
INGÉNIERIE NUMÉRIQUE

B. Landelle

Table des matières

I Quadrature 2
1 Principe . 2
2 Méthode des rectangles . 2

II Équations di�érentielles 3
1 Problème de Cauchy . 3
2 Premier ordre . 4
3 Méthode d'Euler explicite . 5
4 Deuxième ordre . 6

III Résolution numérique d'équations 8
1 Résolution par dichotomie . 8
2 Méthode de Newton . 10

IV Tableaux 13
1 Généralités . 13
2 Arithmétique �ottante . 15

V Matrices 16
1 Génération de matrices . 16
2 Opérations matricielles . 19
3 Résolution . 21

VI Algèbre bilinéaire 22
1 Produit scalaire, norme . 22
2 Orthonormalisation de Gram-Schmidt . 22

VII Probabilités 24
1 Quelques expérimentations convaincantes . 24
2 Simulation de lois . 26
3 Méthodes de Monte-Carlo . 27
4 Marches aléatoires dans Z et Z2 . 29

1

I Quadrature

1 Principe

Dé�nition 1. Une méthode de quadrature sur E = C 0([a ; b] ,R) consiste en le choix de poids
λ0, . . ., λp−1 réels et de n÷uds x0, . . ., xp−1 dans [a ; b] et strictement ordonnés tels que, pour

f ∈ E, le calcul de la somme �nie
p−1∑
i=0

λif(xi) fournisse une valeur approchée de

∫ b

a

f(t) dt,

c'est-à-dire ∫ b

a

f(t) dt ≃
p−1∑
i=0

λif(xi)

Remarque : La dé�nition peut sembler un peu creuse puisque le sens de valeur approchée

n'est pas dé�nie . . .

2 Méthode des rectangles

Dans cette section, la méthode présentée s'applique avec une subdivision (ak)0⩽k⩽n de [a ; b]
régulièrement espacée :

∀k ∈ [[0 ; n]] ak = a+ kh avec h =
b− a

n

Sur chaque intervalle [ak ; ak+1] avec k ∈ [[0 ; n − 1]], on utilise une méthode de quadrature

simple pour approcher
∫ ak+1

ak

f(t) dt.

Dé�nition 2. Soit f ∈ E. La méthode des rectangles consiste à approcher

∫ b

a

f(t) dt par la

somme

h
n−1∑
k=0

f(ak) ≃
∫ b

a

f(t) dt

La quantité h×f(ak) représente l'aire algébrique d'un rectangle de base [ak ; ak+1] et de hauteur
f(ak).

a b

y = f(x)

x

y

b−a
n

Figure 1 � Méthode des rectangles

B. Landelle 2 ISM MP

Traditionnellement, la méthode des rectangles s'entend au sens des rectangles à gauche comme

ci-dessus. La méthode des rectangles à droite consiste à e�ectuer le calcul h
n∑

k=1

f(ak).

def rect(f,a,b,n):

"""Méthode des rectangles à gauche"""

res=0

h=(b-a)/n

c=a

for k in range(n):

res+=f(c)

c+=h

return res*h

Exercice : Écrire une implémentation de la méthode des rectangles médians qui consiste à

e�ectuer le calcul h
n∑

k=1

f
(ak + ak+1

2

)
.

Corrigé : On saisit :

def rect(f,a,b,n):

"""Méthode des rectangles médians"""

res=0

h=(b-a)/n

c=a+h/2

for k in range(n):

res+=f(c)

c+=h

return res*h

II Équations di�érentielles

Pour des résolutions numériques d'équations di�érentielles, on importera le module scipy.integrate
sous l'alias integr :

import scipy.integrate as integr

1 Problème de Cauchy

Un problème de Cauchy associé à une équation di�érentielle d'ordre 1 est un système de la
forme ®

x′(t) = f(x(t), t)

x(t0) = x0

L'équation di�érentielle considérée est sous forme normalisée avec le terme x′(t) explicite en
fonction de x(t) et t. Sous certaines hypothèses, le théorème de Cauchy-Lipschitz garantit qu'il
existe une unique solution à ce problème. La détermination formelle de cette solution est sou-
vent impossible et on privilégie donc la recherche d'une solution numérique approchée.

B. Landelle 3 ISM MP

On utilise l'instruction integr.odeint pour e�ectuer une résolution numérique de ce problème
de Cauchy. On résout l'équation sur un intervalle de temps discrétisé sous la forme d'un tableau
ou d'une liste [t0, . . . , tn] avec la syntaxe suivante :

integr.odeint(f,x0,t)

où x0 désigne la condition initiale à l'instant t0, premier élément de la liste t. L'instruction
renvoie un tableau [x0, . . . , xn], solution approchée de [x(t0), . . . , x(tn)].

La précision des solutions approchées fournies par integr.odeint dépend de la liste des temps
discrétisés. Dans l'ensemble, cette précision est remarquable. L'instruction s'appuie sur les
méthodes d'Adams-Moulton et BDF (Backward Di�erentiation Formula). Le lecteur curieux
pourra consulter les articles [3], [4] et l'ouvrage [8]. L'instruction integr.odeint s'appuie sur
la librairie Fortran intitulée Odepack (voir [1], [2]).

2 Premier ordre

Pour résoudre numériquement le problème de Cauchy®
x′(t) = x(t)

x(0) = 1

sur l'intervalle [0 ; 5], on saisit :

def f(x,t):

return x

tt=np.linspace(0,5,100);x0=1 # intervalle discrétisé, condition initiale

tx=integr.odeint(f,x0,tt) # résolution numérique de l'équation

plt.plot(tt,tx);plt.grid();plt.show()

0 1 2 3 4 5
0

20

40

60

80

100

120

140

160

Figure 2 � Solution de x′ = x avec x(0) = 1

Pour tracer plusieurs courbes intégrales correspondant à des conditions initiales distinctes, on
saisit :

B. Landelle 4 ISM MP

for x0 in np.linspace(.5,1.5,10):

sol=integr.odeint(f,x0,tt)

plt.plot(tt,sol)

plt.grid();plt.show()

0 1 2 3 4 5
0

50

100

150

200

250

Figure 3 � Courbes intégrales

Ces courbes ne se rencontrent pas, conformément à ce qu'annonce le théorème de Cauchy
linéaire.

