MP 2025-26

Fﬂ Corrigé

Concours blanc info

Exercice 1.

1.

def cases noires(cle_ 1)
res=0
for cle in cle_1 : # parcours des clés
for v in cle : # nb de cases noires par clé
res+=v
return res

o g W N =

La complexité est O(nl x nc) car la premiere boucle for a au plus nl clés et la seconde au plus
nc valeurs. Lopération dans la boucle étant en O(1).

1 def compatibles(cle_1l,cle c)
2 return cases_noires(cle_l)==cases_noires(cle_c)

1 def taille minimale(1)

n=len(1)

res=n-1 # nombre de cases blanches minimales

for v in 1 : # nb de cases noires de la liste
res+=v

o o W N

return res

4. 1. C’estle test de la ligne 9 qu’il faut étudier. Contre-exemples donnés avec nl =1 et nc = 2.

 False pour premier test : sol=[[1,1]] et cle_1=[[]] et i=0 car i_bloc>=len(cle_1[i])
puisque len(cle_1[i])=0.

 False pourdeuxiemetest:sol=[[1,1]] etcle_1=[[1]] eti=Ocartaille>cle_1[i] [i_bloc].

2. résultat incorrect : so1=[[0,0]] et cle_1=[[1]] et i=0.

En effet le programme renvoie True dans le cas ou il y a des blocs supplémentaires dans
cle_1 ala suite des blocs corrects.

On peut aussi donner un exemple de résultat incorrect si ’on trouve autre chose que 0 ou
1 dans sol.

Une modification possible : on remplace la dernieére ligne par :

return i_bloc==len(cle 1[i])

5. n=k=nc+1donc [est le reste de la division euclidienne de n par nc et k le quotient.

1/3

def listes_solutions(cle 1l,cle c)

[ure

2 sol p=init_sol(nl,nc,-1)

3 def liste_solutions_aux(n,sol_p,liste)
4 if n==nc*nl :

5 if verif(sol_p,cle_1,cle_c)

6 sol _p_copie=copy_sol(sol_p)
7 liste.append(sol_p_copie)

8 else :

9 k=n//nc

10 1=n’nc

sol_pl[k] [1]=0
liste_solutions_aux(n+1,sol p,liste)
sol_plk] [1]=1
liste_solutions_aux(n+1,sol_p,liste)

liste=[]

liste_solutions_aux(0,sol _p,liste)

return liste

L T e
N o o W N

La complexité est en O (nc x nl x 2">"¢) car il y a 2"¢*" matrices a tester, chaque test étant de
complexité O(nl x nc).

7. Une facon de procéder

» Entre les lignes 1 et 2 on insere un code permettant de calculer le nombre de cases noires
attendues dans chaque colonne et chaque ligne a 'aide de cle_1 et cle_c.

tab_l=[cases_noires([cle_1[i]]) for i in range(nl)]
tab_c=[cases_noires([cle_c[jl]) for j in range(nc)]

Ala place de la ligne 14 on insere le code suivant, qui ne lance liste_solutions_aux que si
cela vaut le coup en testant si’'on a pas dépassé le nombre de cases noires possible :

noire_1=0

for j in range(1+1)
noire_l=noire_l+sol_pl[k] [j]

noire c=0

for i in range(k+1)
noire_c=noire_c+sol pl[i] [1]

if noire 1<=tab_1[k] and noire_c<=tab_c[1]
liste_solutions_aux(n+l,sol _p,liste)

