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Feuille d'exercices n°69

Exercice 1 (**)

Déterminer toutes les fonctions f : R → R dérivables telles que

∀x ∈ R f ′(x) + f(−x) = ex (E)

Corrigé : Soit f solution de (E). On a f ′(x) = −f(−x) + ex pour x réel d'où f ′ dérivable. Par
dérivation, il vient

∀x ∈ R f ′′(x)− f ′(−x) = ex

En substituant x par −x dans la relation de départ, on a f ′(−x) + f(x) = e−x pour x réel d'où

∀x ∈ R f ′′(x) + f(x) = 2 ch (x)

Ainsi, il existe α, β réels tels que

∀x ∈ R f(x) = ch (x) + α cos(x) + β sin(x)

Réciproquement, on injecte dans l'équation (E) et on obtient

∀x ∈ R (α + β)(cos(x)− sin(x)) = 0 =⇒ α + β = 0

Finalement SE = {x 7→ ch (x) + α(cos(x)− sin(x)), α ∈ R}

Remarque : La forme de SE était en partie prévisible. En e�et, il s'agit de résoudre une équation
du type Φ(f) = exp avec Φ : f 7→ (x 7→ f ′(x) + f(−x)) et on peut établir, en suivant la même
trame que dans la résolution ci-avant, que le noyau Ker Φ est une droite vectorielle.

Exercice 2 (***)

Soit K = R ou C, (a,m) ∈ K2 avec a ̸= m et P ∈ K[X] ∖ {0} avec p = deg P. On considère
l'équation di�érentielle

x′ = ax+ P(t)emt (L)

1. Soit Φ:

®
Kp[X] −→ Kp[X]

Q 7−→ Q′ + (m− a)Q

Comparer degQ avec deg Φ(Q) pour Q ∈ Kp[X] et montrer que Φ ∈ GL(Kp[X]).

2. En déduire que l'équation (L) admet une solution particulière x0 de la forme x0(t) =
Q(t)emt pour t réel avec Q ∈ K[X] et degQ = deg P.

Dans ce qui suit, on note x(t) = λe at + Q(t)emt une solution de (L) et α le coe�cient
dominant de P.

3. Si Re (m) > Re (a), déterminer un équivalent simple de x(t) pour t→ +∞.

4. Calculer
p∑

k=0

(a−m)−(k+1) [Q′ + (m− a)Q](k).

5. En déduire une expression de λ en fonction de x(0) et P.

6. Si Re (m) < Re (a), déterminer un équivalent simple de x(t) pour t→ +∞.
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Corrigé : 1. L'application Φ est linéaire par linéarité de la dérivation et du produit à gauche.
Soit Q ∈ Kp[X]. Si degQ ⩾ 0, alors degQ′ < degQ et par suite, comme m− a ̸= 0, on a

deg Φ(Q) = deg [Q′ + (m− a)Q] = degQ

Il en résulte que Φ ∈ L (Kp[X]) et aussi Ker Φ = {0}. Comme un endomorphisme injectif d'un
espace de dimension �nie est bijectif, on conclut

∀Q ∈ Kp[X] deg Φ(Q) = degQ et Φ ∈ GL(Kp[X])

2. Soit x0 de la forme x0(t) = Q(t)emt avec Q ∈ K[X]. Si x0 solution de (L), il vient

∀t ∈ R Q′(t) + (m− a)Q(t) = P(t)

Si on suppose Q ∈ Kp[X], comme la relation vaut pour une in�nité de valeurs, elle équivaut à

Φ(Q) = P

D'après l'étude faite à la première question, il existe un unique Q ∈ Kp[X] tel que Φ(Q) = P et
on a deg Φ(Q) = degQ = deg P. On conclut

Il existe une unique solution particulière x0 de la forme
x0(t) = Q(t)emt pour t réel avec Q ∈ K[X] et degQ = deg P.

3. Le polynôme Q est non nul (car P ne l'est pas) et admet donc un nombre �ni de racines d'où
Q(x) ̸= 0 pour x ⩾ A avec A un certain réel. On a

∀x ⩾ A x(t) = Q(t)emt

ï
1 +

λ

Q(t)
e (a−m)t

ò
et

∣∣e (a−m)t
∣∣ = eRe (a−m)t −−−−→

t→+∞
0

Par suite x(t) ∼
t→+∞

Q(t)emt ∼
t→+∞

βtpemt

avec β le coe�cient dominant de Q. Dans la relation

Q′ + (m− a)Q = P

l'égalité des coe�cients dominants donne (m− a)β = α et on obtient

Si Re (m) > Re (a), alors x(t) ∼
t→+∞

α

m− a
tpemt

4. Par téléscopage, on trouve
p∑

k=0

(a−m)−(k+1) [Q′ + (m− a)Q](k) =
p∑

k=0

[
(a−m)−(k+1)Q(k+1) − (a−m)kQ(k)