3 Méthode d'Euler explicite

La relation entre les états aux instants t et t+ h est

x(t+ h) = x(t) +

∫ t+h

t

x′(s) ds = x(t) +

∫ t+h

t

f(x(s), s) ds

Si h est � petit �, la variation de t 7→ f(x(t), t) est faible et le principe de la méthode d'Euler
explicite consiste à réaliser l'approximation

∀s ∈ [t ; t+ h] f(x(s), s) ≃ f(x(t), t)

d'où x(t+ h) ≃ x(t) + hf(x(t), t)

y = x(t)

•x(t) + hf(x(t), t)

•

t

•

t+ h

•x(t)

•x(t+ h)

Figure 4 � Schéma d'Euler explicite

B. Landelle 5 ISM MP

Remarque : La méthode d'Euler explicite consiste à approcher l'intégrale
∫ t+h

t

f(x(s), s) ds

par la méthode des rectangles à gauche.

La suite (x0, . . . , xn) solution approchée de (x(t0), . . . , x(tn)) par la méthode d'Euler explicite
est dé�nie par

∀k ∈ [[1 ; n]] xk = xk−1 + hk−1f(xk−1, tk−1) avec hk−1 = tk − tk−1

y = x(t)

••

t0

•x0

•
•
•
••

tk

•xk
•

Figure 5 � Méthode d'Euler explicite

def Euler(f,x0,t):

x=[x0]

for k in range(1,len(t)):

h=t[k]-t[k-1]

x.append(x[k-1]+h*f(x[k-1],t[k-1]))

return x

Remarques : (1) Cette méthode est dite explicite car la quantité f(xk−1, tk−1) à calculer à
la k-ème itération est complètement explicite : tk−1 est une donnée du problème et xk−1 a été
obtenu à l'étape précédente.
(2) On peut démontrer que sous certaines hypothèses sur la fonction f (continue, lipschitzienne
en la première variable qui peut même être assouplie en localement lipschitzienne), le schéma
d'Euler est convergent.

4 Deuxième ordre

Pour des équations di�érentielles d'ordre supérieur à 1, l'écriture matricielle permet de se ra-
mener à un système di�érentielle d'ordre 1. Dans le cas du problème de Cauchy suivant®

x′′(t) = F(x′(t), x(t), t)

(x(t0), x
′(t0)) = (x0, v0)

On pose X(t) =

Å
x(t)
x′(t)

ã
et X0 =

Å
x0

v0

ã
puis on trouve X′(t) =

Å
x′(t)
x′′(t)

ã
=

Å
x′(t)

F(x′(t), x(t), t)

ã
= f(X(t), t)

B. Landelle 6 ISM MP

et on peut alors utiliser integr.odeint pour traiter le problème de Cauchy associé à une
équation di�érentielle matricielle d'ordre 1 résolue suivant :®

X′(t) = f(X(t), t)

X(t0) = X0

Par exemple, pour résoudre numériquement le problème de Cauchy®
x′′(t) + x′(t) + x(t) = sin(t)

(x(0), x′(0)) = (1, 1)
⇐⇒

®
(x′(t), x′′(t)) = (x′(t),−x(t)− x′(t) + sin(t))

(x(0), x′(0)) = (1, 1)

sur l'intervalle [0 ; 10], on saisit :

def f(X,t):

return [X[1],-X[0]-X[1]+np.sin(t)]

tt=np.linspace(0,10,100);X0=[1,1]

tX=integr.odeint(f,X0,tt)

tracé de t->x(t) première coordonnée de X

plt.plot(tt,tX[:,0]) # tracé de t->x(t) première coordonnée de X

plt.grid();plt.show()

0 2 4 6 8 10
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

Figure 6 � Solution de x′′ + x′ + x = sin(t) avec (x(0), x′(0)) = (1, 1)

B. Landelle 7 ISM MP

III Résolution numérique d'équations

Dans cette section, on présente di�érentes méthodes de résolution numérique de l'équation
f(x) = 0.

1 Résolution par dichotomie

Soit f ∈ C 0([a ; b] ,R) avec f(a)f(b) ⩽ 0 ce qui garantit l'existence d'un réel α ∈ [a ; b] tel que

f(α) = 0. L'algorithme consiste à regarder la valeur de f en le milieu c =
a+ b

2
et en fonction

du signe de f(c) à considérer comme nouvel intervalle [a ; c] ou [c ; b] puis de répéter cette
démarche. Ainsi, à chaque itération, la longueur de l'intervalle est divisée par deux et va donc
encadrer de plus en plus �nement la valeur d'une racine.

x

y

y = f(x)

•αa

•
f(a0)

b

•f(b0)

•f(b1)

•
f(a2)

•
f(b3)

Figure 7 � Dichotomie

Code :

def dicho(f,a,b,eps):

deb,fin=a,b

milieu=(deb+fin)/2

while fin-deb>eps:

if f(milieu)*f(deb)<=0:

fin=milieu

else:

deb=milieu

milieu=(deb+fin)/2

return milieu

B. Landelle 8 ISM MP

ou récursivement :

def dicho(f,a,b,eps):

c=(a+b)/2

if b-a<eps:

return c

else:

if f(a)*f(c)<=0:

return dicho(f,a,c,eps)

else:

return dicho(f,c,b,eps)

Expérimentation : On présente l'utilisation de dicho pour la résolution de l'équation

x2 − 2 = 0 avec x ∈ [0 ; 2]

>>> dicho(lambda t:t**2-2,0,2,1e-10)

1.414213562355144

>>> np.sqrt(2)

1.4142135623730951

La commande bisect du module scipy.optimize, habituellement importé sous l'alias resol,
est une implémentation de la méthode de résolution par dichotomie :

>>> import scipy.optimize as resol

>>> f=lambda x : x**2-2

>>> resol.bisect(f,0,2)

1.4142135623715149

Dé�nition 3. Soit f ∈ C 0([a ; b] ,R) avec f(a)f(b) ⩽ 0. L'algorithme de dichotomie consiste

en la construction des suites (an)n, (bn)n et (cn)n avec a0 = a, b0 = b et pour tout entier n

cn =
an + bn

2
(an+1, bn+1) =

®
(an, cn) si f(an)f(cn) ⩽ 0

(cn, bn) sinon

Proposition 1. Soit f ∈ C 0([a ; b] ,R) avec f(a)f(b) ⩽ 0 et (an)n, (bn)n et (cn)n les suites de

l'algorithme de dichotomie. On a l'invariant de boucle suivant :

∀n ∈ N f(an)f(bn) ⩽ 0

Démonstration. Récurrence immédiate.

