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Corrigé de la séance 2 - MP+ - 21/11/25

Exercice 1 (Décomposition de Dunford ****)

Soit E un K-ev de dimension finie et u € Z(E) trigonalisable. Montrer qu’il existe un unique
couple (d,n) € Z(E)? tel que u = d +n avec don = nod et d diagonalisable, n nilpotent.
Etablir également que d et u sont dans K[u].

Corrigé : Notons 7, = [] (X — A)**. D’aprés le lemme des noyaux, on a
AESD (u)
E=Kermy(u)=Ker O (u—Aid)*» = €& F, avec F,=Ker(u—Aid)*
AESp () AESp (v)

Soit A € Sp(u). On a F, stable par u car u commute avec (u — Aid)** € Klu|. Notant n, =

up, — Aidp,, on a ny € Z(F)) et n{* = 0. Il existe %) base de F, telle que maty,ny soit

triangulaire supérieure stricte et on concaténe ces bases pour former & = U P une base

AESD (u)
de E. On pose

d= Z )\ldF)\ et n= Z T\
AESP (u) AESPp (u)
Alors, on a matgd diagonale, matzn triangulaire supérieure avec commutation de ces deux
matrices en écrivant un produit par blocs ce qui prouve l'existence d’un couple (d,n) € Z(E)?
tel que u = d + n avec d diagonalisable , n nilpotent et d on = n o d. Soit A € Sp (u). Notons
P\ = [T (X—=p)*. Ona (X—AN"AP, =1 dou lexistence, d’aprés le théoréme de
RESP (u)N{A}
Bezout, de A et B dans K[X] tels que A(X — A\)** 4+ BP, = 1. Par conséquent, on a

id = A(u) o (u— Aid )* 4 B(u) o Py(u)

d’ou pour z € E r = A(u) o (u—Aid)*(z) + B(u) o Px(u)(z)
a by

Comme (X — \)**P) = 7, est annulateur de u, on obtient sans difficulté

byeFy, et aye€Ker P)\(U) = @ FM
nESP (u){A}
et cette décomposition = ay + by avec (ay,by) € Ker Py(u) x Fy est unique (unicité établie
dans le lemme des noyaux). Ainsi, Papplication py = B(u) o Py(u) : x + by est le projecteur sur
F, parallélement a @  F, et on a donc établi que py € K[u] pour tout A € Sp (u). On
1eESP (u){A}
vérifie sans difficulté que d = > Ap, ce qui prouve d € K|u] et par conséquent n = u —d €
AESD (u)
K[u]. Enfin, considérons un autre couple (d',n’) solution de la décomposition. Comme d’ et n’
commutent, alors d’ et u = d'+n’ commutent et par conséquent d’ commute avec tout polynome
en u et en particulier avec d. On a alors d et d' diagonalisables et qui commutent et qui sont
donc co-diagonalisables d’ou d — d’ diagonalisable. De méme, on a n et n’ qui commutent puis
n—n' nilpotent (résultat classique). Ainsi, on a I’égalité d —d’ = n—n' avec d —d’ diagonalisable
et n —n' nilpotent d’on d — d' =0 et n —n’ = 0 et on conclut



Il existe un unique couple (d,n) € Z(E) tel que u = d + n avec d
diagonalisable, n nilpotent, don = nod et de plus d,n dans K[u].

Remarque : On a montré l'existence et I'unicité de la décomposition de Dunford.

