ISM MP, Mathématiques
Année 2025/2026

Feuille d’exercices n°69

Exercice 1 (**)
Déterminer toutes les fonctions f : R — R dérivables telles que
VeeR  f'(x)+ f(—z) =e” (E)

Corrigé : Soit f solution de (E). On a f'(z) = —f(—x) +e” pour z réel d’oir f" dérivable. Par
dérivation, il vient

Ve e R f"(z) = f'(—x) =e”
En substituant = par —z dans la relation de départ, on a f'(—x) + f(x) = e~ pour z réel d’ou
Ve eR f"(x) + f(x) =2ch(z)
Alinsi, il existe «, [ réels tels que
Ve eR f(z) = ch(z) + acos(x) + Bsin(x)
Réciproquement, on injecte dans ’équation (E) et on obtient

Ve e R (a+ B)(cos(z) —sin(z)) =0 = a+p=0

Finalement Sg = {z + ch (z) + a(cos(z) — sin(z)), a € R}

Remarque : La forme de Sg était en partie prévisible. En effet, il s’agit de résoudre une équation
du type ®(f) = exp avec ® : f — (v — f'(x) + f(—x)) et on peut établir, en suivant la méme
trame que dans la résolution ci-avant, que le noyau Ker ® est une droite vectorielle.

Exercice 2 (***)

Soit K = R ou C, (a,m) € K? avec a # m et P € K[X] \ {0} avec p = degP. On considére
I’équation différentielle

r' = ax + P(t)e™ (L)
Kp[X] — Kp[X]

Q — Q+(m—-a)Q
Comparer deg Q avec deg ®(Q) pour Q € K, [X] et montrer que ® € GL(K,[X]).

2. En déduire que 1'équation (L) admet une solution particuliére zy de la forme zq(t) =
Q(t)e™ pour t réel avec Q € K[X] et deg Q = degP.

1. Soit D {

Dans ce qui suit, on note z(t) = Xe™ + Q(t)e™ une solution de (L) et « le coefficient
dominant de P.

3. Si Re(m) > Re(a), déterminer un équivalent simple de z(t) pour ¢t — +oc.

4. Calculer Zp: (@ —m)~ "D [Q + (m — a)Q)™.
k=0

5. En déduire une expression de A en fonction de z(0) et P.

6. Si Re(m) < Re (a), déterminer un équivalent simple de z(t) pour t — +oc.
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Corrigé : 1. L’application ® est linéaire par linéarité de la dérivation et du produit a gauche.
Soit Q € K,[X]. Si degQ > 0, alors deg Q' < deg Q et par suite, comme m —a # 0, on a

deg ®(Q) = deg [Q' + (m — a)Q] = deg Q
Il en résulte que ® € Z(K,[X]) et aussi Ker & = {0}. Comme un endomorphisme injectif d’un
espace de dimension finie est bijectif, on conclut

vVQ € K, [X] deg ®(Q) =degQ et @ e GL(K,[X])

2. Soit zo de la forme zy(t) = Q(¢t)e™ avec Q € K[X]. Si g solution de (L), il vient
VteR Q'(t) + (m —a)Q(t) = P(t)
Si on suppose Q € K,[X], comme la relation vaut pour une infinité de valeurs, elle équivaut a
®(Q) =P

D’aprés I’étude faite a la premiére question, il existe un unique Q € K,[X] tel que ®(Q) =P et
on a deg ®(Q) = deg Q = deg P. On conclut

Il existe une unique solution particuliére xy de la forme
zo(t) = Q(t)e™ pour t réel avec Q € K[X] et deg Q = degP.

3. Le polynéme Q est non nul (car P ne I'est pas) et admet donc un nombre fini de racines d’ou
Q(z) # 0 pour & > A avec A un certain réel. On a

Ve A a(t) = Qe |1+ ewmﬂ ot [ela-mt| = cRetammi 4 g

Q(t) t—+o00
Par suite $(t)t ~ Q(t)emtt ~  [tPe™
—+00 —+00

avec 3 le coefficient dominant de Q. Dans la relation

Q+(m—-a)Q=P

I'égalité des coefficients dominants donne (m — a)8 = « et on obtient

Si Re (m) > Re(a), alors — z(t) ~ tPe™

t—+too M — @

4. Par téléscopage, on trouve
p

S (a—m) 0 [+ (m = a)Q)) = 3 [(a—m) FIQED — (0 — m)F QW]

k=0

Et d’aprés le calcul réalisé a la question 2, on sait que Q' 4+ (m — a)Q = P d’ou

p

> (0 —m) ¢ Q'+ (m — a)Q Y = —Q = 3 (a — m) HIPO
k=0

k=0
5. On a z(0) = A+ Q(0)
P
D’ou A =2(0) + Y (a —m)~F+HIPHE ()
k=0
6.51A#0,0na

VieR z(t) = de® [1 + A—lQ(t)e(m—a)t]
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et par croissances comparées, comme Re (m —a) <0

‘e(m—a)t’ — eRe (m—a)t — Q(t)e(m“‘)t s )

t—+oo
D’ou i ~ at i\ = ~ pemt
ol SiAZ0  z(t) o e etsiA=0 x(t) Moy at e
Exercice 3 (***%*)
Soit f : R — R continue bornée et a > 0. Montrer que I’équation
y'—a*y=f (L)

admet une unique solution bornée sur R.

