INGENIERIE NUMERIQUE

B. Landelle

Table des matiéres

I Quadrature|

..
[2 Meéthode des rectangles|

II Equations différentielles|
(1 Probléeme de Cauchy| o
|2 I Ig:IIlis:I !21(115:] -------------------------------------
[3 Méthode d’Euler explicite] oo o

(IIT Résolution numérique d’équations|

(1 Résolution par dichotomie|o
2 Meéthode de Newton|

[2 Opérations matricielles| 0. 0L
3 Résolution|

(1 Produit scalaire, norme|.o Lo,

w&m‘ — 5 1l| --------------------
VIT Probabilités|

(1 Quelques expérimentations convaincantes|

2 Simulation deToid

(3 Meéthodes de Monte-Carla

4 Marches aléatoires dans Z et Z2

13
13
15

16
16
19
21

22
22
22

I Quadrature

1 Principe

Définition 1. Une méthode de quadrature sur E = €°([a;b],R) consiste en le choiz de poids
Aoy -+ -5 Ap_1 Téels et de noeuds o, ..., T,y dans [a;b] et strictement ordonnés tels que, pour

p—1 b
f € E, le calcul de la somme finie > N\ f(x;) fournisse une valeur approchée de / f(t) dt,

1=0 a
c’est-a-dire

[raar= Ii:mxi)

Remarque : La définition peut sembler un peu creuse puisque le sens de waleur approchée
n’est pas définie ...

2 Meéthode des rectangles

Dans cette section, la méthode présentée s’applique avec une subdivision (ay)ocr<n de [a;b]
réguliérement espacée :
b—a

Vke[0;n] ar =a+kh avec h=
n

Sur chaque intervalle [ay;ar+1] avec k € [0; n — 1], on utilise une méthode de quadrature
Ap41
simple pour approcher f@t)dt.

ag

b
Définition 2. Soit f € E. La méthode des rectangles consiste a approcher / f(t) dt par la
somme ¢

n—1 b
hE () = / £(t) dt

La quantité h x f(ay) représente I’aire algébrique d’un rectangle de base [ay ; agy1 | et de hauteur

f(ax).

Ya

FIGURE 1 — Méthode des rectangles

B. Landelle 2 ISM MP

Traditionnellement, la méthode des rectangles s’entend au sens des rectangles @ gauche comme
n

ci-dessus. La méthode des rectangles a droite consiste a effectuer le calcul h) " f(ay).
k=1

def rect(f,a,b,n):
"""Méthode des rectangles a gauche"""
res=0
h=(b-a)/n
c=a
for k in range(n):
res+=f (¢)
c+=h
return resxh

Exercice : Ecrire une implémentation de la méthode des rectangles médians qui consiste a

effectuer le calcul h)° f (M).
k=1 2

Corrigé : On saisit :

def rect(f,a,b,n):
""!"Méthode des rectangles médians"""
res=0
h=(b-a)/n
c=a+h/2
for k in range(n):
res+=f (c)
c+=h
return resx*h

II Equations différentielles

Pour des résolutions numériques d’équations différentielles, on importera le module scipy.integrate
sous l’alias integr :

import scipy.integrate as integr

1 Probléme de Cauchy

Un probleme de Cauchy associé & une équation différentielle d’ordre 1 est un systéme de la
forme

{x’(t) = f(z(), 1)
I(to) = X9

[’équation différentielle considérée est sous forme normalisée avec le terme z’(t) explicite en
fonction de x(t) et t. Sous certaines hypotheéses, le théoréme de Cauchy-Lipschitz garantit qu’il

existe une unique solution a ce probléme. La détermination formelle de cette solution est sou-
vent impossible et on privilégie donc la recherche d’une solution numérique approchée.

B. Landelle 3 ISM MP

On utilise 'instruction integr.odeint pour effectuer une résolution numérique de ce probléme
de Cauchy. On résout I’équation sur un intervalle de temps discrétisé sous la forme d’un tableau
ou d’une liste [to, ..., t,] avec la syntaxe suivante :

integr.odeint (f,x0,t)

ou x0 désigne la condition initiale a l'instant ¢y, premier élément de la liste t. L’instruction
renvoie un tableau [z, ..., x,], solution approchée de [z(ty), ...,z (t,)].

La précision des solutions approchées fournies par integr.odeint dépend de la liste des temps
discrétisés. Dans ’ensemble, cette précision est remarquable. L’instruction s’appuie sur les
méthodes d’Adams-Moulton et BDF (Backward Differentiation Formula). Le lecteur curieux
pourra consulter les articles [3], [4] et I'ouvrage [8]. L’instruction integr.odeint s’appuie sur
la librairie FORTRAN intitulée ODEPACK (voir [1], [2]).

2 Premier ordre

Pour résoudre numériquement le probléme de Cauchy

{x’(t) = z(t)
z(0) =1

sur l'intervalle [0;5], on saisit :

def f(x,t):

return x
tt=np.linspace(0,5,100);x0=1 # intervalle discrétisé, condition initiale
tx=integr.odeint (f,x0,tt) # résolution numérique de 1’équation
plt.plot(tt,tx);plt.grid();plt.show()

160

FIGURE 2 - Solution de ' = x avec 2(0) = 1

Pour tracer plusieurs courbes intégrales correspondant a des conditions initiales distinctes, on
saisit :

B. Landelle 4 ISM MP

250

for x0 in np.linspace(.5,1.5,10):
sol=integr.odeint (f,x0,tt)
plt.plot(tt,sol) 2001

plt.grid() ;plt.show()

150

1001

50}

FI1GURE 3 — Courbes intégrales

Ces courbes ne se rencontrent pas, conformément a ce qu’annonce le théoréme de Cauchy
linéaire.
3 Meéthode d’Euler explicite

La relation entre les états aux instants ¢ et ¢t + h est

t+h t+h
z(t+ h) = x(t) + /t 2 (s)ds = x(t) + /t f(z(s),s)ds

Si h est « petit », la variation de t — f(xz(t),t) est faible et le principe de la méthode d’Euler
explicite consiste a réaliser I’approximation

Vs e [t;t+h] f(z(s),s) =~ f(z(t),t)

d’ou z(t+ h) ~x(t) + hf(x(t),t)

x(t) + hf(xz(t),t)

z(t+h)

FIGURE 4 — Schéma d’Euler explicite

B. Landelle 5) ISM MP

t+h
Remarque : La méthode d’Euler explicite consiste a approcher 'intégrale / f(z(s),s)ds
t

par la méthode des rectangles a gauche.