]
= (a−m)−(p+1)Q(p+1)︸ ︷︷ ︸

=0

−Q

Et d'après le calcul réalisé à la question 2, on sait que Q′ + (m− a)Q = P d'où

p∑
k=0

(a−m)−(k+1) [Q′ + (m− a)Q](k) = −Q =
p∑

k=0

(a−m)−(k+1)P(k)

5. On a x(0) = λ+Q(0)

D'où λ = x(0) +
p∑

k=0

(a−m)−(k+1)P(k)(0)

6. Si λ ̸= 0, on a

∀t ∈ R x(t) = λe at
[
1 + λ−1Q(t)e (m−a)t

]
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et par croissances comparées, comme Re (m− a) < 0∣∣e (m−a)t
∣∣ = eRe (m−a)t =⇒ Q(t)e (m−a)t −−−−→

t→+∞
0

D'où Si λ ̸= 0 x(t) ∼
t→+∞

λe at et si λ = 0 x(t) ∼
t→+∞

α

m− a
tpemt

Exercice 3 (****)

Soit f : R → R continue bornée et a > 0. Montrer que l'équation

y′′ − a2y = f (L)

admet une unique solution bornée sur R.

Corrigé : Soit (H) l'équation homogène associée. On a

SH = Vect (t 7→ e at, t 7→ e−at)

On procède ensuite par variation de la constante. Soient λ, µ : R → R dérivables avec y : t 7→
λ(t)e at + µ(t)e−at et telles que pour tout t réelÅ

e at e−at

ae at −ae−at

ãÅ
λ′(t)
µ′(t)

ã
=

Å
0
f(t)

ã
⇐⇒

Å
λ′(t)
µ′(t)

ã
= − 1

2a

Å
−ae−at −e−at

−ae at e at

ãÅ
0
f(t)

ã
Ainsi, il existe α, β réels tels que

∀t ∈ R y(t) =

Å
α +

1

2a

∫ t

0

e−asf(s) ds

ã
e at +

Å
β − 1

2a

∫ t

0

e asf(s) ds

ã
e−at

Comme f =
t→+∞

O(1), il vient par intégration des relations de comparaison∫ t

0

e asf(s) ds =
t→+∞

∫ t

0

O(e as) ds =
t→+∞

O

Å∫ t

0

e as ds

ã
=

t→+∞
O(e at)

d'où

Å
β − 1

2a

∫ t

0

e asf(s) ds

ã
e−at =

t→+∞
O(1)

On a e−asf(s) = O

Å
1

s2

ã
d'où la convergence de

∫ +∞

0

e−asf(s) ds et par conséquent, la seule

possibilité pour que y admette une limite �nie pour t→ +∞ est d'avoir

α = − 1

2a

∫ +∞

0

e−asf(s) ds

On procède exactement de la même manière pour t→ −∞ et on trouve

β = − 1

2a

∫ 0

−∞
e asf(s) ds

En injectant les écritures intégrales de α et β dans celle de y, on obtient

∀t ∈ R y(t) = −e at

2a

∫ +∞

t

e−asf(s) ds− e−at

2a

∫ t

−∞
e asf(s) ds
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Exercice 4 (**)

Soit λ > 0 et y solution de y′′ +

Å
1 +

λ

t2

ã
y = 0 sur ] 0 ; +∞ [. Montrer

∀a ∈ R ∃α ∈ ] a ; a+ π [ | y(α) = 0

Corrigé : On pose z = y′φ− yφ′ avec ∀t ∈ R φ(t) = sin(t− a)

On a ∀t > 0 z′(t) = − λ

t2
φ(t)y(t)

Si y ne s'annule pas sur ] a ; a+ π [, alors z est strictement monotone sur [ a ; a+ π ], strictement
croissante si y < 0 et strictement décroissante si y > 0. Or, on a

z(a+ π)− z(a) = y(a+ π) + y(a)

qui est en contradiction avec les monotonies précédemment annoncées. On conclut

∀a ∈ R ∃α ∈ ] a ; a+ π [ | y(α) = 0

Exercice 5 (****)