MP 2025-26

8. Attention cependant a une subtilité non déclarée dans I'énoncé, sil’on ajoute le dernier bloc
en fin de ligne a cause de I'échec au test de la ligne 6, en pratique on place alors les deux
1 def conflit(c,s) : derniers blocs (par rapport a la valeur précédente de c, on «détache» I'avant dernier bloc de la
2 if ¢>0 and sol_p[i_ligne] [c-1]==1 : case noire et on y met le dernier a la place). C’est la raison de la ligne 10.,
3 AL C_l() La complexité est en O(nc?) car il y a une double boucle for et car B < nc.
4 for j in range(s) . L .
. 19 ot i, Tl feti==0 - 11. Quelques observations générales pour «digérer» la réponse.
6 return c+j » La premiere case noire doit faire partie du premier bloc :
7 if c+s<nc and sol _p[i_ligne][c+s]==1 : — g’iln’y en a pas on peut placer le bloc en position 0;
8 return c+s — g’ilyen a une en position p le bloc devrait commencer en position max(0, p — s+ 1).
9 return nc « Structurellement, on va distinguer lescas c< p, c=petc> p.
— Dans le premier cas le sous-cas ¢ = 0 est spécial;
La complexité est en O(s) par lecture directe de la boucle for. — dans le second on pourra I'intégrer au cas «général»;
9 — Attention, dans le troisieme cas la case d’indice p fait partie du bloc mais n’est pas né-
: cessairement la premieére du bloc.
: def prochain(c,s) Un programme commenté possible est le suivant :
2 j=c . . .
3 while j+s<=nc : # tant qu'il y a assez de place a droite : i C,; P :0# pas de case noire dans les c premiéres cases
1 Cc== 5
. : o 1.1 . s :
4 while j>0 and sol p[i_ligne] [j-1] : # tant qu'il y a des cases noires . if s == 0 and sol_p[i_ligne][c] == -1
5 j+=1 # & gauche, on décale le pointeur 4 M[c]1[0] = O
6 if j+s>nc : # si plus de place a droite 5 else :
7 return -1 # échec 6 MLc] 0] = -1
8 k=0 # calcul de la place disponible pour le bloc ; elseﬁ e Fe 5= © -
9 while k<s and sol_p[i_ligne] [j+k]!=0 9 # on avait placé le bloc entre les cases 0 et c-1
10 k+=1 10 # et la case c n'est pas noire
11 if k==s : # si on a trouvé s cases non blanches 11 M[c][0] = M[c-11[0] # on place le bloc au méme endroit
12 if j+k==nc : # si on est en bout de ligne 12 RO 8
. . 13 if sol_pl[i_ligne]l[c] !'= 0 and O <= c-s+1 and conflit(c-s+1, s) > c :
13 return j # gagné . Arrre] £
.) .] . .) 14 # on n'avait pas réussi a le placer entre 0 et c-1
14 if sol_pl[i_ligne] [j+k]'=1 : # si la case suivante n'est pas noire 15 # ot la case c n'est pas blanche
15 return j # gagné 16 M[c][0] = c-s+1 # on place le bloc pour qu'il se termine en c si c'est possible
16 j=j+k+1 # sinon on se place aprés la derniére case noire rencontrée 17 else: # dans tous les autres cas, notamment quand la case c est blanche
17 return -1 # échec 3 la fin de toutes les tentatives 18 M[c][0] = ~1 # on ne peut pas le placer
19 elif ¢ == p : # la case c est la premiére case noire
20 if 0 <= c-s+1 and conflit(c-s+1, s) > ¢ : # si on peut placer le bloc de c-
La complexité est en O(nc) car c’est le nombre maximum d’incrémentations de j et de k cu- 21 s+l dc
mulées, et pour chaque incrémentation il y a au plus 4 opérations en temps constant. 22 M[c][0] = c-s+1 # on place le bloc pour qu'il se termine en c
23 else :
10. On traduit directement les instructions de 'énoncé : 24 M[cl[0] = -1
25 else : # c>p 1la premiére case noire a déja été rencontrée
1 def calcul matrice(M) : 26 if M[c-1][0] >= 0 : # on a pu placer le bloc entre 0 et c-1
) B=1en(;1e L Temmal)) 27 MIc][0] = M[c-1]1[0] # o garde la méme place
.- --18 28 else: # on n'a pas pu placer le premier bloc entre O et c-1
3 for b in range(l,B) 29 if sol_pli_lignel[c] == -1 : # la case c est indéterminée
4 s=cle_1[i_ligne] [b] 30 if 0 <= c-s+1 and conflit(c-s+1, s) > c :
5 for ¢ in range(l,nc) : 31 M[c][0] = c-s+1 # on place le bloc pour qu'il se termine en ¢
6 if M[c-1] [b]>=0 and sol p[i ligne] [c]!=1 : 32 elif sol_pl[i_ligne][c] == : # la case c est noire
- - if p >= c-s+1 <= c-s+1 f1lit (c-s+1 > c
; M[c] [b]=M[c-1] [b] 33 if p c-s+1 and 0 c-s ancii conflit(c-s+1, s) c .
. . 34 # les cases p et c peuvent é&tre recouvertes par le premier bloc
8 elif c-s-1>=0 and M[c-s-1][b-1]>=0 and conflit(c-s+1,s)>c : 35 M[c][0] = c-s+1 # on place le bloc pour qu'il se termine en c
9 M[C] [b] =c-s+1 36 else: # dans tous les autres cas, notamment si la case c¢ est blanche
10 M[c] [b-1] = M[c-1] [b-1] 37 M[c]l[0] = -1
11 else
12 M[c] [b]=-1

2/3

MP 2025-26

12.

13.

[ure

© 00 N O O b w N

© 00 N O O W N =

=
= O

def premiere_case(M)
res=[]
for b in range(len(cle_1[i_ligne]))
v=M[nc-1] [b]
if v<0 :
return []
else
res.append(v)
return res

def remplissage(liste_pp, liste_dp)
B = len(liste_pp) # nombre de blocs
for b in range(B) : # on parcourt les blocs

s = cle_1[i_ligne] [b] # taille du bloc b

fin_min = liste_ppl[b] + s - 1 # valeur minimale de la position
de la derniére case du bloc b

debut_max = liste_dp[b]

valeur maximale de la position de la premiére case
if fin min >= debut max :
for j in range(debut_max, fin_min+1)
sol pli_ligne] [j] =

1 # on modifie sol_p par effet de bord

3/3

14.

© 00 N O O b w N

N N N N N NN R, R R s s s B s
D 00 W N, O O 00 N O Ok W N =, O

def cases_blanches(liste_pp, liste_dp)
B = len(cle_1[i_ligne]) # nombre de blocs
for i in range(nc)
if sol pli_ligne][i] == - 1 : # case indéterminée
on recherche la case blanche la plus a gauche
blanc_g =1 - 1

while blanc_g >= 0 and sol_pl[i_ligne] [blanc_g] !'= 0 :
blanc_g -= 1

on recherche la case blanche la plus a droite

blanc d =i + 1

while blanc_d < nc and sol p[i_ligne][blanc d] != 0 :

blanc d += 1
if blanc_g != -1 and blanc_d != nc
m = blanc_d - blanc_g - 1
taille maximale d'un bloc couvrant a case 1
= False
on cherche si m est compatible avec la taille des blocs
qui conviendraient
for b in range(B)
if liste_pplb] <= i and liste_dp([b] >= i
le bloc b pourrait contenir la case i
if cle_1[i_lignel[b] <= m : # si sa taille convient
test = True
if not test : # on a trouvé aucun bloc qui convient
sol pl[i_ligne][i] = O # la case i est blanche
on modifie sol_p par effet de bord

: # si ces deux cases existent

test