Commentaire : Ceci garantit pour tout n entier, l'existence d'une racine de f dans [an ; bn].
Pour un seuil ε > 0, on retourne cn lorsque bn − an ⩽ ε. Ainsi, on est assuré d'avoir une racine
α de f telle que

|cn − α| ⩽ bn − an ⩽ ε

B. Landelle 9 ISM MP

Proposition 2. Soit f ∈ C 0([a ; b] ,R) véri�ant f(a)f(b) ⩽ 0 et (an)n, (bn)n les suites de

l'algorithme de dichotomie. On a

∀n ∈ N bn − an =
b− a

2n

et n ⩾ log2

Å
b− a

ε

ã
=⇒ bn − an ⩽ ε

Démonstration. L'égalité sur bn − an se montre par récurrence et disjonction de cas. Le reste
suit sans di�culté.

2 Méthode de Newton

Soit une fonction f : I→ R de classe C 1 avec I un intervalle non vide de R sur lequel f s'annule
et une valeur initiale x0. L'idée de la méthode de Newton consiste à � descendre � le long de la
tangente, autrement dit à approcher la courbe par sa tangente et considérer sa racine.

x

y

y = f(x)

•

•
x1

•
x0

•
α

Figure 8 � Descente le long de la tangente

L'équation de la tangente à la courbe a pour équation y = f ′(x0)(x − x0) + f(x0) qui admet
pour racine

0 = f ′(x0)(x− x0) + f(x0) ⇐⇒ x = x0 −
f(x0)

f ′(x0)

En itérant ce procédé, on dé�nit la suite (xn)n∈N par

∀n ∈ N xn+1 = xn −
f(xn)

f ′(xn)

B. Landelle 10 ISM MP

Dé�nition 4. Soit f ∈ C 1(I,R) telle que f ′ ne s'annule pas sur I et x0 ∈ I. La suite (xn)n
dé�nie par

∀n ∈ N xn+1 = xn −
f(xn)

f ′(xn)

est appelée suite de la méthode de Newton.

Sous certaines conditions, notamment si la condition initiale x0 n'est pas trop éloignée de la
racine recherchée, la suite converge vers cette racine. On prend comme condition d'arrêt au
calcul itératif de la suite (xn)n∈N le test |xn+1 − xn| ⩽ ε où ε > 0 désigne un seuil choisi par
l'utilisateur.

x

y

y = f(x)

•

•
x1

•
x0

•

•

•
x2

Figure 9 � Méthode de Newton

Code :

def newton(x0,f,df,eps):

a,b=x0,x0-f(x0)/df(x0)

while abs(b-a)>eps:

a,b=b,b-f(b)/df(b)

return b

Expérimentation : On présente l'utilisation de newton pour la résolution de l'équation

x2 − 2 = 0 avec x0 = 2

>>> newton(2,lambda t:t**2-2,lambda t:2*t,1e-10)

1.4142135623730951

>>> np.sqrt(2)

1.4142135623730951

B. Landelle 11 ISM MP

Théorème 1. Soit f ∈ C 2(I,R) et α ∈ I tel que f(α) = 0 et f ′(α) ̸= 0. Alors, il existe un

voisinage V de α tel que pour x0 ∈ V , la suite (xn)n de la méthode de Newton converge vers α
à vitesse quadratique, à savoir

∀n ∈ N C |xn − α| ⩽ (C |x0 − α|)2
n

avec 0 < C |x0 − α| < 1

Remarque : La méthode de Newton présente une vitesse de convergence exceptionnelle, bien

meilleure que celle de la méthode de dichotomie. Avec δn = − log10(en) où en =
1

C
(C |x0 − α|)2

n

,

on a δn+1 ≃ 2δn ce qu'on interprète (abusivement) comme le doublement du nombre de déci-
males communes entre xn et α à chaque itération.

Corollaire 1. Soit f ∈ C 2(I,R), convexe avec f ′ ne s'annulant pas et α ∈ I tel que f(α) = 0.
La suite (xn)n de la méthode de Newton converge vers α avec une vitesse quadratique à partir

d'un certain rang.

Piège cyclique : Considérons la fonction f dé�nie par

∀x ∈ R f(x) = x3 − 2x+ 2

et une valeur initiale x0 = 0. La méthode de Newton boucle indé�niment sur cette con�guration.
La tangente en 0 est y = −2x + 2 d'où x1 = 1. Puis la tangente en 1 est y = (x − 1) + 1 = x
d'où x2 = 0. Par récurrence immédiate, on obtient donc

∀n ∈ N x2n = 0 x2n+1 = 1

L'unique racine réelle de f est α ≃ −1.77. La convergence de la méthode de Newton est un
résultat local pour une valeur initiale proche de la racine. Quand cette condition n'est pas
satisfaite comme c'est le cas ici, la convergence n'est plus assurée.

y = f(x)

x

y

•

•

•
x2n

•
x2n+1

Figure 10 � Graphe de f et des tangentes en 0 et 1

Pour éviter ce problème lié au choix de la condition initiale, il est courant d'associer la méthode
de Newton à une méthode d'encadrement comme la dichotomie par exemple.

Un exemple célèbre : La méthode de Héron (premier siècle après JC).
Pour calculer une valeur approchée de

√
a avec a > 0, la méthode de Héron consiste à utiliser

la suite (xn)n dé�nie par

B. Landelle 12 ISM MP

x0 = a et ∀n ∈ N xn+1 =
1

2

Å
xn +

a

xn

ã
La méthode de Héron est un cas particulier d'utilisation de la méthode de Newton avec une
convergence globale quadratique.

Le lecteur désirant approfondir l'étude des schémas numériques de résolution d'équations dif-
férentielles pourra consulter les ouvrages [6], [7] et [8].

IV Tableaux

1 Généralités

Dé�nition 5. Un tableau est un objet de type ndarray constitué d'une suite de variables de

type entier, �ottant ou complexe stockées dans des emplacements consécutifs de la mémoire.

Proposition 3. En langage python, on utilise les instructions ou méthodes suivantes sur les

tableaux :

� l'instruction np.array pour construire un tableau ;

� la méthode shape pour avoir les dimensions d'un tableau ;

� la méthode dtype pour avoir le type des variables d'un tableau.

Cette liste est loin d'être exhaustive !

Construction d'un tableau d'entiers à une dimension :

>>> a=np.array([1,2,3])

>>> type(a)

<class 'numpy.ndarray'>

>>> a.shape

(3,)

>>> a.dtype

dtype('int32')

Construction d'un tableau de �ottants à deux dimensions :

>>> b=np.array([[1,2],[1/3,1/4],[0,1]])

>>> b

array([[1. , 2.],

[0.33333333, 0.25],

[0. , 1.]])