Corrigé : Soit (H) I’équation homogéne associée. On a
Su = Vect (t — et > e~%)

On procéde ensuite par variation de la constante. Soient A\, 4 : R — R dérivables avec y : t —
A(t)e® 4+ pu(t)e = et telles que pour tout ¢ réel

(oo o) Git) = () = i) == e 707 (o)
Ainsi, il existe «, 3 réels tels que

VteR  y(t) = <Oé + %/Oteasf(S) ds) e+ (5 — %/Oteasf(s) ds) et

Comme f N O(1), il vient par intégration des relations de comparaison
t t t
/0 e f(s)ds L /0 O(e®) ds L O (/0 eds ds) L O(e™)
d’ou <ﬂ — i/teasf(s) ds) e” ™ = 0(1)
2a J, t—-+00

1 +0o0
On ae *f(s) =0 (—2> d’out la convergence de / e " f(s) ds et par conséquent, la seule
s 0

possibilité pour que y admette une limite finie pour ¢ — +oo est d’avoir
1 +o0

—5 :

On procéde exactement de la méme maniére pour ¢ — -o0o et on trouve

1 /0
f=——1[ e®f(s)ds

2a ) o

e " f(s)ds

o =

En injectant les écritures intégrales de a et S dans celle de y, on obtient

e e

at +oo —at t
R — _ —as _ as
vVt e y(t) 2 /. e *f(s)ds 5 /Ooe f(s)ds




Exercice 4 (**)

A
t2> y = 0 sur |0;+o00 [. Montrer

VaeR Ja€l]a;a+n[ | yla)=0

Soit A > 0 et y solution de y” + (1 +

Corrigé : On pose z=y'¢p—yyp avec VteR ©(t) = sin(t — a)

On a vt >0 2(t) = —t%ga(t)y(t)

Si y ne s’annule pas sur | a;a + 7 [, alors z est strictement monotone sur [a;a + 7], strictement
croissante si y < 0 et strictement décroissante si y > 0. Or, on a

zla+m) — z(a) = yla+ ) + y(a)
qui est en contradiction avec les monotonies précédemment annoncées. On conclut

VaeR  Ja€]aja+n[ | yla)=0

Exercice 5 (****)
Soit f € €([a;b],R) et u € €*([a;b],R) solution non nulle de 'équation différentielle

y'+ [y =0 (H)
vérifiant u(a) = u(b) = 0. Montrer U'inégalité

’ 4
I

Corrigé : On a montré dans un autre exercice que les zéros de u sont en nombre fini sur le
segment [a;b]. On suppose que a et b sont deux zéros consécutifs de u (le résultat sera vrai
a fortiori pour tout couple de zéros de u). La fonction u ne s’annule donc pas sur |a;b[. La
fonction |u| étant continue sur le segment [a;b], elle atteint son maximum et ailleurs qu’en les

bornes, i.e. il existe ¢ € |a;b] tel que |u(c)| = Max lu(t)]. On a
[ 1o ar < I/\f )|t
et comme v’ = — fu, il vient pour tout | Cla;
b
[ 15wt a= [ ars / ol at> | [ ] = o) (o)

- b (8) — /()
a / )] de > o

Or, d’apres le théoréme des accroissements finis, il existe « € |a;c[et § € ]c;b] tels que

M) _ iy o MU g

Avec u(a) = u(b) = 0, il vient

—1 1
/|f )| dt > ] -
— C C— a
1

—+
— X r —a

Une étude de fonction de ¢ : x — donne
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a+b 4
Inf gp(m)zap( ):b—a

z€]a;b|

b
4
On conclut / |f(t)] dt > -

Remarque : Il s’agit de linégalité de Liapounowv.

Exercice 6 (**)

Soit f : R — R deux fois dérivables telle que
"+ )+ ft) ——0

t—+00

Montrer f(t) ——0
t—+oo

Corrigé : On a vu dans I'exercice 1 de la feuille 68 que pour o € C avec Re a > 0, toute
fonction g telle que ¢'(z) + ag(x) —— 0 vérifie g(x) —— 0. Soient « et B des complexes et
T—r+00

Tr—r+00
g = f"+ af. Cherchons 3 tel que
g +Bg=f"+f+f

On a g+Bg=1"+1+f = [+ (a+b)f +abf

Si a+ 3 = af =1, cest-a-dire «, 3 racines de X* — X + 1, alors on a l'égalité souhaitée.