Variante : Pour établir que les projecteurs spectraux sont dans K[u], on peut observer

A Py=1
AESD (u)

D’apres la relation de Bezout, on dispose d'une famille (Uy)xesp (w) dans K[X] telle que

> UyPy=1
AESD (u)
On pose VA € Sp (u) pa = (UxPy)(u)

D’aprés la relation de Bezout, il vient

Yo=Y, (UPy(u) =id

AESD (u) AESD (u)
Soit (A, i) € Sp (u)? avec A # pu. On a (X — p)® diviseur de P, puis
propy = (UaPA\U,P,)(u) = (.. x (X = p)*P,)(u) = (... x m,)(u) = Ogm)

puis puzpu0< > P,\)Z > puopx =D
AESp (u) AESP (u) S~
=0 si A\#u
ce qui prouve que les (px)iesp (u) sont des projecteurs. On vérifie sans difficulté

VA € Sp (u) Im p) C Ker (u — Aid )* = F,
Puis E=idE)=Im > poC > ImpiC > F,= @ =E
A€ESp (u) AESD (u) AESD (u) AESP (u)
On en déduit que toutes les inclusions sont des égalités et en particulier
VA € Sp (u) Im p) = F,
Enfin, pour A € Sp (u), on a

pE)=0 = z= ) puz)= > pulz) € S, F,
WESP (u) RESP (u)~{A} pESP (u)~{A}
d’oun VA € Sp (u) Ker py\ C b F,
pESP (u)~{A}

avec égalité pour raison de dimension en écrivant par exemple le théoréme du rang avec p,. Ainsi,
la famille des projecteurs (px)aesp ) est la famille de projecteurs associée a la décomposition

E= & F, eton en déduit alors
AESD (u)

d= E AP
AESD (u)

en considérant ’écriture triangulaire par blocs dans une base adaptée a cette décomposition. On
conclut ensuite comme précédemment.

Remarque : On peut aussi poser d = > Apy puis
AESD (u)



n=u—d= Y, (u—A\id)op,
AESD (u)

et établir le caractére nilpotent de n en observant pour p entier

= 3 (u—Aid)P op,

AESD (u)



Exercice 2 (Suites récurrentes linéaires ***)
Soit E = K" et (uy,), suite récurrente linéaire d’ordre p (entier non nul) vérifiant

Vn € N Untp = Ap—1Unyp—1 + ... + QoUy

p—1
avec ao, . . ., a,—1 des scalaires et ag # 0. On note P = X? — Zaka et on suppose P scindé dans

k=0
r

K[X] de la forme P = J[(X — X\;)™ avec les \; deux & deux distincts et les m; des entiers non
i=1
nuls. On note 0 : E = E, (uy)n — (tUps1)n et A =0 —id.
1. Justifier que o € Z(E) puis interpréter Sy a I'aide de P(o).

2. Soit A € K* et m entier non nul. On note ey, = (A\"), et pour u € E, on note u = e,y avec
y € E. Enfin, pour k entier, on pose 7, = (n*), et Fy = Vect (ro, ..., 7).

(a) Justifier que y est bien définie puis établir

u € Ker (o —Aid)™ < y € Ker A™

(b) Etablir Foo1 C Ker A™
(c) Conclure que I'inclusion précédente est une égalité.
3. En déduire que (n — n' A" i € [1;r],7 € [0; m; —1]) est une base de Sy.
Corrigé : 1. On a clairement o linéaire et a valeurs dans E et sans difficulté, il vient

o€ Z(E) et Sy=Ker P(o)

2.(a) La suite y est bien définie par y = ey-1u. On observe

(0 — Aid)(u) = AexA(y)

et par récurrence VEeN (o —Xid)*(u) = NeyAF(y)

Ainsi u € Ker (o —\id )™ < y € Ker A™

Remarque : Poser u = e,y est 'analogue discret de la variation de la constante puisque
Ker (0 — Aid) = Vect (ey).