>>> b.shape

(3, 2)

>>> b.dtype

dtype('float64')

Proposition 4. L'accès en lecture et en écriture à une case d'un tableau est de complexité

temporelle en O(1).

B. Landelle 13 ISM MP

Ces performances en lecture et écriture sont possibles grâce à l'organisation des données dans
des emplacements consécutifs en mémoire.

L'accès aux composantes d'un tableau et le recours au slicing suit les mêmes règles que celles
énoncées sur les listes :

>>> a=np.array([1,2,3,4,5])

>>> a[0]

1

>>> a[1:]

array([2, 3, 4, 5])

>>> a[::2]

array([1, 3, 5])

et sur un tableau à deux dimensions :

>>> b=np.array([[1,2],[1/3,1/4],[0,1]])

>>> b[0,:]

array([1., 2.])

>>> b[-1,:]

array([0., 1.])

>>> b[:,0]

array([1. , 0.33333333, 0.])

L'instruction b[0,:] renvoie la première ligne, l'instruction b[-1,:] renvoie la dernière ligne,
l'instruction b[:,0] renvoie la première colonne.

! Un tableau est un type mutable.

>>> a=np.array([3,2,1])

>>> b=a

>>> a[0]=0

>>> a

array([0, 2, 1])

>>> b

array([0, 2, 1])

Pour créer une copie indépendante, on e�ectue une copie en profondeur avec l'instruction
deepcopy du module copy ou avec np.array.

>>> from copy import deepcopy

>>> a=np.array([3,2,1])

>>> b=deepcopy(a)

>>> c=np.array(a)

>>> a[0]=0

>>> a

array([0, 2, 1])

>>> b

array([3, 2, 1])

>>> c

array([3, 2, 1])

B. Landelle 14 ISM MP

L'instruction np.linspace(a,b,n) génère un tableau de n valeurs régulièrement espacées de a
à b et l'instruction np.arange(a,b,h) génère un tableau de valeurs régulièrement espacées de
h à a inclus à b exclu.

>>> np.linspace(0,1,4)

array([0. , 0.33333333, 0.66666667, 1.])

>>> np.arange(0,1,.2)

array([0. , 0.2, 0.4, 0.6, 0.8])

Les instructions list et np.array permettent les conversions respectivement vers le type liste
ou le type tableau.

>>> np.array([2*k+3 for k in range(10)])

array([3, 5, 7, 9, 11, 13, 15, 17, 19, 21])

>>> list(np.arange(0,1,.2))

[0.0, 0.20000000000000001, 0.40000000000000002, 0.60000000000000009,

0.80000000000000004]

2 Arithmétique �ottante

En langage python, les nombres sont codés au format �ottant. Tester l'égalité entre deux �ot-
tants ou tester la nullité d'un �ottant n'est pas pertinent du fait de l'imprécision liée au format.
Il faut donc e�ectuer des tests avec un certain seuil de tolérance :

def floatnull(x):

eps=1e-8

return abs(x)<eps

Pour tester l'égalité entre deux tableaux à une dimension de même taille constitués de �ottants,
on peut coder :

def arrayfloateq(T1,T2):

eps=1e-8

for k in range(len(T1)):

if abs(T1[k]-T2[k])>eps:

return False

return True

On peut utiliser un procédé de seuillage pour transformer les nombres proches de zéro (en
valeur absolue) en zéro. Par exemple, sur un tableau à une dimension, on pourrait procéder
ainsi :

def seuil(x):

eps=1e-8

return x*(abs(x)>eps) # True confondu avec 1 pour l'opération *

B. Landelle 15 ISM MP

def round1(a):

n=len(a)

res=deepcopy(a)

for k in range(n):

res[k]=seuil(a[k])

return res

On obtient :

>>> a=np.sin([k*np.pi/2 for k in range(6)])

>>> a

array([0.00000000e+00, 1.00000000e+00, 1.22464680e-16,

-1.00000000e+00, -2.44929360e-16, 1.00000000e+00])

>>> round1(a)

array([0., 1., 0., -1., -0., 1.])

Le lecteur désireux d'approfondir sa connaissance de l'arithmétique �ottante pourra consulter
l'ouvrage [5].

V Matrices

Le module indispensable pour manipuler des matrices est numpy.linalg. On recommande éga-
lement l'importation de numpy.random pour la génération de matrices aléatoires.

Soient n et p entiers non nul. Les vecteurs de Rn sont codés par des tableaux à une dimension
et les matrices de Mn,p(R) sont codées par des tableaux à deux dimensions, saisis par ligne.

Par exemple, le vecteur a = (1, 2, 3) et la matrice B =

Å
1 2
3 4

ã
sont saisis respectivement par

>>> a=np.array([1,2,3])

>>> B=np.array([[1,2],[3,4]])

Dans ce qui suit, on parlera de matrices au sens large, les vecteurs pouvant être assimilés à des
matrices lignes ou colonnes, au choix selon le point de vue considéré.

1 Génération de matrices

Les instructions np.zeros et np.ones génèrent des matrices constituées respectivement de 0 ou
de 1. L'instruction np.zeros(n) génère le vecteur nul de Rn et l'instruction np.zeros((n,p))

génère la matrice nulle de Mn,p(R).

>>> np.zeros(5)

array([0., 0., 0., 0., 0.])

>>> np.zeros((3,4))

array([[0., 0., 0., 0.],

[0., 0., 0., 0.],

[0., 0., 0., 0.]])

B. Landelle 16 ISM MP

Sur le même principe, on génère un vecteur ou une matrice constituée de 1.

>>> np.ones(5)

array([1., 1., 1., 1., 1.])

>>> np.ones((3,4))

array([[1., 1., 1., 1.],

[1., 1., 1., 1.],

[1., 1., 1., 1.]])

Les instructions np.zeros et np.ones génèrent par défaut des matrices de �ottants. On peut
forcer l'utilisation d'un type entier en le spéci�ant en option :

>>> a=np.ones((3,3),dtype='int')

>>> a

array([[1, 1, 1],

[1, 1, 1],

[1, 1, 1]])

L'instruction np.diag permet de construire une matrice diagonale de diagonale donnée ou au
contraire d'extraire la diagonale d'une matrice.

>>> a=np.array([[1,2],[3,4]])

>>> np.diag(a)

array([1, 4])

>>> np.diag([1,2,3])

array([[1, 0, 0],

[0, 2, 0],

[0, 0, 3]])

L'instruction np.eye(n) génère la matrice identité d'ordre n.