La suite (x,...,x,) solution approchée de (z(ty),...,x(t,)) par la méthode d’Euler explicite
est définie par

Vk € [[1 ; ’I”Lﬂ Tp = Tp_1 + hk—lf(xk—l,tk—l) avec hi_1 =t — tp_1

T

Lo A

FIGURE 5 — Méthode d’Euler explicite

def Euler(f,x0,t):
x=[x0]
for k in range(1l,len(t)):
h=t [k]-t[k-1]
x.append (x [k-1]+h*f (x[k-1],t[k-11))
return x

Remarques : (1) Cette méthode est dite explicite car la quantité f(zyx_1,tx—1) & calculer a
la k-éme itération est complétement explicite : t,_; est une donnée du probléme et x;,_; a été
obtenu a ’étape précédente.

(2) On peut démontrer que sous certaines hypothéses sur la fonction f (continue, lipschitzienne
en la premiére variable qui peut méme étre assouplie en localement lipschitzienne), le schéma
d’Euler est convergent.

4 Deuxiéme ordre

Pour des équations différentielles d’ordre supérieur & 1, I’écriture matricielle permet de se ra-
mener 4 un systéme différentielle d’ordre 1. Dans le cas du probléme de Cauchy suivant

{:U”(t) = F('(t), 2(1),1)

(z(to), 2'(t0)) = (0, v0)

On pose X(8) = (f(é))) et Xo= (ii)

puis on trouve X'(t) = (m,l,((?)> = (F(az’(f)/,(i)(t),tQ = f(X(¢),1)

B. Landelle 6 ISM MP

et on peut alors utiliser integr.odeint pour traiter le probléme de Cauchy associé¢ a une
équation différentielle matricielle d’ordre 1 résolue suivant :

X'(t) = f(X(t),t)
X(to) = XO
Par exemple, pour résoudre numériquement le probléme de Cauchy
{x”(t) + 2/(t) + x(t) = sin(t) PN {(x’(t), 2"(t)) = (2/(t), —x(t) — 2'(t) + sin(t))
(x(0),2(0)) = (1,1) (x(0),2(0)) = (1,1)

sur I'intervalle [0;10], on saisit :

def f(X,t):
return [X[1],-X[0]-X[1]+np.sin(t)]

tt=np.linspace(0,10,100) ;X0=[1,1]

tX=integr.odeint (f,X0,tt)

tracé de t->x(t) premiére coordonnée de X

plt.plot(tt,tX[:,0]) # tracé de t->x(t) premiére coordonnée de X
plt.grid();plt.show()

FIGURE 6 — Solution de z” + 2’ + x = sin(¢) avec (z(0),2'(0)) = (1,1)

B. Landelle 7 ISM MP

III Reésolution numérique d’équations

Dans cette section, on présente différentes méthodes de résolution numérique de 1’équation

f(z)=0.

1 Résolution par dichotomie
Soit f € €%([a;b],R) avec f(a)f(b) < 0 ce qui garantit Uexistence d’un réel o € [a;b] tel que

et en fonction

f(a) = 0. L’algorithme consiste a regarder la valeur de f en le milieu ¢ = a4

du signe de f(c) a considérer comme nouvel intervalle [a;c] ou [c¢;b] puis de répéter cette
démarche. Ainsi, a chaque itération, la longueur de 'intervalle est divisée par deux et va donc
encadrer de plus en plus finement la valeur d’une racine.

Y

F1GURE 7 — Dichotomie

Code :

def dicho(f,a,b,eps):
deb,fin=a,b
milieu=(deb+fin) /2
while fin-deb>eps:
if f(milieu)*f(deb)<=0:
fin=milieu
else:
deb=milieu
milieu=(deb+fin)/2
return milieu

B. Landelle 8 ISM MP

ou récursivement :

def dicho(f,a,b,eps):
c=(a+b)/2
i1f b-a<eps:
return c
else:
if f(a)*f(c)<=0:
return dicho(f,a,c,eps)
else:
return dicho(f,c,b,eps)

Expérimentation : On présente 'utilisation de dicho pour la résolution de ’équation

2—2=0 avec z€[0;2]

>>> dicho(lambda t:t*%2-2,0,2,1e-10)
1.414213562355144

>>> np.sqrt(2)

1.4142135623730951

La commande bisect du module scipy.optimize, habituellement importé sous l’alias resol,
est une implémentation de la méthode de résolution par dichotomie :

>>> import scipy.optimize as resol
>>> f=lambda x : x**2-2

>>> resol.bisect(f,0,2)
1.4142135623715149

Définition 3. Soit f € €°([a;b],R) avec f(a)f(b) < 0. L’algorithme de dichotomie consiste
en la construction des suites (an)n, (bn)n €t (Co)n avec ag = a, by = b et pour tout entier n

(an,cn) 50 flan)f(cn) <0

(Cn,bn) sinon

ay, + by
Cp = 9 (an+17 bn+1) — {

Proposition 1. Soit f € €°([a;b],R) avec f(a)f(b) <0 et (an)n, (bn)n €t (cy)n les suites de
Ualgorithme de dichotomie. On a Uinvariant de boucle suivant :

Vn € N flan)f(b,) <0

Démonstration. Récurrence immeédiate. OJ

Commentaire : Ceci garantit pour tout n entier, existence d’une racine de f dans [a, ;b, |.
Pour un seuil € > 0, on retourne ¢, lorsque b,, — a,, < e. Ainsi, on est assuré d’avoir une racine
a de f telle que

len —a|l < b, —a, <e

B. Landelle 9 ISM MP

Proposition 2. Soit f € €°([a;b],R) vérifiant f(a)f(b) < 0 et (an)n, (by)n les suites de
lalgorithme de dichotomie. On a

Vn € N b, —a, =

b—a
et n > logy | —— = b,—a,<e¢
€

Démonstration. 1’égalité sur b, — a, se montre par récurrence et disjonction de cas. Le reste
suit sans difficulté. O

2 Meéthode de Newton

Soit une fonction f : I — R de classe €' avec I un intervalle non vide de R sur lequel f s’annule
et une valeur initiale zy. L’idée de la méthode de Newton consiste a « descendre » le long de la
tangente, autrement dit a approcher la courbe par sa tangente et considérer sa racine.