Soit f ∈ C ([ a ; b ] ,R) et u ∈ C 2([ a ; b ] ,R) solution non nulle de l'équation di�érentielle

y′′ + f(t)y = 0 (H)

véri�ant u(a) = u(b) = 0. Montrer l'inégalité∫ b

a

|f(t)| dt ⩾ 4

b− a

Corrigé : On a montré dans un autre exercice que les zéros de u sont en nombre �ni sur le
segment [ a ; b ]. On suppose que a et b sont deux zéros consécutifs de u (le résultat sera vrai
a fortiori pour tout couple de zéros de u). La fonction u ne s'annule donc pas sur ] a ; b [. La
fonction |u| étant continue sur le segment [ a ; b ], elle atteint son maximum et ailleurs qu'en les
bornes, i.e. il existe c ∈ ] a ; b [ tel que |u(c)| = Max

t∈[ a ;b ]
|u(t)|. On a∫ b

a

|f(t)u(t)| dt ⩽ |u(c)|
∫ b

a

|f(t)| dt

et comme u′′ = −fu, il vient pour tout ]α ; β [ ⊂ [ a ; b ]∫ b

a

|f(t)u(t)| dt =
∫ b

a

|u′′(t)| dt ⩾
∫ β

α

|u′′(t)| dt ⩾
∣∣∣∣∣
∫ β

α

u′′(t) dt

∣∣∣∣∣ = |u′(β)− u′(α)|

d'où

∫ b

a

|f(t)| dt ⩾ |u′(β)− u′(α)|
|u(c)|

Or, d'après le théorème des accroissements �nis, il existe α ∈ ] a ; c [ et β ∈ ] c ; b [ tels que

u(c)− u(a)

c− a
= u′(α) et

u(b)− u(c)

b− c
= u′(β)

Avec u(a) = u(b) = 0, il vient∫ b

a

|f(t)| dt ⩾
∣∣∣∣ −1

b− c
− 1

c− a

∣∣∣∣ = 1

b− c
+

1

c− a

Une étude de fonction de φ : x 7→ 1

b− x
+

1

x− a
donne
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Inf
x∈] a ;b [

φ(x) = φ

Å
a+ b

2

ã
=

4

b− a

On conclut

∫ b

a

|f(t)| dt ⩾ 4

b− a

Remarque : Il s'agit de l'inégalité de Liapounov.

Exercice 6 (**)

Soit f : R → R deux fois dérivables telle que

f ′′(t) + f ′(t) + f(t) −−−−→
t→+∞

0

Montrer f(t) −−−−→
t→+∞

0

Corrigé : On a vu dans l'exercice 1 de la feuille 68 que pour α ∈ C avec Re α > 0, toute
fonction g telle que g′(x) + αg(x) −−−−→

x→+∞
0 véri�e g(x) −−−−→

x→+∞
0. Soient α et β des complexes et

g = f ′ + αf . Cherchons β tel que

g′ + βg = f ′′ + f ′ + f

On a g′ + βg = f ′′ + f ′ + f ⇐⇒ f ′′ + (α + β)f ′ + αβf

Si α + β = αβ = 1, c'est-à-dire α, β racines de X2 − X + 1, alors on a l'égalité souhaitée.
On prend α = e

iπ
3 et β = ᾱ. Alors, d'après le résultat préliminaire, comme Re β > 0 et

g′(x) + βg(x) −−−−→
x→+∞

0, on obtient g(x) −−−−→
x→+∞

0 c'est-à-dire f(x) + αf ′(x) −−−−→
x→+∞

0 et comme

Re (α) > 0, on conclut

f(t) −−−→
t→∞

0

Remarque :On peut aussi poser g = f ′′+f ′+f puis considérer cette égalité comme une équation
di�érentielle en f que l'on résout par variation des constantes et en�n utiliser le comportement
asymptotique de g. Cette démarche fonctionne mais s'avère beaucoup plus lourde que celle
proposée ci-avant. On trouve

∀t ∈ R f(t) = e−t/2

ñ
α cos

Ç√
3t

2

å
+ β sin

Ç√
3t

2

åô
+

2√
3

∫ t

0

e−(t−s)/2h(s) ds

avec ∀s ∈ R h(s) =

ñ
cos

Ç√
3s

2

å
− sin

Ç√
3s

2

åô
g(s)

et α, β des réels. Pour conclure sur le comportement asymptotique de l'intégrale dans l'écriture
de f , on peut quanti�er h(s) = o(1) et découper l'intégrale de manière appropriée ou aussi
procéder par convergence dominée après changement de variables avec∫ t

0

e−(t−s)/2h(s) ds =

∫ t

0

e−u/2h(t− u) du =

∫ +∞

0

e−u/2h(t− u)1[ 0 ;t ](u) du

en observant

e−u/2h(t− u)1[ 0 ;t ](u) −−−−→
t→+∞

0 et 0 ⩽
∣∣e−u/2h(t− u)1[ 0 ;t ](u)

∣∣ ⩽ ∥h∥∞e−u/2
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Exercice 7 (****)

Soit y : R → R une solution non nulle de y′′ + e ty = 0.