>>> np.eye(4)

array([[1., 0., 0., 0.],

[0., 1., 0., 0.],

[0., 0., 1., 0.],

[0., 0., 0., 1.]])

La fonction A(n) d'argument n entier non nul renvoie la matrice

A =



0 1 0 . . . 0

1
. . .

. . .
. . .

...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . 1

0 . . . 0 1 0

 ∈Mn(R)

def A(n):

res=np.zeros((n,n))

for i in range(1,n):

B. Landelle 17 ISM MP

res[i,i-1]=1

res[i-1,i]=1

return res

Exercice : Écrire une fonction B(n) d'argument n entier et qui renvoie la matrice

B =



0 1 0 . . . 0

n 0 2
. . .

...

0 n− 1 0
. . . 0

...
. . .

. . .
. . . n

0 . . . 0 1 0

 ∈Mn+1(R)

Corrigé : On saisit :

def B(n):

res=np.zeros((n+1,n+1))

for i in range(n):

res[i+1,i]=n-i

res[i,i+1]=i+1

return res

Pour tester des fonctions sur des vecteurs ou des matrices, il peut s'avérer très confortable de
générer ceux-ci aléatoirement. L'instruction rd.rand génère un vecteur ou une matrice dont les
coordonnées sont tirées aléatoirement et indépendamment dans [0 ; 1].

>>> rd.rand(5)

array([0.94525138, 0.10025385, 0.17437674, 0.6036298 , 0.32027945])

>>> rd.rand(3,4)

array([[0.72529463, 0.4485876 , 0.04743872, 0.79269754],

[0.7819368 , 0.70206414, 0.22630832, 0.68197435],

[0.08252628, 0.13326646, 0.47804099, 0.08423917]])

Pour n entier non nul, on peut démontrer que le résultat du tirage rd.rand(n,n) est une ma-
trice d'ordre n dont la probabilité qu'elle soit inversible est égale à 1. En pratique, on réalise
donc un tirage d'une matrice dans GLn(R).

Exercice : Écrire une fonction V(L) d'argument une liste de �ottants [x1, . . . , xn] qui renvoie
la matrice de Vandermonde de cette liste dé�nie par

V =

â
1 1 . . . 1
x1 x2 . . . xn

x2
1 x2

2 . . . x2
n

...
...

...
xn−1
1 xn−1

2 . . . xn−1
n

ì
Corrigé : On saisit :

def V(L):

n=len(L)

B. Landelle 18 ISM MP

res=np.zeros((n,n))

for i in range(n):

for j in range(n):

res[i,j]=L[j]**i

return res

Remarque : Une version sans exponentiation est possible :

def V(L):

n=len(L)

res=np.ones((n,n))

res[1,:]=np.array(L)

for i in range(2,n):

res[i,:]=res[1,:]*res[i-1,:]

return res

2 Opérations matricielles

On utilisera des matrices générées aléatoirement pour illustrer les opérations sur des exemples.

Une matrice peut être multipliée par un scalaire (produit extérieur sur un K-ev), des matrices
de dimensions compatibles peuvent être additionnées :

>>> a=rd.rand(3)

>>> a

array([0.57999144, 0.57460622, 0.79592186])

>>> b=rd.rand(3)

>>> b

array([0.77425788, 0.75196289, 0.11517891])

>>> a+b

array([1.35424932, 1.32656912, 0.91110077])

>>> 2*a

array([1.15998289, 1.14921245, 1.59184372])

>>> A=rd.rand(2,2)

>>> A

array([[0.49867413, 0.63919241],

[0.76025963, 0.37326753]])

>>> B=rd.rand(2,2)

>>> B

array([[0.04274343, 0.57188152],

[0.92958428, 0.93376888]])

>>> A+B

array([[0.54141756, 1.21107393],

[1.68984391, 1.30703641]])

L'instruction np.transpose et la méthode T e�ectuent la transposition :

>>> A=rd.rand(2,3)

>>> np.transpose(A)

B. Landelle 19 ISM MP

array([[0.79360088, 0.92593801],

[0.0744836 , 0.52320879],

[0.79010506, 0.83641115]])

>>> A.T

array([[0.79360088, 0.92593801],

[0.0744836 , 0.52320879],

[0.79010506, 0.83641115]])

L'instruction np.trace calcule la trace :

>>> A=rd.rand(3,3)

>>> A

array([[0.66657305, 0.84646752, 0.52250037],

[0.99327682, 0.55750006, 0.2041305],

[0.67305521, 0.34774888, 0.98803663]])

>>> np.trace(A)

2.2121097330222317

L'instruction np.dot et la méthode dot réalisent le produit matriciel :

>>> A=rd.rand(2,2)

>>> B=rd.rand(2,2)

>>> np.dot(A,B)

array([[0.5746594 , 0.7904693],

[0.48632516, 0.65721293]])

>>> A.dot(B)

array([[0.5746594 , 0.7904693],

[0.48632516, 0.65721293]])

Pour e�ectuer une exponentiation matricielle, on utilise l'instruction alg.matrix_power :

>>> A=rd.rand(3,3)

>>> alg.matrix_power(A,10)

array([[278.56566527, 349.41967131, 255.36858979],

[422.80901928, 530.35190296, 387.60033548],

[451.8667134 , 566.80051128, 414.23830039]])

L'instruction alg.det calcule le déterminant et l'instruction alg.inv calcule l'inverse matri-
cielle. Comme dit précédemment, l'exécution de l'instruction rd.rand(n,n) génère aléatoire-
ment une matrice de GLn(K).

>>> A=rd.rand(3,3)

>>> alg.det(A)

0.080804707847183632

>>> alg.inv(A)

array([[-2.49498297, -5.39252509, 6.78645757],

[2.11390228, 1.17609491, -1.74598544],

[1.76079039, 6.33667569, -6.31434742]])

B. Landelle 20 ISM MP

Soient A =

Ñ
1 −1 1
−2 1 2
−2 −1 4

é
et P =

Ñ
1 1 0
1 0 1
1 1 1

é
Le calcul de P−1AP donne :

>>> A=np.array([[1,-1,1],[-2,1,2],[-2,-1,4]])

>>> P=np.array([[1,1,0],[1,0,1],[1,1,1]])

>>> alg.inv(P).dot(A.dot(P))

array([[1., 0., 0.],

[0., 2., 0.],

[0., 0., 3.]])

ou aussi :

>>> np.dot(alg.inv(P),np.dot(A,P))

array([[1., 0., 0.],

[0., 2., 0.],

[0., 0., 3.]])