Ya
y = f(x)

\Q
=
S
S

FIGURE 8 — Descente le long de la tangente

[’équation de la tangente & la courbe a pour équation y = f'(x¢)(z — xo) + f(zo) qui admet
pour racine

S (o)

(o)

0= f'(xo)(z —x0) + f(xy) <= x=1009—

En itérant ce procédé, on définit la suite (z,),en par

Vn € N Tptl = Ty —

B. Landelle 10 ISM MP

Définition 4. Soit f € €' (I,R) telle que [’ ne s’annule pas sur 1 et xy € 1. La suite (z,,),
définie par

Vn €N Tyl = Ty —

est appelée suite de la méthode de Newton.

Sous certaines conditions, notamment si la condition initiale xy n’est pas trop éloignée de la
racine recherchée, la suite converge vers cette racine. On prend comme condition d’arrét au
calcul itératif de la suite (x,)nen le test |2,41 — x,] < € ot € > 0 désigne un seuil choisi par
I'utilisateur.

y,\

FIGURE 9 — Méthode de Newton

Code :

def newton(x0,f,df,eps):
a,b=x0,x0-f(x0)/df (x0)
while abs(b-a)>eps:
a,b=b,b-£ (b) /df (b)
return b

Expérimentation : On présente 'utilisation de newton pour la résolution de ’équation

22 —2=0 avec z9=2

>>> newton(2,lambda t:t**2-2,lambda t:2*t,1e-10)
1.4142135623730951

>>> np.sqrt(2)

1.4142135623730951

B. Landelle 11 ISM MP

Théoréme 1. Soit f € €*(I,R) et a € I tel que f(a) = 0 et f'(a) # 0. Alors, il existe un
voisinage ¥ de « tel que pour xo € ¥, la suite (x,), de la méthode de Newton converge vers a
a vitesse quadralique, a savoir

Vn e N Clz, —a| < (Clzg —a))” avee 0< Clzy—al <1

Remarque : La méthode de Newton présente une vitesse de convergence exceptionnelle, bien
meilleure que celle de la méthode de dichotomie. Avec 6,, = —log,(e,,) ot e, = C (Clzo — a))*,

on a 0,11 ~ 24, ce qu’on interpréte (abusivement) comme le doublement du nombre de déci-
males communes entre z,, et a a chaque itération.

Corollaire 1. Soit f € €*(I,R), convere avec f' ne s’annulant pas et a € 1 tel que f(a) = 0.
La suite (x,,), de la méthode de Newton converge vers a avec une vitesse quadratique & partir
d’un certain rang.

Piége cyclique : Considérons la fonction f définie par
VeeR f(z)=x23—22+2
et une valeur initiale zy = 0. La méthode de Newton boucle indéfiniment sur cette configuration.

La tangente en 0 est y = —2x 4+ 2 d’ott #; = 1. Puis la tangente en lest y = (zx — 1)+ 1 =12z
d’ou x5 = 0. Par récurrence immédiate, on obtient donc

Vn € N To, =0 Topt1 = 1

L’unique racine réelle de f est o ~ —1.77. La convergence de la méthode de Newton est un
résultat local pour une valeur initiale proche de la racine. Quand cette condition n’est pas
satisfaite comme c’est le cas ici, la convergence n’est plus assurée.

YA
y = f(z)
: Ton+1 \Q}
Ton \ !

FIGURE 10 — Graphe de f et des tangentes en 0 et 1

Pour éviter ce probléme lié¢ au choix de la condition initiale, il est courant d’associer la méthode
de Newton a une méthode d’encadrement comme la dichotomie par exemple.

Un exemple célébre : La méthode de Héron (premier siécle aprés JC).
Pour calculer une valeur approchée de y/a avec a > 0, la méthode de Héron consiste & utiliser
la suite (x,), définie par

B. Landelle 12 ISM MP

1
To=a et VYneN xn+1:—<xn+i>
2 T

La méthode de Héron est un cas particulier d’utilisation de la méthode de Newton avec une
convergence globale quadratique.

Le lecteur désirant approfondir I’étude des schémas numériques de résolution d’équations dif-
férentielles pourra consulter les ouvrages [6], [7] et [8].

IV Tableaux

1 Généralités

Définition 5. Un tableau est un objet de type ndarray constitué d’une suite de variables de
type entier, flottant ou complexe stockées dans des emplacements consécutifs de la mémoire.

Proposition 3. En langage python, on utilise les instructions ou méthodes suivantes sur les
tableaur :

— [linstruction np.array pour construire un tableau ;

— la méthode shape pour avoir les dimensions d’un tableau ;

— la méthode dtype pour avoir le type des variables d’un tableau.

Cette liste est loin d’étre exhaustive!

Counstruction d’un tableau d’entiers a une dimension :

>>> a=np.array([1,2,3])
>>> type(a)

<class ’numpy.ndarray’>
>>> a.shape

(3,)

>>> a.dtype
dtype(’int32?)

Construction d’'un tableau de flottants & deux dimensions :

>>> b=np.array([[1,2],[1/3,1/41,[0,111)

>>> b

array([[1. , 2. 1,
[0.33333333, 0.25 1,
[0. , 1. 1)

>>> b.shape

(3, 2)

>>> b.dtype

dtype(’float64’)

Proposition 4. L’accés en lecture et en écriture a une case d’un tableau est de complexité
temporelle en O(1).

B. Landelle 13 ISM MP

Ces performances en lecture et écriture sont possibles grace a l'organisation des données dans
des emplacements consécutifs en mémoire.