1. Montrer que l'ensemble des zéros de y est dénombrable.

2. On note an le n-ième zéro positif de y. En considérant φ : t 7→ sin
(
e

an
2 (t− an)

)
et

ψ : t 7→ sin
Ä
e

an+1
2 (t− an)

ä
, montrer

πe−an+1
2 ⩽ an+1 − an ⩽ πe−an

2

3. Déterminer un équivalent simple de an pour n→ +∞.

Corrigé : 1. On a montré dans un autre exercice que les zéros de y sont en nombre �ni sur tout
segment. L'union des zéros de y est l'union pour k ∈ Z de l'union des zéros de y sur [ k ; k + 1 ],
autrement dit c'est une union dénombrable d'ensembles �nis donc c'est un ensemble au plus
dénombrable. Montrons qu'il n'est pas �ni. Supposons par exemple qu'il existe a réel tel que
y(t) > 0 pour tout t ⩾ a. On a y′′(t) = −e ty(t) < 0 pour tout t ⩾ a d'où la concavité de y sur
[ a ; +∞ [. Supposons qu'il existe α ⩾ a tel que y′(α) < 0. Par concavité, le graphe de y est situé
sous ses tangentes d'où

∀t ⩾ a y(t) ⩽ y′(α)(t− α) + y(α)

Puis y′(α)(t− α) + y(α) −−−−→
t→+∞

−∞ =⇒ y(t) −−−−→
t→+∞

−∞

ce qui contredit le signe de y. On en déduit que y′ ⩾ 0 d'où y croît et en particulier y(t) ⩾ y(a) > 0
pour tout t ⩾ a. Par conséquent

∀t ⩾ a y′′(t) = −e ty(t) ⩽ −e ty(a) =⇒ y′′(t) −−−−→
t→+∞

−∞

Avec le théorème des accroissements �nis ou un écriture intégrale, on en déduit

y′(t) −−−−→
t→+∞

−∞ puis y(t) −−−−→
t→+∞

−∞

ce qui contredit le signe de y. On conclut

L'ensemble des zéros de y est dénombrable.

2. Supposons que y ne s'annule pas sur
]
an ; an + πe−an

2

]
. On pose

∀t ∈ R W(t) =

∣∣∣∣y(t) φ(t)
y′(t) φ′(t)

∣∣∣∣ = y(t)φ′(t)− y′(t)φ(t)

La fonction W est dérivable et on a

∀t ∈ R W′(t) = y(t)φ′′(t)− y′′(t)φ(t) = y(t)φ(t)(e t − e an)

Ainsi, la fonction W′ est de signe constant sur
]
an ; an + πe−an

2

]
égal au signe de y sur cet

intervalle. Or, on a

W(an) = y(an)︸ ︷︷ ︸
=0

φ′(an)− y′(an)φ(an)︸ ︷︷ ︸
=0

= 0

et W(an + πe−an
2 ) = y(an + πe−an

2 )φ′(an + πe−an
2 ) = −e

an
2 y(an + πe−an

2 )

Le signe de W(an + πe−an
2 ) contredit alors la monotonie de W. On en déduit que y s'annule sur]

an ; an + πe−an
2

]
d'où an+1 ∈

]
an ; an + πe−an

2

]
et par suite

an+1 − an ⩽ πe−an
2

De la même manière, on démontre l'autre inégalité et on conclut
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πe−an+1
2 ⩽ an+1 − an ⩽ πe−an

2

3. La suite (an)n est croissante non majorée sinon, elle aurait une limite �nie et un segment
contiendrait une in�nité de zéros de y. Ainsi, on a an −−−→

n→∞
+∞ et il s'ensuit an+1 − an −−−→

n→∞
0

et par conséquent e−an+1
2 ∼

n→+∞
e−an

2 . On a donc

an+1 − an ∼
n→+∞

πe−an
2

On pose un = e
an
2 pour n entier. On a

2 (ln(un+1)− ln(un)) ∼
n→+∞

π

un

Or ln(un+1)− ln(un) = ln

Å
un+1

un

ã
∼

n→+∞

un+1 − un
un

puisque
un+1

un
−−−→
n→∞

1

On obtient donc un+1 − un −−−→
n→∞

π

2

Par sommation des relations de comparaison, on en déduit

un ∼
n→+∞

n−1∑
k=1

[uk+1 − uk] ∼
n→+∞

nπ

2

On conclut an = 2 ln(un) ∼
n→+∞

2 ln(n)
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