3 Résolution

Soit A ∈ GLn(K) et B ∈ Mn,1(K). Pour résoudre le système linéaire AX = B d'inconnue
X ∈ Mn,1(K), on peut utiliser au choix l'instruction alg.solve ou l'inversion et le produit
matriciel puisque

AX = B ⇐⇒ X = A−1B

Par exemple, pour résoudre le système
10x+ 7y + 8z + 7t = 32

7x+ 5y + 6z + 5t = 23

8x+ 6y + 10z + 9t = 33

7x+ 5y + 9z + 10t = 31

on saisit :

>>> A=np.array([[10,7,8,7],[7,5,6,4],[8,6,10,9],[7,5,9,10]])

>>> B=np.array([32,23,33,31])

puis

>>> alg.solve(A,B)

array([5.55555556, -6.55555556, 2.88888889, -0.11111111])

ou

>>> alg.inv(A).dot(B)

array([5.55555556, -6.55555556, 2.88888889, -0.11111111])

B. Landelle 21 ISM MP

VI Algèbre bilinéaire

1 Produit scalaire, norme

Soit n entier non nul. L'instruction np.dot entre deux vecteurs de Rn renvoie leur produit
scalaire canonique. On peut aussi l'utiliser comme méthode directement sur l'un des vecteurs
concernés.

>>> a=np.array([1,2,3])

>>> b=np.array([1,0,-1])

>>> np.dot(a,b)

-2

>>> a.dot(b)

-2

L'instruction alg.norm calcule la norme euclidienne d'un vecteur de Rn.

>>> alg.norm(a)

3.7416573867739413

2 Orthonormalisation de Gram-Schmidt

Étant donné une famille libre (u1, . . . , up) de vecteurs de Rn, il existe une famille orthonormée
(v1, . . . , vp) de vecteurs de Rp telle que

∀k ∈ [[1 ; p]] Vect (u1, . . . , uk) = Vect (v1, . . . , vk)

L'algorithme d'orthonormalisation de Gram-Schmidt permet de construire une telle famille
orthonormée :
Algorithme 1 : Orthonormalisation
Entrées : [u1, . . . , up] libre
Résultat : [v1, . . . , vp] orthonormée
res← [u1/∥u1∥]
pour k ∈ [[2 ; p]] faire

z ← uk −
k−1∑
i=1

⟨uk, vi⟩ vi
res← res+ [z/∥z∥]

retourner res

Théorème 2. Soit E = Rn et (v1, . . . , vp) une famille libre de vecteurs de E. La famille

(v1, . . . , vp) obtenue par orthonormalisation de Gram-Schmidt est une famille orthonormée vé-

ri�ant

∀k ∈ [[1 ; p]] Vect (u1, . . . , uk) = Vect (v1, . . . , vk)

Dans l'algorithme de Gram-Schmidt, l'étape itérative consiste à construire zk = uk − pFk
(uk)

où Fk = Vect (u1, . . . , uk−1) = Vect (v1, . . . , vk−1). Ainsi, on a

vk =
zk
∥zk∥

∈ F⊥
k d'où vk⊥vi ∀i ∈ [[1 ; k − 1]]

B. Landelle 22 ISM MP

Fk = Vect (u1, . . . , uk−1)

uk

pFk
(uk)

zk ← uk − pFk
(uk)

Figure 11 � Étape itérative de l'algorithme d'orthonormalisation

Une implémentation de l'algorithme est donnée par :

def norm(u):

normalise le vecteur u

return u/alg.norm(u)

def ortho(A):

Renvoie la matrice constituée des colonnes orthonormalisées

à partir des colonnes de la matrice A

p=A.shape[1]

v=[norm(A[:,0])]

for k in range(1,p):

u=A[:,k]

z=u-sum([np.dot(v[i],u)*v[i] for i in range(k)])

v.append(norm(z))

return np.array(v).T

On remarque que l'implémentation d'une fonction de normalisation qui prend un vecteur en
entrée et le normalise rend la fonction ortho très lisible avec une écriture assez légère.

>>> A=rd.rand(4,3)

>>> A

array([[0.04565402, 0.24376409, 0.44048029],

[0.26116379, 0.66024369, 0.59413365],

[0.600649 , 0.4420384 , 0.77978355],

[0.82817965, 0.14609593, 0.44261169]])

>>> B=ortho(A)

>>> B

array([[0.04319782, 0.33972245, 0.7314721],

[0.24711311, 0.81200547, -0.50851586],

[0.56833393, 0.20877085, 0.4162726],

[0.78362338, -0.42620478, -0.18187169]])

Si p = n, la famille orthonormalisée (v1, . . . , vn) est une base orthonormée de Rn. Par consé-
quent, la matrice M obtenue dont les colonnes sont les coordonnées des vecteurs vi est une

B. Landelle 23 ISM MP

matrice orthogonale, i.e. véri�ant M⊤M = In ou de manière équivalente MM⊤ = In. Pour tester
l'orthogonalité d'une matrice, on saisit :

def ps(A,B):

return np.trace(A.T.dot(B))

def isortho(A):

n=len(A)

eps=1e-8

B=A.T.dot(A)-np.eye(n)

return ps(B,B)<eps

On peut facilement générer aléatoirement une matrice orthogonale par orthonormalisation d'une
matrice tirée aléatoirement dans GLn(R) :

>>> A=rd.rand(3,3)

>>> B=ortho(A)

>>> np.dot(B.T,B)

array([[1.00000000e+00, 5.05754733e-15, -8.89543056e-15],

[5.05754733e-15, 1.00000000e+00, -1.03875092e-15],

[-8.92318613e-15, -1.03875092e-15, 1.00000000e+00]])

>>> isortho(B)

True

Une autre approche consiste à réaliser un produit de n matrices de Householder générées aléa-
toirement. La qualité de la distribution de ce produit en tant que loi sur On(R) est meilleure
que celle issue d'une orthonormalisation de Gram-Schmidt (voir [11]).

VII Probabilités

La technologie informatique permet de générer des nombres pseudo-aléatoires dont les tirages
ressemblent à des tirages réellement faits au hasard. L'algorithme Mersenne Twister, utilisé par
python, est l'un des plus réputés pour la qualité de son pseudo-hasard et sa rapidité d'exécution.
Pour e�ectuer des simulations aléatoires, on importera le module numpy.random sous l'alias rd :

import numpy.random as rd

1 Quelques expérimentations convaincantes

On présente des tirages selon U[0 ;1]2 .

n=1000

tx=rd.random(n)

ty=rd.random(n)

plt.plot(tx,ty,'bo')

plt.show()

B. Landelle 24 ISM MP

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 12 � Tirages selon la loi uniforme sur [0 ; 1]2

On peut aussi observer des résultats précis comme par exemple le théorème de la limite centrée

et en particulier sa version spécialisée qu'est le théorème de Moivre-Laplace facilement implé-
mentable.