2.(b) Soit k € N. On a A(rg)(n) = (n+1)F —nF =3 (’z)ng

d’ott A(ry) € Fr_1 et par suite A(F) C Fjr_; et par récurrence AY(F,) C Fi_, pour tout
€ ]0; k] dou AML(F,) C A(Fo) = {Og}. En particulier, on a A™(F,,_;) = {0}, c’est-a-dire

’Fm,l C Ker Am‘

2.(c) L’espace Ker A™ est I'ensemble des suites récurrentes linéaires d’ordre m vérifiant une
certaine relation de récurrence linéaire. Etant donné un choix de m scalaires, il existe, par
principe de récurrence une suite dans Ker A™ ayant pour m premiers termes ces m scalaires
et toujours par principe de récurrence, une telle suite est unique ce qui revient a dire que P :
Ker A™ — K™, (uy)n = (ug, ..., Uy,_1) est un isomorphisme et par conséquent dim Ker A™ =
m = dim F,,,_1. Par inclusion et égalité des dimensions, on conclut

’Fm_l = Ker A™




Remarque : Il faut comprendre 'opérateur comme une dérivée « discréte ». Ainsi, les suites
dont la dérivée discréte d’ordre m est nulle sont les suites polynomiales d’ordre inférieur.

3. D’aprés le lemme des noyaux, il vient
T
Su = @ Ker (o — \;id )™
i=1
avec les \; des scalaires non nuls puisque ag # 0 et les m; des entiers non nuls. D’aprés le résultat
de la question précédente, on a

Vie[l;r] (n—=n/ A"k e[0; m; —1]) base de Ker (o — \;id )™

On conclut

La famille (n — n/A" i€ [1;r],7 € [0; m; — 1]) est une base de Sy.




Exercice 3 (Trigonalisation simultanée **%*)

Soient A, B deux matrices de .,(C) qui commutent. Montrer que A et B sont simultanément
trigonalisables, ¢’est-a-dire qu’il existe P € GL,,(C) telle que P'AP et P~!BP sont triangulaires
supérieures.

Corrigé : La matrice A admet au moins une valeur propre A\ € C puisque xa est scindé dans
C[X]. Le sous-espace propre E,(A) est stable par B et I’endomorphisme by induit par B sur
E)(A) admet lui aussi une valeur propre p pour la méme raison que précédemment. Considérant
X matrice colonne d’un vecteur propre de I'endomorphisme by, on a

BX = uX et AX=AX

Ainsi, les matrices A et B admettent un vecteur propre commun. On procéde ensuite par récur-
rence en notant

P(n): VY(AB) € #(C? AB=BA = 3SeGL,(C)|(STAS,SIBS) € Z+(C)?

e (1) : l'initialisation est évidente.
o Z(n—1) = Z(n) Supposons £ (n — 1) vraie pour n > 2 fixé. Soit (A, B) € 4, (C)?* avec
AB = BA. D’aprés le résultat préliminaire, il existe ¢; vecteur propre commun & A et B. En

complétant (e1) en base & = (ey,...,¢,) de C", notant P = maty (%), on obtient les matrices
par blocs
_ Al o _ TR )
1 1
PAP_<O ,) etPBP_<0B,

ol le symbole * désigne des termes qu’il n’est pas utile de préciser. Le produit par blocs donne

(o) (6rer) = (i) = (1) (51an) = (0 1a)
oA /)\o[B /)" \Vojam/) @ Vo[ /\o[a/) "o [BN
Comme A et B commutent, il s’ensuit que les matrices de ., _1(C) A’ et B’ commutent. D’aprés
I'hypothése Z(n—1), il existe Q € GL,_1(C) tel que A’ = QTQ ! et B’ = QSQ ! avec (T, S) €

7.7 ,(C)% Enfin, posant R = < (1) 82 ), on a clairement R € GL,(C) avec R = (H%)

Le produit par blocs donne
A * A %
“1/D—1 _ _
R APR = (g ) = (o7T)
(Frae) - (515)
0/Q'BQ/) \0|S

Ainsi ((PR)"'A(PR), (PR)"'B(PR)) € Z.*(C)?

n

o

et R~1(P~'BP)R

ce qui clot la récurrence. On a donc prouvé

Deux matrices de ., (C) qui commutent sont simultanément trigonalisables.