L’accés aux composantes d’'un tableau et le recours au slicing suit les mémes régles que celles
énoncées sur les listes :

>>> a=np.array([1,2,3,4,5])
>>> al[0]

1

>>> al1:]

array([2, 3, 4, 5])

>>> al::2]

array([1, 3, 51)

et sur un tableau & deux dimensions :

>>> b=np.array([[1,2],[1/3,1/4]1,[0,11]1)

>>> bl0, :]

array([1., 2.1)

>>> b[-1,:]

array([0., 1.]1)

>>> b[:,0]

array([1. , 0.33333333, 0. iD;

L’instruction b[0, :] renvoie la premiére ligne, I'instruction b[-1, :]1 renvoie la derniére ligne,
I'instruction b[:,0] renvoie la premiére colonne.

AUH tableau est un type mutable.

>>> a=np.array([3,2,1])
>>> b=a

>>> al[0]=0

>>> a

array ([0, 2, 11)

>>> b

array([0, 2, 11)

Pour créer une copie indépendante, on effectue une copie en profondeur avec I'instruction
deepcopy du module copy ou avec np.array.

>>> from copy import deepcopy
>>> a=np.array([3,2,1])
>>> b=deepcopy(a)

>>> c=np.array(a)

>>> al0]=0

>>> a

array ([0, 2, 1)

>>> b

array([3, 2, 11)

>>> ¢

array([3, 2, 11)

B. Landelle 14 ISM MP

L’instruction np.linspace(a,b,n) génére un tableau de n valeurs réguliérement espacées de a
a b et 'instruction np.arange(a,b,h) génére un tableau de valeurs réguliérement espacées de
h a a inclus a b exclu.

>>> np.linspace(0,1,4)

array([0. , 0.33333333, 0.66666667, 1. D
>>> np.arange(0,1,.2)

array([0. , 0.2, 0.4, 0.6, 0.8])

Les instructions 1ist et np.array permettent les conversions respectivement vers le type liste
ou le type tableau.

>>> np.array([2xk+3 for k in range(10)])

array([3, 5, 7, 9, 11, 13, 15, 17, 19, 211)

>>> list(np.arange(0,1,.2))

[0.0, 0.20000000000000001, 0.40000000000000002, 0.60000000000000009,
0.80000000000000004]

2 Arithmétique flottante

En langage python, les nombres sont codés au format flottant. Tester ’égalité entre deux flot-
tants ou tester la nullité d’un flottant n’est pas pertinent du fait de I'imprécision liée au format.
Il faut donc effectuer des tests avec un certain seuil de tolérance :

def floatnull(x):
eps=1e-8
return abs(x)<eps

Pour tester I’égalité entre deux tableaux & une dimension de méme taille constitués de flottants,
on peut coder :

def arrayfloateq(T1,T2):
eps=1le-8
for k in range(len(T1)):
if abs(T1[k]-T2[k])>eps:
return False
return True

On peut utiliser un procédé de seuillage pour transformer les nombres proches de zéro (en
valeur absolue) en zéro. Par exemple, sur un tableau & une dimension, on pourrait procéder
ainsi :

def seuil(x):
eps=1le-8
return x*(abs(x)>eps) # True confondu avec 1 pour 1’opération *

B. Landelle 15 ISM MP

def roundi(a):
n=len(a)
res=deepcopy (a)
for k in range(n):
res[k]=seuil(alk])
return res

On obtient :

>>> a=np.sin([k*np.pi/2 for k in range(6)])

>>> a

array([0.00000000e+00, 1.00000000e+00, 1.22464680e-16,
-1.00000000e+00, -2.44929360e-16, 1.00000000e+00])

>>> roundl(a)

array(L 0., 1., 0., -1., -0., 1.1)

Le lecteur désireux d’approfondir sa connaissance de 'arithmétique flottante pourra consulter
louvrage [5].

V Matrices

Le module indispensable pour manipuler des matrices est numpy.linalg. On recommande éga-
lement I'importation de numpy.random pour la génération de matrices aléatoires.

Soient n et p entiers non nul. Les vecteurs de R™ sont codés par des tableaux a une dimension
et les matrices de .4, ,(R) sont codées par des tableaux & deux dimensions, saisis par ligne.

. 1 2 . .
Par exemple, le vecteur a = (1,2, 3) et la matrice B = (3 4> sont saisis respectivement par

>>> a=np.array([1,2,3])
>>> B=np.array([[1,2],[3,411)

Dans ce qui suit, on parlera de matrices au sens large, les vecteurs pouvant étre assimilés a des
matrices lignes ou colonnes, au choix selon le point de vue considéré.

1 Génération de matrices

Les instructions np.zeros et np.ones générent des matrices constituées respectivement de 0 ou
de 1. L’instruction np.zeros(n) génére le vecteur nul de R™ et I'instruction np.zeros((n,p))
géneére la matrice nulle de ., ,(R).

>>> np.zeros(5)
array([0., 0., 0., 0., 0.1
>>> np.zeros((3,4))

array([[0., 0., 0., 0.],
[o., 0., 0., 0.],
[0., 0., 0., 0.1

B. Landelle 16 ISM MP

Sur le méme principe, on génére un vecteur ou une matrice constituée de 1.

>>> np.ones(5)
array([1., 1., 1., 1., 1.1)
>>> np.ones((3,4))

array([[1., 1., 1., 1.1,
L1+, 1., 1., 1.7,
[1., 1., 1., 1.11)

Les instructions np.zeros et np.ones générent par défaut des matrices de flottants. On peut
forcer I'utilisation d’un type entier en le spécifiant en option :

>>> a=np.ones((3,3),dtype=’int’)

>>> a

array([[1, 1, 1],
(1, 1, 11,
(1, 1, 111

L’instruction np.diag permet de construire une matrice diagonale de diagonale donnée ou au
contraire d’extraire la diagonale d’une matrice.

>>> a=np.array([[1,2],[3,4]])
>>> np.diag(a)
array([1, 41)
>>> np.diag([1,2,3])
array([[1, 0, 0],

[0, 2, o],

[0, 0, 311

L’instruction np.eye(n) génére la matrice identité d’ordre n.

