol_p[i_ligne][j+k]!=1 : # si la case suivante n'est pas noire14

return j # gagné15

j=j+k+1 # sinon on se place après la dernière case noire rencontrée16

return -1 # échec à la fin de toutes les tentatives17

La complexité est en O(nc) car c’est le nombre maximum d’incrémentations de j et de k cu-
mulées, et pour chaque incrémentation il y a au plus 4 opérations en temps constant.

10. On traduit directement les instructions de l’énoncé :

def calcul_matrice(M) :1

B=len(cle_l[i_ligne])2

for b in range(1,B) :3

s=cle_l[i_ligne][b]4

for c in range(1,nc) :5

if M[c-1][b]>=0 and sol_p[i_ligne][c]!= 1 :6

M[c][b]=M[c-1][b]7

elif c-s-1>=0 and M[c-s-1][b-1]>=0 and conflit(c-s+1,s)>c :8

M[c][b]=c-s+19

M[c][b-1] = M[c-1][b-1]10

else :11

M[c][b]=-112

Attention cependant à une subtilité non déclarée dans l’énoncé, si l’on ajoute le dernier bloc
en fin de ligne à cause de l’échec au test de la ligne 6, en pratique on place alors les deux
derniers blocs (par rapport à la valeur précédente de c, on «détache» l’avant dernier bloc de la
case noire et on y met le dernier à la place). C’est la raison de la ligne 10.,
La complexité est en O(nc2) car il y a une double boucle for et car B É nc.

11. Quelques observations générales pour «digérer» la réponse.

• La première case noire doit faire partie du premier bloc :
— s’il n’y en a pas on peut placer le bloc en position 0 ;
— s’il y en a une en position p le bloc devrait commencer en position max(0, p − s +1).

• Structurellement, on va distinguer les cas c < p, c = p et c > p.
— Dans le premier cas le sous-cas c = 0 est spécial ;
— dans le second on pourra l’intégrer au cas «général» ;
— Attention, dans le troisième cas la case d’indice p fait partie du bloc mais n’est pas né-

cessairement la première du bloc.
Un programme commenté possible est le suivant :

if c < p : # pas de case noire dans les c premières cases1
if c==0 :2

if s == 0 and sol_p[i_ligne][c] == -1 :3
M[c][0] = 04

else :5
M[c][0] = -16

else :7
if M[c-1][0] >= 0 :8

on avait placé le bloc entre les cases 0 et c-19
et la case c n'est pas noire10
M[c][0] = M[c-1][0] # on place le bloc au même endroit11

else :12
if sol_p[i_ligne][c] != 0 and 0 <= c-s+1 and conflit(c-s+1, s) > c :13

on n'avait pas réussi à le placer entre 0 et c-114
et la case c n'est pas blanche15
M[c][0] = c-s+1 # on place le bloc pour qu'il se termine en c si c'est possible16

else: # dans tous les autres cas, notamment quand la case c est blanche17
M[c][0] = -1 # on ne peut pas le placer18

elif c == p : # la case c est la première case noire19
if 0 <= c-s+1 and conflit(c-s+1, s) > c : # si on peut placer le bloc de c-

s+1 à c
20
21

M[c][0] = c-s+1 # on place le bloc pour qu'il se termine en c22
else :23

M[c][0] = -124
else : # c>p la première case noire a déjà été rencontrée25

if M[c-1][0] >= 0 : # on a pu placer le bloc entre 0 et c-126
M[c][0] = M[c-1][0] # o garde la même place27

else: # on n'a pas pu placer le premier bloc entre 0 et c-128
if sol_p[i_ligne][c] == -1 : # la case c est indéterminée29

if 0 <= c-s+1 and conflit(c-s+1, s) > c :30
M[c][0] = c-s+1 # on place le bloc pour qu'il se termine en c31

elif sol_p[i_ligne][c] == 1 : # la case c est noire32
if p >= c-s+1 and 0 <= c-s+1 and conflit(c-s+1, s) > c :33

les cases p et c peuvent être recouvertes par le premier bloc34
M[c][0] = c-s+1 # on place le bloc pour qu'il se termine en c35

else: # dans tous les autres cas, notamment si la case c est blanche36
M[c][0] = -137

2/3

MP 2025-26

12.

def premiere_case(M) :1

res=[]2

for b in range(len(cle_l[i_ligne])) :3

v=M[nc-1][b]4

if v<0 :5

return []6

else :7

res.append(v)8

return res9

13.

def remplissage(liste_pp, liste_dp) :1

B = len(liste_pp) # nombre de blocs2

for b in range(B) : # on parcourt les blocs3

s = cle_l[i_ligne][b] # taille du bloc b4

fin_min = liste_pp[b] + s - 1 # valeur minimale de la position5

de la dernière case du bloc b6

debut_max = liste_dp[b]7

valeur maximale de la position de la première case8

if fin_min >= debut_max :9

for j in range(debut_max, fin_min+1) :10

sol_p[i_ligne][j] = 1 # on modifie sol_p par effet de bord11

14.

def cases_blanches(liste_pp, liste_dp) :1

B = len(cle_l[i_ligne]) # nombre de blocs2

for i in range(nc) :3

if sol_p[i_ligne][i] == - 1 : # case indéterminée4

on recherche la case blanche la plus à gauche5

blanc_g = i - 16

while blanc_g >= 0 and sol_p[i_ligne][blanc_g] != 0 :7

blanc_g -= 18

on recherche la case blanche la plus à droite9

blanc_d = i + 110

while blanc_d < nc and sol_p[i_ligne][blanc_d] != 0 :11

blanc_d += 112

if blanc_g != -1 and blanc_d != nc : # si ces deux cases existent13

m = blanc_d - blanc_g - 114

taille maximale d'un bloc couvrant a case i15

test = False16

on cherche si m est compatible avec la taille des blocs17

qui conviendraient18

for b in range(B) :19

if liste_pp[b] <= i and liste_dp[b] >= i :20

le bloc b pourrait contenir la case i21

if cle_l[i_ligne][b] <= m : # si sa taille convient22

test = True23

if not test : # on a trouvé aucun bloc qui convient24

sol_p[i_ligne][i] = 0 # la case i est blanche25

on modifie sol_p par effet de bord26

3/3

