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Exercice 1

1. On saisit :

def rect(f,a,b,n):

res=0

h=(b-a)/n

c=a

for k in range(n):

res+=f(c)

c+=h

return res*h

2. On saisit :

def trap(f,a,b,n):

res=(f(a)+f(b))/2

h=(b-a)/n

c=a

for k in range(1,n):

c+=h

res+=f(c)

return res*h

2. On saisit :

f=np.sin

a=0;b=np.pi/2;res=1

tn=range(10,1001,10)

t_log=[np.log(n) for n in tn]

t_rect=[np.log(np.abs(rect(f,a,b,n)-res)) for n in tn]

t_trap=[np.log(np.abs(trap(f,a,b,n)-res)) for n in tn]

plt.plot(t_log,t_rect,t_log,t_trap)

plt.grid();plt.show()
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Figure 1 � Graphes de (log(n), log(|∆n − 1|))

On observe des comportements linéaires qu'on
peut interpréter ainsi

log(|Rn − 1|) ⋍ − log(n) + Cte

log(|Tn − 1|) ⋍ −2 log(n) + Cte

En fait, on peut montrer les comportements
asymptotiques suivants :
Si f ∈ C 1([ a ; b ] ,R), alors

Rn =

∫ b

a

f(t) dt+O

Å
1

n

ã
et si f ∈ C 2([ a ; b ] ,R), alors

Tn =

∫ b

a

f(t) dt+O

Å
1

n2

ã
qui justi�ent en partie les observations.
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Exercice 2

1. On a la relation x(t+ h) = x(t) +

∫ t+h

t

f(x(s), s) ds

2. Pour le schéma d'Euler explicite, on approche

l'intégrale

∫ t+h

t

f(x(s), s)ds par la méthode des

rectangles à gauche et on en déduit l'approxi-
mation

x(t+ h) ≃ x(t) + hf(x(t), t)

La solution approchée véri�e alors la relation
de récurrence

∀k ∈ [[ 1 ; n ]] xk = xk−1 + hk−1f(xk−1, tk−1)

3. On saisit :

def Euler(f,x0,t):

x=[x0]

for k in range(1,len(t)):

h=t[k]-t[k-1]

x.append(x[k-1]+h*f(x[-1],t[k-1]))

return x

4. On saisit :

a=lambda t:-20

b=lambda t:10*np.sin(np.pi*t)

f=lambda x,t:a(t)*x+b(t)

t=np.linspace(0,10,120);x0=1

xe=Euler(f,x0,t);

y=integr.odeint(f,x0,t)

plt.plot(t,xe,'b',t,y,'r',linewidth=2)

plt.grid();plt.show()

0 2 4 6 8 10
−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Euler explicite ordre 1

Figure 2 � Méthode d'Euler explicite

Exercice 3

1. On saisit :

def f(x,t):

return -x/(1+t)+np.sin(t)

tt=np.linspace(-.9,8,100)

for x0 in np.linspace(-10,10,10):

tx=integr.odeint(f,x0,tt)

plt.plot(tt,tx)

plt.grid();plt.show()
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Figure 3 � Courbes intégrales, continuité du
�ot
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2. On saisit :

def f(x,t):

return 2*x/t-t*np.cos(1/t)

x0=0

for t0 in np.linspace(-1/np.pi,-.2,10):

tt=np.linspace(t0,-.0001,100)

tx=integr.odeint(f,x0,tt)

plt.plot(tt,tx)

plt.grid();plt.show()
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Figure 4 � Courbes intégrales, continuité du
�ot

Sur les deux �gures, on observe un phénomène de continuité du �ot qui signi�e que les courbes
intégrales varient continument en fonction des conditions initiales.

3. On saisit :

x0=0

t0=.001

for n in range(100,1100,100):

tt=np.linspace(t0,.1,n)

tx=integr.odeint(f,x0,tt)

plt.plot(tt,tx)

plt.grid();plt.show()
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Figure 5 � Variation du pas de discrétisation

On observe des courbes di�érentes pour un même problème de Cauchy ce qui est impossible
puisque le théorème de Cauchy linéaire garantit existence et unicité d'une solution. Il s'agit donc
d'une défaillance de l'instruction integr.odeint qui s'explique par l'oscillation extrêmement

rapide de la fonction t 7→ t cos

Å
1

t

ã
au voisinage de zéro.
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Exercice 4

1. On saisit :

def f(X,t):

x,dx=X

return [dx,-3*dx-2*x+np.exp(-t)]

tt=np.linspace(0,10,1000)

X0=[1,1]

tX=integr.odeint(f,X0,tt)

plt.plot(tt,tX[:,0])

plt.grid();plt.show()
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Figure 6 � Solution du problème (C1)

2. On saisit :

def f(X,t):

x,dx=X

return [dx,-np.sin(x)]

tt=np.linspace(0,10,1000)

X0=[1,2]

tX=integr.odeint(f,X0,tt)

plt.plot(tt,tX[:,0])

plt.grid();plt.show()
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Figure 7 � Solution du problème (C2)
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