>>> np.eye(4)

array([[1., 0., 0., 0.1,
Lo., 1., 0., 0.],
(o., 0., 1., 0.1,
[0., 0., 0., 1.1

La fonction A(n) d’argument n entier non nul renvoie la matrice

0 1 0 ... 0

1 .o
A=|g . o |eam

1

0 0 1 0

def A(n):
res=np.zeros((n,n))
for i in range(l,n):

B. Landelle 17 ISM MP

res[i,i-1]=1
res[i-1,i]=1
return res

Exercice : Ecrire une fonction B(n) d’argument n entier et qui renvoie la matrice

0 1 0 ...0
n 0 2

B=10on-1 0 = ofcn®
0 0 1 0

Corrigé : On saisit :

def B(n):
res=np.zeros((n+1,n+1))
for i in range(n):

res[i+1,i]=n-1
res[i,i+1]=1i+1
return res

Pour tester des fonctions sur des vecteurs ou des matrices, il peut s’avérer trés confortable de
générer ceux-ci aléatoirement. L’instruction rd.rand génére un vecteur ou une matrice dont les
coordonnées sont tirées aléatoirement et indépendamment dans [0;1].

>>> rd.rand(5)
array([0.94525138, 0.10025385, 0.17437674, 0.6036298 , 0.32027945])
>>> rd.rand(3,4)
array([[0.72529463, 0.4485876 , 0.04743872, 0.79269754],
[0.7819368 , 0.70206414, 0.22630832, 0.68197435],
[0.08252628, 0.13326646, 0.47804099, 0.08423917]1)

Pour n entier non nul, on peut démontrer que le résultat du tirage rd.rand(n,n) est une ma-
trice d’ordre n dont la probabilité qu’elle soit inversible est égale & 1. En pratique, on réalise
donc un tirage d’'une matrice dans GL,(R).

Exercice : Ecrire une fonction V(L) d’argument une liste de flottants [z1,...,x,] qui renvoie
la matrice de Vandermonde de cette liste définie par
1 1 ... 1
X1) Ce I
ve | 2 22 o2
R xnt

Corrigé : On saisit :

def V(L):
n=len (L)

B. Landelle 18 ISM MP

res=np.zeros((n,n))
for i in range(n):
for j in range(n):
res[i,jl=L[jI**i
return res

Remarque : Une version sans exponentiation est possible :

def V(L):
n=len(L)
res=np.ones((n,n))
res[1,:]=np.array(L)
for i in range(2,n):
res[i,:]=res[1,:]*res[i-1,:]
return res

2 Opérations matricielles

On utilisera des matrices générées aléatoirement pour illustrer les opérations sur des exemples.

Une matrice peut étre multipliée par un scalaire (produit extérieur sur un K-ev), des matrices
de dimensions compatibles peuvent étre additionnées :

>>> a=rd.rand(3)

>>> a

array([0.57999144, 0.57460622, 0.79592186])
>>> b=rd.rand(3)

>>> b

array([0.77425788, 0.75196289, 0.11517891])
>>> a+b

array([1.35424932, 1.32656912, 0.91110077])
>>> 2%3

array([1.15998289, 1.14921245, 1.59184372])

>>> A=rd.rand(2,2)

>>> A

array([[0.49867413, 0.63919241],
[0.76025963, 0.37326753]1])

>>> B=rd.rand(2,2)

>>> B

array([[0.04274343, 0.57188152],
[0.92958428, 0.93376888]1])

>>> A+B

array([[0.54141756, 1.21107393],
[1.68984391, 1.30703641]11)

L’instruction np.transpose et la méthode T effectuent la transposition :

>>> A=rd.rand(2,3)
>>> np.transpose(4)

B. Landelle 19 ISM MP

array([[0.79360088, 0.92593801],
[0.0744836 , 0.52320879],
[0.79010506, 0.83641115]])

>>> AT

array([[0.79360088, 0.92593801],
[0.0744836 , 0.52320879],

[0.79010506, 0.83641115]1])

L’instruction np.trace calcule la trace :

>>> A=rd.rand(3,3)

>>> A

array([[0.66657305, 0.84646752, 0.52250037],
[0.99327682, 0.55750006, 0.2041305],
[0.67305521, 0.34774888, 0.98803663]])

>>> np.trace(4)

2.2121097330222317

L’instruction np.dot et la méthode dot réalisent le produit matriciel :

>>> A=rd.rand(2,2)

>>> B=rd.rand(2,2)

>>> np.dot(A,B)

array([[0.5746594 , 0.7904693],
[0.48632516, 0.65721293]1])

>>> A.dot(B)

array([[0.5746594 , 0.7904693],
[0.48632516, 0.6572129311)

Pour effectuer une exponentiation matricielle, on utilise 'instruction alg.matrix_power :

>>> A=rd.rand(3,3)

>>> alg.matrix_power(A,10)

array([[278.56566527, 349.41967131, 255.36858979],
[422.80901928, 530.35190296, 387.60033548],
[451.8667134 , 566.80051128, 414.23830039]11)

L’instruction alg.det calcule le déterminant et 'instruction alg.inv calcule 'inverse matri-
cielle. Comme dit précédemment, ’exécution de l'instruction rd.rand(n,n) génére aléatoire-
ment une matrice de GL, (K).

>>> A=rd.rand(3,3)

>>> alg.det(A)

0.080804707847183632

>>> alg.inv(A)

array([[-2.49498297, -5.39252509, 6.78645757],
[2.11390228, 1.17609491, -1.74598544],
[1.76079039, 6.33667569, -6.31434742]])

B. Landelle 20 ISM MP

1 -1 1 1
Soient A= -2 1 2 et P=|[1
-2 -1 4 1

Le calcul de P~'AP donne :

—_ O =
[)

>>> A=np.array([[1,-1,11,[-2,1,2],[-2,-1,4]11)
>>> P=np.array([[1,1,0],[1,0,1]1,[1,1,1]11)
>>> alg.inv(P) .dot(A.dot(P))
array([[1., 0., 0.],
[o., 2., 0.1,
L 0., 0., 3.11)

ou aussi :

>>> np.dot(alg.inv(P) ,np.dot(A,P))
array([[1., 0., 0.],

Lo., 2., 0.1,

[o., 0., 3.1

3 Reésolution

Soit A € GL,(K) et B € #,1(K). Pour résoudre le systéme linéaire AX = B d’inconnue
X € #,1(K), on peut utiliser au choix U'instruction alg.solve ou l'inversion et le produit

matriciel puisque
AX=B < X=A"'B
Par exemple, pour résoudre le systéme
10z +Ty+82+Tt =32
Txr+5y+62+5t =23