Dans (Ω,A ,P) espace probabilisé, pour X une variable aléatoire réelle, on rappelle que le
fonction de répartition de X notée FX est dé�nie par FX(x) = P(X ⩽ x) pour x réel.

Dé�nition 6. Soit (Ω,A ,P) un espace probabilisé, X et (Xn)n⩾1 des variables aléatoires réelles.
On dit que (Xn)n converge en loi vers X que l'on note Xn ⇝ X si, pour tout x point de continuité

de FX, on a

FXn(x) −−−→
n→∞

FX(x)

Commentaire : Pour n grand, la loi de Xn ressemble à la loi de X.

Soit (Ω,A ,P) un espace probabilisé, (Xn)n⩾1 une suite de variables aléatoires indépendantes

de même loi B(p) avec p ∈] 0 ; 1 [et Sn =
n∑

i=1

Xi pour n entier. D'après le théorème de Moivre-

Laplace, on a

Sn − np√
np(1− p)

⇝ U avec U∼N (0, 1)

où N (0, 1) désigne la loi normale centrée réduite, i.e.

∀x ∈ R P(U ⩽ x) =
1√
2π

∫ x

−∞
e− t2

2 dt

n=2000

N=20000

tS=[]

for k in range(N):

tX=2*rd.randint(0,2,n)-1

tS.append(sum(tX)/np.sqrt(n))

plt.hist(tS,30,normed=True)

f=lambda x:1/np.sqrt(2*np.pi)*np.exp(-x**2/2)

tx=np.linspace(-5,5,100)

B. Landelle 25 ISM MP

tf=[f(x) for x in tx]

plt.plot(tx,tf,'r',linewidth=2)

plt.grid();plt.show()

−6 −4 −2 0 2 4 6
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Figure 13 � Convergence en loi vers la loi normale centrée réduite

2 Simulation de lois

Même si elle est o�ciellement hors-programme, il est prudent d'avoir quelques connaissances
sur la loi uniforme sur le segment [0 ; 1]. Soit (Ω,A ,P) un espace probabilisé. Une variable
aléatoire U suit la loi uniforme sur le segment [0 ; 1] notée U∼U[0 ;1] si U(Ω) = [0 ; 1] et

∀ [a ; b [⊂ [0 ; 1] P (U ∈ [a ; b [) =

∫ 1

0

1[a ;b [(t) dt = b− a

L'instruction rd.random() renvoie une réalisation de cette loi.

Soit p ∈ [0 ; 1]. Une variable aléatoire X suivant la loi de Bernoulli de paramètre p véri�e

X(Ω) = {0, 1} et P(X = 1) = p P(X = 0) = 1− p

Pour simuler une loi de Bernoulli de paramètre p, on code le résultat d'une indicatrice d'un
événement de probabilité p. On peut considérer 1U<p avec U∼U[0 ;1] (loi uniforme sur [0 ; 1],
o�ciellement hors-programme).

ber=lambda p: rd.random()<p

Soit n entier. Une variable aléatoire Y suivant la loi binomiale de paramètres n, p véri�e

Y(Ω) = [[0 ; n]] et ∀k ∈ [[0 ; n]] P(Y = k) =
(
n
k

)
pk(1− p)n−k

Exercice : Proposer une implémentation binomiale(n,p) qui simule une réalisation de la loi
B(n, p).

Corrigé : Une somme de n variables aléatoires indépendantes de même loi de Bernoulli de
paramètre p suit la loi binomiale B(n, p). On peut donc réaliser cette loi binomiale avec

B. Landelle 26 ISM MP

binomiale=lambda n,p:sum([ber(p) for k in range(n)])

Soit (Ω,A ,P) un espace probabilisé et p ∈] 0 ; 1 [. On rappelle qu'une variable aléatoire suivant
une loi géométrique de paramètre p modélise le nombre de répétitions d'une suite d'expériences
aléatoires succès/échec, succès avec probabilité p, jusqu'à obtention du premier succès.

Exercice : Écrire une fonction python geom(p) qui renvoie une réalisation de la loi géométrique
de paramètre p ∈] 0 ; 1 [.

Corrigé : On saisit :

def geom(p):

res=1

while ber(p)==0:

res+=1

return res

3 Méthodes de Monte-Carlo

Dé�nition 7. Soit (Ω,A ,P) un espace probabilisé et X une variable aléatoires réelle discrète.

On suppose disposer d'une suite de variables aléatoires discrètes (Xi)i⩾1 indépendantes et de

même loi que X. Le principe général d'une méthode de Monte-Carlo est d'approcher la valeur

de l'espérance E(X) par la moyenne empirique
1

n

n∑
i=1

Xi(ω) pour une réalisation ω ∈ Ω. Autrement

dit, pour un n choisi par l'expérimentateur, on e�ectue l'approximation

1

n

n∑
i=1

Xi(ω) ≃ E(X) avec ω ∈ Ω

Remarque : La justi�cation du bien-fondé des méthodes de Monte-Carlo est la loi des grands

nombres. Si les Xi sont dans L2, on dispose du résultat intitulé loi faible des grands nombres

∀ε > 0 P
Å∣∣∣∣ 1n n∑

i=1

Xi − E(X)
∣∣∣∣ ⩾ ε

ã
−−−→
n→∞

0

Notant X̄n =
1

n

n∑
i=1

Xi la moyenne empirique, on dit que
(
X̄n

)
n
converge en probabilité vers E(X)

et l'on note X̄n
P−−−→

n→∞
E(X). Il existe un résultat plus puissant appelé loi forte des grands nombres

qui dit que pour une suite de variables aléatoires indépendantes de même loi et d'espérance
�nie, la moyenne empirique converge presque sûrement vers l'espérance, c'est-à-dire

X̄n −−−→
n→∞

E(X) p.s.

Comme les aléas pour lesquels la convergence n'a pas lieu sont dans un ensemble négligeable,
l'usage des méthodes de Monte-Carlo est pertinent.