On prend a = e3 et f = a. Alors, d’aprés le résultat préliminaire, comme Re 8 > 0 et

g (x) + Bg(x) — 0, on obtient g(x) —— 0 c’est-a-dire f(z) + af’(xr) —— 0 et comme
Tr—r+00 r—+00 r—+00

Re () > 0, on conclut

ft) —

t—o00

Remarque : On peut aussi poser g = f”+ '+ f puis considérer cette égalité comme une équation
différentielle en f que 'on résout par variation des constantes et enfin utiliser le comportement
asymptotique de g. Cette démarche fonctionne mais s’avére beaucoup plus lourde que celle
proposée ci-avant. On trouve

—t/2 . \/gt \/_t —(t—s)/2
VteR fit)=e" [ozcos( 5 >+65n< )] \/_/ )2h(s) ds

avec Vs e R h(s) = [COS (?) — sin <\/2_5>] g(s)

et a, B des réels. Pour conclure sur le comportement asymptotique de 'intégrale dans I’écriture
de f, on peut quantifier h(s) = o(1) et découper l'intégrale de maniére appropriée ou aussi
procéder par convergence dominée aprés changement de variables avec

t t +00
/ e~ (t=9)/2p(s) ds = / e 2h(t —u) du = / e 2h(t — w) 1o, (u) du
0 0 0
en observant

e ™" 2h(t — u) oy (u) —— 0 et 0 < |e™™2h(t — u)ljg,(u)| < [|h]lsce /2

t—+o00



Exercice 7 (***%*)

Soit y : R — R une solution non nulle de y” + e'y = 0.

1. Montrer que ’ensemble des zéros de y est dénombrable.
2. On note a, le n-iéme zéro positif de y. En considérant ¢ : ¢ — sin (eaTn(t —ay)) et
Yt sin (enTH(t - an)>, montrer

_9nt1 _
e 2 L Apy] — Ap S TE

an
2

3. Déterminer un équivalent simple de a,, pour n — +oc.

Corrigé : 1. On a montré dans un autre exercice que les zéros de y sont en nombre fini sur tout
segment. L’union des zéros de y est I'union pour k& € Z de 'union des zéros de y sur [k;k+ 1],
autrement dit c’est une union dénombrable d’ensembles finis donc c’est un ensemble au plus
dénombrable. Montrons qu’il n’est pas fini. Supposons par exemple qu’il existe a réel tel que
y(t) > 0 pour tout t > a. On a y”’(t) = —e'y(t) < 0 pour tout ¢ > a d’ou la concavité de y sur
[a;+00[. Supposons qu'il existe a > a tel que y'(«) < 0. Par concavité, le graphe de y est situé
sous ses tangentes d’ou

Viza o y(t) <y(a)(t — o) +yla)

Pui ! — - -

uis Y ()t — ) +y(a) o = y(t) >

ce qui contredit le signe de y. On en déduit que ¢y’ > 0 d’ou y croit et en particulier y(¢) > y(a) > 0
pour tout t > a. Par conséquent

Viza o y'(t) = —e'y(t) < —e'yla) = yY'(t) —— o0
—+00
Avec le théoréme des accroissements finis ou un écriture intégrale, on en déduit
y'(t) —— -0 puis y(t) —— -0
t—+o0 t—+00

ce qui contredit le signe de y. On conclut

’L’ensemble des zéros de y est dénombrable.‘

an

2. Supposons que y ne s’annule pas sur } G 5 Qp +TET 2 ] On pose

(1) “”Fwwww-y@mw

eR WO v

La fonction W est dérivable et on a

VEeR  W/(t) =y(t)e"(t) — y"(O)p(t) = y()p(t) (e’ —e)
Ainsi, la fonction W’ est de signe constant sur ] Ay 5 Gy + ﬂe_%n} égal au signe de y sur cet
intervalle. Or, on a

Wian) = ylan) ¢'(an) = y'(an) plan) = 0

an
>)

Le signe de W(a,, + 7re’a7n) contredit alors la monotonie de W. On en déduit que y s’annule sur

n

N _an .
| an;a, +me™2 ] d’ott anyq € | an;a, +me” 2 | et par suite

et W(a, +me~%) = y(a, + me = %) (an + T~ %) = —e T y(a, + e~

_an
(pg1 — Qp S TTE 2

De la méme maniére, on démontre 'autre inégalité et on conclut



_In+1 _an
e~ "2 L Apy1 — Gp S TET 2

3. La suite (a,), est croissante non majorée sinon, elle aurait une limite finie et un segment

contiendrait une infinité de zéros de y. Ainsi, on a a, — +o0 et il s’ensuit a,,1 — a, —— 0
n—00 n—00
, _9nt1 _an
et par conséquent e " 2 ~ e~ 2.0n adonc
n—+oo

_Aan
Apy1 — An ~ TE 2
n—+oo
an
2

On pose u, = e 2 pour n entier. On a

2 (In(tns1) — In(uy)) ~ —

n—+oo U,n

Un+1 Up4+1 — U . Up+1
Or In(tpq1) — In(u,) =In ( s ) ~ " puisque —— —— 1
Up, n—+0o U, U, n—00
. m
On obtient donc Upg1 — Up — =
n—oo 2

Par sommation des relations de comparaison, on en déduit

n—1 n
oy 2 (e — ] o o
On conclut a, =2In(u,) ~ 2In(n)
n—-+0oo