8xr + 6y + 102 +9t =33
Tr+5y+92+ 10t =31

on saisit :

>>> B=np.array([32,23,33,31])

>>> A=np.array([[10,7,8,7]1,[7,5,6,4]1,[8,6,10,91,[7,5,9,101]1)

puis

>>> alg.solve(4,B)

array([5.55555556, -6.555555566, 2.88888889, -0.11111111])

ou

>>> alg.inv(A).dot(B)

array([5.55555556, -6.55555556, 2.88888889, -0.11111111])

B. Landelle 21

ISM MP

VI Algébre bilinéaire

1 Produit scalaire, norme

Soit n entier non nul. L’instruction np.dot entre deux vecteurs de R"™ renvoie leur produit
scalaire canonique. On peut aussi 'utiliser comme méthode directement sur 'un des vecteurs
concerneés.

>>> a=np.array([1,2,3])
>>> b=np.array([1,0,-1]1)
>>> np.dot(a,b)

-2

>>> a.dot(b)

-2

L’instruction alg.norm calcule la norme euclidienne d’un vecteur de R".

>>> alg.norm(a)
3.7416573867739413

2 Orthonormalisation de Gram-Schmidt

Etant donné une famille libre (uy, ...,u,) de vecteurs de R", il existe une famille orthonormée
(v1,...,vp,) de vecteurs de R? telle que

VEe[1;p] Vect (uq, ..., ux) = Vect (vq, ..., vg)

L’algorithme d’orthonormalisation de Gram-Schmidt permet de construire une telle famille
orthonormée :
Algorithme 1 : Orthonormalisation

Entrées : [uy,...,u,) libre
Résultat : [vy,...,v,] orthonormée
res < [u1/[luy|]
pour k € [2; p] faire
k-1
z2 < up — >, (ug, v;) v;
i=1
res <—res+ [z/||z| |

retourner res

Théoréme 2. Soit E = R" et (v1,...,v,) une famille libre de vecteurs de E. La famille
(v1,...,v,) obtenue par orthonormalisation de Gram-Schmidt est une famille orthonormée vé-
rifiant

Vke[1; p] Vect (ug, ..., ux) = Vect (vq, ..., v)

Dans l'algorithme de Gram-Schmidt, I’étape itérative consiste & construire 2z, = uy — pr, (ug)
ou Fp = Vect (uy, ..., up_1) = Vect (vy,...,v5_1). Ainsi, on a
2k

A

U, eFy don wvlvy Vie[l;k—1]

B. Landelle 22 ISM MP

Zp £ U — ka(uk)

pr, (Ug) Fr = Vect (u1, ..., up_1)

FIGURE 11 — Etape itérative de l'algorithme d’orthonormalisation

Une implémentation de I'algorithme est donnée par :

def norm(u):
normalise le vecteur u
return u/alg.norm(u)

def ortho(A):
Renvoie la matrice constituée des colonnes orthonormalisées
& partir des colonnes de la matrice A
p=A.shape[1]
v=[norm(A[:,0])]
for k in range(l,p):
u=A[:,k]
z=u-sum([np.dot (v[i],u)*v[i] for i in range(k)])
v.append (norm(z))
return np.array(v).T

On remarque que 'implémentation d’une fonction de normalisation qui prend un vecteur en
entrée et le normalise rend la fonction ortho trés lisible avec une écriture assez légére.

>>> A=rd.rand(4,3)
>>> A

array([[0.04565402, 0.24376409, 0.44048029],
[0.26116379, 0.66024369, 0.59413365],
[0.600649 , 0.4420384 , 0.77978355],
[0.82817965, 0.14609593, 0.44261169]1])

>>> B=ortho (A)

>>> B

array([[0.04319782, 0.33972245, 0.7314721],
[0.24711311, 0.81200547, -0.50851586],
[0.56833393, 0.20877085, 0.4162726],
[0.78362338, -0.42620478, -0.1818716911)

Si p = n, la famille orthonormalisée (vy,...,v,) est une base orthonormée de R™. Par consé-
quent, la matrice M obtenue dont les colonnes sont les coordonnées des vecteurs v; est une

B. Landelle 23 ISM MP

matrice orthogonale, i.e. vérifiant MM = I,, ou de maniére équivalente MM = I,,. Pour tester
I’'orthogonalité d'une matrice, on saisit :

def ps(A,B):
return np.trace(A.T.dot(B))

def isortho(A):
n=len(A)
eps=le-8
B=A.T.dot (A)-np.eye(n)
return ps(B,B)<eps

On peut facilement générer aléatoirement une matrice orthogonale par orthonormalisation d’une
matrice tirée aléatoirement dans GL,(R) :

>>> A=rd.rand(3,3)

>>> B=ortho(A)

>>> np.dot(B.T,B)

array([[1.00000000e+00, 5.05754733e-15, -8.89543056e-15],
[5.05754733e-15, 1.00000000e+00, -1.03875092e-15],
[-8.92318613e-15, -1.03875092e-15, 1.00000000e+00]])

>>> isortho(B)

True

Une autre approche consiste a réaliser un produit de n matrices de Householder générées aléa-
toirement. La qualité de la distribution de ce produit en tant que loi sur O,(R) est meilleure
que celle issue d’une orthonormalisation de Gram-Schmidt (voir [I1]).

VII Probabilités

La technologie informatique permet de générer des nombres pseudo-aléatoires dont les tirages
ressemblent & des tirages réellement faits au hasard. L’algorithme Mersenne Tuwister, utilisé par
python, est I'un des plus réputés pour la qualité de son pseudo-hasard et sa rapidité d’exécution.
Pour effectuer des simulations aléatoires, on importera le module numpy . random sous l'alias rd :

import numpy.random as rd

1 Quelques expérimentations convaincantes

On présente des tirages selon 02/[0;”2.

n=1000
tx=rd.random(n)
ty=rd.random(n)
plt.plot(tx,ty,’bo’)
plt.show()

B. Landelle 24 ISM MP

Lopes—w—~—g
0.8
0.6F
04f &

L]

0.2.5

FIGURE 12 — Tirages selon la loi uniforme sur [0;1]2

On peut aussi observer des résultats précis comme par exemple le théoréme de la limite centrée
et en particulier sa version spécialisée qu’est le théoreme de Mowvre-Laplace facilement implé-
mentable.

