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Exercice 1
1. On saisit : 2. On saisit :
def rect(f,a,b,n): def trap(f,a,b,n):
res=0 res=(f(a)+f(b))/2
h=(b-a)/n h=(b-a)/n
c=a c=a
for k in range(n): for k in range(1l,n):
res+=f(c) c+=h
c+=h res+=f (c)
return resx*h return resx*h
2. On saisit :
f=np.sin

a=0;b=np.pi/2;res=1

tn=range (10,1001,10)
t_log=[np.log(n) for n in tnl

t_rect=[np.log(np.abs(rect(f,a,b,n)-res)) for n in tn]
t_trap=[np.log(np.abs(trap(f,a,b,n)-res)) for n in tn]

plt.plot(t_log,t_rect,t_log,t_trap)
plt.grid() ;plt.show()

On observe des comportements linéaires qu’on
21 peut interpréter ainsi

log(|R, — 1|) = —log(n) + C'®
log(|T, — 1|) = —2log(n) + C*

En fait, on peut montrer les comportements

asymptotiques suivants :
2 Si f€€¢'([a;b],R), alors
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b 1
-16 T . . . . R,n - / f(t) dt + O (E)

et si f € €%*([a;b],R), alors

Tn:/abf(t)dtJrO(%)

qui justifient en partie les observations.
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FIGURE 1 — Graphes de (log(n), log(|A, — 1))



Exercice 2

t+h
1. On a la relation z(t+h) = x(t) + / f(z(s),s)ds
t

2. Pour le schéma d’Euler explicite, on approche 3. On saisit :
t+h

l’intégrale/ f(z(s), s)ds par laméthode des |def Euler(f,x0,t):
x=[x0]
for k in range(1l,len(t)):

t
rectangles a gauche et on en déduit I'approxi-

mation (] -t bt
h=t[k]-tlk-1
o(t+h) = a(t) + hf(x(t), 1) x.append (x [k-1]+hxf (x[-1] ,t [k-1]
La solution approchée vérifie alors la relation return x

de récurrence

Vke[1l;n] T = Tp—1 + hpr f (21, te—1)

4. On saisit :

Euler explicite ordre 1

a=lambda t:-20
b=lambda t:10*np.sin(np.pix*t)
f=lambda x,t:a(t)*x+b(t)

1.00 4
0.75 14

0.50 1

t=np.linspace(0,10,120) ;x0=1 0.25 1
xe=Euler(f,x0,t); 0.00
y=integr.odeint (f,x0,t)
plt.plot(t,xe,’b’,t,y,’r’,linewidth=2)
plt.grid() ;plt.show()
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FIGURE 2 — Méthode d’Euler explicite

Exercice 3

1. On saisit :

10,

def f(x,t):
return -x/(1+t)+np.sin(t)

tt=np.linspace(-.9,8,100)

for x0 in np.linspace(-10,10,10):
tx=integr.odeint (f,x0,tt)
plt.plot(tt,tx)

plt.grid() ;plt.show()
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9 FIGURE 3 — Courbes intégrales, continuité du
flot



2. On saisit :

def f(x,t):
return 2*x/t-t*np.cos(1/t)

x0=0

for t0 in np.linspace(-1/np.pi,-.2,10)¢

tt=np.linspace(t0,-.0001,100)
tx=integr.odeint (f,x0,tt)
plt.plot(tt,tx)

plt.grid() ;plt.show()
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FIGURE 4 — Courbes intégrales, continuité du
flot

Sur les deux figures, on observe un phénomeéne de continuité du flot qui signifie que les courbes
intégrales varient continument en fonction des conditions initiales.

3. On saisit :

t0=.001

for n in range(100,1100,100):
tt=np.linspace(t0,.1,n)
tx=integr.odeint (f,x0,tt)
plt.plot(tt,tx)

.grid () ;plt.show()
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FIGURE 5 — Variation du pas de discrétisation

On observe des courbes différentes pour un méme probléme de Cauchy ce qui est impossible
puisque le théoréme de Cauchy linéaire garantit existence et unicité d’une solution. Il s’agit donc
d’une défaillance de l'instruction integr.odeint qui s’explique par l'oscillation extrémement

1
rapide de la fonction ¢t — ¢ cos (;) au voisinage de zéro.



Exercice 4

1. On saisit :

def f(X,t):
x,dx=X
return [dx,-3*dx-2*x+np.exp(-t)]

tt=np.linspace(0,10,1000)
X0=[1,1]

tX=integr.odeint (f,X0,tt)
plt.plot(tt,tX[:,0])
plt.grid() ;plt.show()

2. On saisit :

def f(X,t):
x,dx=X
return [dx,-np.sin(x)]

tt=np.linspace(0,10,1000)
X0=[1,2]

tX=integr.odeint (f,X0,tt)
plt.plot(tt,tX[:,0])
plt.grid() ;plt.show()

FIGURE 6 — Solution du probléme (Cy)
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FIGURE 7 — Solution du probléme (Cy)
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