B. Landelle 27 ISM MP

Exemple : On lance une pièce équilibrée 1000 fois et on e�ectue la moyenne du nombre de fois
où l'on obtient pile. On peut simuler cette expérience en réalisant 1000 tirages indépendants
d'une loi de Bernoulli B(1/2). L'instruction rd.randint(a,b) renvoie une réalisation de loi
uniforme sur [[a ; b − 1]]. Des appels successifs fournissent des réalisations indépendantes. On
peut aussi exécuter rd.randint(a,b,n) qui renvoie n réalisations indépendantes de loi uni-
forme sur [[a ; b− 1]].

Si, pour une réalisation ω ∈ Ω donnée, on souhaite visualiser la convergence de la suiteÅ
1

n

n∑
i=1

Xi(ω)

ã
n⩾1

, on saisit :

n=1000

tX=rd.randint(0,2,n)

tmoy=[]

s=0

tn=range(1,n+1)

for i in tn:

s+=tX[i-1]

tmoy.append(s/i)

plt.plot(tn,tmoy)

plt.grid();plt.show()

0 200 400 600 800 1000

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 14 � Convergence de la moyenne empirique du nombre de � pile �

En a�chant simultanément plusieurs réalisations, on perçoit la dispersion des résultats, dis-
persion étroitement liées à la variance de la variable aléatoire d'intérêt. Par exemple, pour des
lois uniformes U[[3 ; 7]] et U[[0 ; 10]], on a même espérance mais une variance plus élevée pour la
deuxième loi. On rappelle que pour X∼U[[a ; b]], on a

E(X) =
a+ b

2
V(X) =

(b− a)(2 + b− a)

12

Cette dispersion apparaît clairement sur les simulations suivantes :

B. Landelle 28 ISM MP

n=1000

for j in range(10):

tX=rd.randint(3,8,n)

tmoy,s=[],0

tn=range(1,n+1)

for i in tn:

s+=tX[i-1]

tmoy.append(s/i)

plt.plot(tn,tmoy)

plt.axis([0,n,0,10]);plt.grid();plt.show()

n=1000

for j in range(10):

tX=rd.randint(0,11,n)

tmoy,s=[],0

tn=range(1,n+1)

for i in tn:

s+=tX[i-1]

tmoy.append(s/i)

plt.plot(tn,tmoy)

plt.axis([0,n,0,10]);plt.grid();plt.show()

0 200 400 600 800 1000
0

2

4

6

8

10

0 200 400 600 800 1000
0

2

4

6

8

10

Figure 15 � Dispersion des simulations

4 Marches aléatoires dans Z et Z2

Dé�nition 8. Soit (Ω,A ,P) un espace probabilisé. On appelle marche aléatoire dans Z la

suite (Sn)n⩾1 avec Sn =
n∑

i=1

Xi pour n entier non nul et (Xi)i⩾1 une suite de variables aléatoires

indépendantes de loi uniforme sur {−1, 1}.

Remarque : Voir feuille d'exercices pour une étude théorique sommaire de la marche aléatoire
dans Z.

B. Landelle 29 ISM MP

n=1000

tn=range(n+1)

for j in range(4):

tX=2*rd.randint(0,2,n)-1

tS=[0]

for X in tX:

tS.append(tS[-1]+X)

plt.plot(tn,tS)

plt.grid();plt.show()

0 200 400 600 800 1000
−40

−30

−20

−10

0

10

20

30

40

50

Figure 16 � Marches aléatoires dans Z

Dé�nition 9. Soit (Ω,A ,P) un espace probabilisé. On appelle marche aléatoire dans Z2 la

suite (Sn)n⩾1 avec Sn =
n∑

i=1

Xi pour n entier non nul et (Xi)i⩾1 une suite de variables aléatoires

indépendantes de loi uniforme sur {(1, 0), (−1, 0), (0, 1), (0,−1)}.

n=10000

tn=range(n)

depl=[[1,0],[-1,0],[0,1],[0,-1]]

tind=rd.randint(0,4,n)

tSX=[0]

tSY=[0]

for i in tind:

tSX.append(tSX[-1]+depl[i][0])

tSY.append(tSY[-1]+depl[i][1])

plt.plot(tSX,tSY)

plt.axis('equal')

plt.grid();plt.show()

B. Landelle 30 ISM MP

−20 0 20 40 60 80 100 120 140

−20

0

20

40

60

80

Figure 17 � Marches aléatoires dans Z2

Le lecteur désireux d'approfondir ce sujet pourra consulter les ouvrages [9] et [10].

B. Landelle 31 ISM MP

Références

[1] Netlib repository of numerical software, http://www.netlib.org

[2] Hans Petter Langtangen, Python Scripting for Computational Science, Texts in Computa-
tional Science and Engineering, Springer-Verlag, 2005

[3] A. C. Hindmarsh, ODEPACK, A Systematized Collection of ODE Solvers, IMACS Tran-
sactions on Scienti�c Computation, vol.1 pp. 55-64, R. S. Stepleman et al., 1983

[4] K. Radhakrishnan and A. C. Hindmarsh, Description and Use of LSODE, the Livermore

Solver for Ordinary Di�erential Equations, LLNL report UCRL-ID-113855, December 1993

[5] Vincent Lefèvre, Paul Zimmermann, Arithmétique �ottante, RR-5104, INRIA, 2004

[6] Jean-Pierre Demailly, Analyse numérique et équations di�érentielles EDP Sciences, 2006

[7] Michelle Schatzman, Numerical Analysis, Clarendon Press, 2002

[8] Catherine Bolley, Analyse numérique, École d'ingénieur, Nantes, cel-01066570, 2012

[9] Nicolas Bouleau, Probabilités de l'ingénieur - Variables aléatoires et simulation, Hermann,
2002

[10] G.S. Fishman, Monte Carlo - Concepts, Algorithms and applications , Springer Series in
Operations Research, Springer-Verlag, 1996

[11] Francesco Mezzadri, How to generate random matrices from the classical compact groups,
Notices of the American Mathematical Society, vol. 54(5), 2006

B. Landelle 32 ISM MP

http://www.netlib.org

	Quadrature
	Principe
	Méthode des rectangles

	Équations différentielles
	Problème de Cauchy
	Premier ordre
	Méthode d'Euler explicite
	Deuxième ordre

	Résolution numérique d'équations
	Résolution par dichotomie
	Méthode de Newton

	Tableaux
	Généralités
	Arithmétique flottante

	Matrices
	Génération de matrices
	Opérations matricielles
	Résolution

	Algèbre bilinéaire
	Produit scalaire, norme
	Orthonormalisation de Gram-Schmidt

	Probabilités
	Quelques expérimentations convaincantes
	Simulation de lois
	Méthodes de Monte-Carlo
	Marches aléatoires dans Z et Z2