Dans (2,.27,P) espace probabilisé, pour X une variable aléatoire réelle, on rappelle que le
fonction de répartition de X notée Fx est définie par Fx(z) = P(X < z) pour z réel.

Définition 6. Soit (2, o7, P) un espace probabilisé, X et (X,,)n>1 des variables aléatoires réelles.
On dit que (X,,),, converge en loi vers X que l’on note X,, ~ X si, pour tout x point de continuité
de Fx, on a

Fx,(x) — Fx(z)

n—o0

Commentaire : Pour n grand, la loi de X,, ressemble a la loi de X.

Soit (€2, .27, IP) un espace probabilisé, (X,,),>1 une suite de variables aléatoires indépendantes
n

de méme loi A(p) avec p € |0;1[et S,, = > X, pour n entier. D’aprés le théoréme de Moivre-
i=1

Laplace, on a

Sn —np
np(l —p)
ou N (0,1) désigne la loi normale centrée réduite, i.e.

~ U avec U~N(0,1)

1 v 2
™J—

o

n=2000
N=20000
ts=[]
for k in range(N):
tX=2%rd.randint(0,2,n)-1
tS.append (sum(tX) /np.sqrt(n))
plt.hist(tS,30,normed=True)
f=lambda x:1/np.sqrt(2*np.pi)*np.exp(-x**2/2)
tx=np.linspace(-5,5,100)

B. Landelle 25 ISM MP

tf=[f(x) for x in tx]
plt.plot(tx,tf,’r’,linewidth=2)
plt.grid();plt.show()

FIGURE 13 — Convergence en loi vers la loi normale centrée réduite

2 Simulation de lois

Méme si elle est officiellement hors-programme, il est prudent d’avoir quelques connaissances
sur la loi uniforme sur le segment [0;1]. Soit (€2, .o7,P) un espace probabilisé. Une variable
aléatoire U suit la loi uniforme sur le segment [0;1] notée U~ %417 51 U(2) = [0;1] et

1
V{a;b[C[0;1] P(Ue[a;b[):/]l[a;b[(t)dt:b—a
0
L’instruction rd.random() renvoie une réalisation de cette loi.
Soit p € [0;1]. Une variable aléatoire X suivant la loi de Bernoulli de paramétre p vérifie

X(Q)={0,1} et PX=1)=p PX=0)=1-p

Pour simuler une loi de Bernoulli de parameétre p, on code le résultat d’une indicatrice d’un
événement de probabilité p. On peut considérer 1y, avec U~ %o.1] (loi uniforme sur [0;1],
officiellement hors-programme).

ber=lambda p: rd.random()<p

Soit n entier. Une variable aléatoire Y suivant la loi binomiale de paramétres n, p vérifie
Y(Q)=[0;n] et Vke[0;n] P(Y =k) = (})p"(1—p)*
Exercice : Proposer une implémentation binomiale (n,p) qui simule une réalisation de la loi

HB(n,p).

Corrigé : Une somme de n variables aléatoires indépendantes de méme loi de Bernoulli de
paramétre p suit la loi binomiale #(n,p). On peut donc réaliser cette loi binomiale avec

B. Landelle 26 ISM MP

binomiale=lambda n,p:sum([ber(p) for k in range(n)])

Soit (2,27, P) un espace probabilisé et p €]0;1[. On rappelle qu’'une variable aléatoire suivant
une loi géométrique de paramétre p modélise le nombre de répétitions d’une suite d’expériences
aléatoires succés/échec, succés avec probabilité p, jusqu’a obtention du premier succes.

Exercice : Ecrire une fonction python geom(p) qui renvoie une réalisation de la loi géométrique
de parameétre p €]0; 1.

Corrigé : On saisit :

def geom(p):
res=1
while ber(p)==0:
res+=1
return res

3 Méthodes de Monte-Carlo

Définition 7. Soit (2, o7, P) un espace probabilisé et X une variable aléatoires réelle discreéte.

On suppose disposer d’une suite de variables aléatoires discrétes (X;)i>1 indépendantes et de

méme loi que X. Le principe général d’une méthode de Monte-Carlo est d’approcher la valeur
1 n

de Uespérance E(X) par la moyenne empirique — > X;(w) pour une réalisation w € Q. Autrement
n .

=1

dit, pour un n choisi par [’expérimentateur, on effectue l'approrimation

1
EZXi(W) ~E(X) avec weN
i=1

Remarque : La justification du bien-fondé des méthodes de Monte-Carlo est la loi des grands
nombres. Si les X; sont dans L2, on dispose du résultat intitulé loi faible des grands nombres

Ve >0 IP’(

]_ n
X, — E(X)’ > g> ——0
ni=1

n—oo
_ 1 _
Notant X,, = —> X, la moyenne empirique, on dit que (Xn)n converge en probabilité vers E(X)
ni=1
et 'on note X,, r, E(X). Il existe un résultat plus puissant appelé loi forte des grands nombres
n—oo

qui dit que pour une suite de variables aléatoires indépendantes de méme loi et d’espérance
finie, la moyenne empirique converge presque stirement vers 1’espérance, c’est-a-dire

X, — E(X) p.s.
n—oo

Comme les aléas pour lesquels la convergence n’a pas lieu sont dans un ensemble négligeable,
I'usage des méthodes de Monte-Carlo est pertinent.

B. Landelle 27 ISM MP

Exemple : On lance une piéce équilibrée 1000 fois et on effectue la moyenne du nombre de fois
ot l'on obtient pile. On peut simuler cette expérience en réalisant 1000 tirages indépendants
d’une loi de Bernoulli #(1/2). L’instruction rd.randint(a,b) renvoie une réalisation de loi
uniforme sur [a; b — 1]. Des appels successifs fournissent des réalisations indépendantes. On

peut aussi exécuter rd.randint(a,b,n) qui renvoie n réalisations indépendantes de loi uni-
forme sur [a; b—1].

Si, pour une réalisation w € () donnée, on souhaite visualiser la convergence de la suite

1.
(—ZXAW)) , On saisit :
N =1

n=1
n=1000
tX=rd.randint(0,2,n)
tmoy=[]
s=0

tn=range (1,n+1)

for i in tn:
s+=tX[i-1]
tmoy.append(s/i)

plt.plot(tn,tmoy)

plt.grid();plt.show()

0.7 |
" W

0.5 1 v S B B
0.4 A
0.3 1

0.2 1

0.1

0.0 1

0 200 400 600 800 1000

FIGURE 14 — Convergence de la moyenne empirique du nombre de « pile »

En affichant simultanément plusieurs réalisations, on percoit la dispersion des résultats, dis-
persion étroitement liées a la variance de la variable aléatoire d’intérét. Par exemple, pour des
lois uniformes %]3.,7] et %fo;10], on a méme espérance mais une variance plus élevée pour la
deuxiéme loi. On rappelle que pour X ~ %44}, on a
a+b (b—a)2+b—a)
B(X) =11 v = T
Cette dispersion apparait clairement sur les simulations suivantes :

B. Landelle 28 ISM MP

n=1000
for j in range(10):
tX=rd.randint (3,8,n)
tmoy,s=[]1,0
tn=range(1,n+1)
for i in tn:
s+=tX[i-1]
tmoy .append(s/i)
plt.plot(tn,tmoy)
plt.axis([0,n,0,10]);plt.grid() ;plt.show()

n=1000
for j in range(10):
tX=rd.randint(0,11,n)
tmoy,s=[],0
tn=range (1,n+1)
for i in tn:
s+=tX[i-1]
tmoy .append(s/i)
plt.plot(tn,tmoy)
plt.axis([0,n,0,10]);plt.grid() ;plt.show()

10 T T T T 10

0 260 460 660 860 1000 0 260 460 660 860 1000
FIGURE 15 — Dispersion des simulations

4 Marches aléatoires dans 7Z et Z>2

Définition 8. Soit (Q, o7, P) un espace probabilisé. On appelle marche aléatoire dans Z la

suite (Sp)ns1 avee S, = > X; pour n entier non nul et (X;);>1 une suite de variables aléatoires
i=1
indépendantes de loi uniforme sur {—1,1}.

Remarque : Voir feuille d’exercices pour une étude théorique sommaire de la marche aléatoire
dans Z.

B. Landelle 29 ISM MP

n=1000
tn=range (n+1)
for j in range(4):

tX=2%rd.randint(0,2,n)-1

tS=[0]
for X in tX:

tS.append (tS[-1]+X)

plt.plot(tn,tS)
plt.grid() ;plt.show()

—40 i i i i
0 200 400 600 800 1000

FIGURE 16 — Marches aléatoires dans Z

Définition 9. Soit (2,97, P) un espace probabilisé. On appelle marche aléatoire dans Z? la

n
suite (Sp)n>1 avee S, = > X; pour n entier non nul et (X;);>1 une suite de variables aléatoires

1

indépendantes de loi uniforme sur {(1,0),(-1,0),(0,1),(0,—1)}.

n=10000
tn=range (n)

tSX=[0]
tSY=[0]
for i1 in tind:

plt.plot (tSX,tSY)
plt.axis(’equal’)

tSX.append (tSX[-
tSY.append (tSY[-

depl=[[1,01,[-1,0],[0,1],[0,-1]1]

tind=rd.randint (0,4,n)

1]+depl[il [01)
11+depl[i][1])

plt.grid();plt.show()

B. Landelle

30

ISM MP

o ISR N S S S

60} S S S P

20}

—20}- [A S T

i i i i i i
-20 0 20 40 60 80 100 120 140

FIGURE 17 — Marches aléatoires dans Z>2

Le lecteur désireux d’approfondir ce sujet pourra consulter les ouvrages [9] et [10].

B. Landelle 31 ISM MP

Références

[1] Netlib repository of numerical software, http://www.netlib.org

[2] Hans Petter Langtangen, Python Scripting for Computational Science, Texts in Computa-
tional Science and Engineering, Springer-Verlag, 2005

[3] A. C. Hindmarsh, ODEPACK, A Systematized Collection of ODE Solvers, IMACS Tran-
sactions on Scientific Computation, vol.1 pp. 55-64, R. S. Stepleman et al., 1983

[4] K. Radhakrishnan and A. C. Hindmarsh, Description and Use of LSODE, the Livermore
Solver for Ordinary Differential Equations, LLNL report UCRL-ID-113855, December 1993

[5] Vincent Lefévre, Paul Zimmermann, Arithmétique flottante, RR-5104, INRIA, 2004

|6] Jean-Pierre Demailly, Analyse numérique et équations différentielles EDP Sciences, 2006
[7] Michelle Schatzman, Numerical Analysis, Clarendon Press, 2002

[8] Catherine Bolley, Analyse numérique, Ecole d’ingénieur, Nantes, cel-01066570, 2012

[9] Nicolas Bouleau, Probabilités de l'ingénieur - Variables aléatoires et simulation, Hermann,
2002

[10] G.S. Fishman, Monte Carlo - Concepts, Algorithms and applications , Springer Series in
Operations Research, Springer-Verlag, 1996

[11] Francesco Mezzadri, How to generate random matrices from the classical compact groups,
Notices of the American Mathematical Society, vol. 54(5), 2006

B. Landelle 32 ISM MP

http://www.netlib.org

	Quadrature
	Principe
	Méthode des rectangles

	Équations différentielles
	Problème de Cauchy
	Premier ordre
	Méthode d'Euler explicite
	Deuxième ordre

	Résolution numérique d'équations
	Résolution par dichotomie
	Méthode de Newton

	Tableaux
	Généralités
	Arithmétique flottante

	Matrices
	Génération de matrices
	Opérations matricielles
	Résolution

	Algèbre bilinéaire
	Produit scalaire, norme
	Orthonormalisation de Gram-Schmidt

	Probabilités
	Quelques expérimentations convaincantes
	Simulation de lois
	Méthodes de Monte-Carlo
	Marches aléatoires dans Z et Z2