Remarque : Le résultat se généralise 4 une famille de matrices (A;);er qui commutent. L’espace
Vect (A;);e1 est de dimension finie et admet une base qu’on note (Ay,...,A,). Par récurrence
sur p, on montre qu'il existe un vecteur propre commun a Ay, ..., A,. Puis, par une récurrence
sur n identique a celle présentée plus haut, on montre que les matrices sont simultanément
trigonalisables.



Exercice 4 (***%¥)

Soit E = #,(K), (A,B) € E? et on pose ®(M) = AM + MB pour tout M € E. Justifier
que ¢ € Z(E) puis montrer que les matrice A et B sont trigonalisables si et seulement si
I’endomorphisme ® 'est.

Corrigé : [’application ® est linéaire par bilinéarité du produit matriciel et clairement & valeurs
dans E d’ou

o e Z(E)

On pose VM e E fM)=AM et g¢g(M)=MB
Pour les mémes raisons qu’avec @, les applications f et g sont des endomorphismes de E. On
remarcque
VM e E fog(M)=AMB = go f(M)
Par ailleurs, on observe que pour P € K[X], on a
VM e E P(f) (M) =P(A)M et P(g)(M)=MP(B)

ce qui prouve que les polynomes annulateurs de A et de f coincident et de méme pour B et
g. Supposons les matrices A et B trigonalisables. Les polynémes caractéristiques xa et yp sont
scindés dans K[X], annulateurs respectivement de A et de B donc de f et de g ce qui prouve
que les endomorphismes f et g sont trigonalisables. Comme ils commutent, il existe une base de
trigonalisation simultanée ce qui prouve que 'endomorphisme & est trigonalisable. On considére
A et B comme matrices de ., (C) et & comme endomorphisme de .#,(C). On a xg = x:p par
propriété du déterminant et par conséquent, on dispose de X et Y dans .4, 1(C) . {0} telles
que AX = XX et BTY = Y ou encore Y'B = Y. Posant M = XY = (:Eiyj)lgi,jgn non nulle

puisqu’il existe (ig, jo) € [1; n]? tel que z;, # 0 et y;, # 0, on trouve
(M) = AXYT + XY B = AXYT + XpuYT = (A + )M

ce qui prouve Spc(A) +Spe(B) C Spe(P)
Soit a € C et M € #,(C) ~ {0} tels que &(M) = aM. On a
d(M) =aM < AM=MC avec C=al,—B
Supposons Sp (A) N Sp¢(C) = @. Par récurrence, on montre A*M = MC* pour tout k entier
d’ou P(A)M = MP(C) pour tout P € K[X]. En particulier, il vient
Mxa(C) = xa(A)M =0

Notant xo = J] (X—X)™®) ona
AE€Sp (A)

det xa(C) = [ det(C—AL)™® = [T ((=1)"xc(N))™™ #0
AESP (A) AESp (A)
La matrice x4 (C) étant inversible, il s’ensuit M = 0 ce qui est faux.
Ceci prouve l'existence d’une valeur propre commune A € C pour A et C. Ainsi, on dispose de
X € M, 1(C) non nulle telle que CX = AX, c¢’est-a-dire BX = (v — A\)X et par conséquent
a= A, +a—A
~~ N——
€Spc(A)  €Spe(B)

Par double inclusion, on a donc établi



Spc(®) =Spc(A) +Spc(B)
Les matrices A et B sont trigonalisables dans .#,(C) et d’apreés le résultat démontré précédem-
ment, 'application ® vu comme endomorphisme de ., (C) est trigonalisable et avec la relation
sur les spectres, il vient
Xe = [ (X=X —p)
1<i,j<n

avec \;, p; les valeurs propres de A et B répétées avec leurs multiplicités. On considére de
nouveau ’application & comme endomorphisme du K-ev E et on le suppose trigonalisable. Le
polynéme caractéristique yo est scindé dans K[X] ce qui prouve que A; + p; € K pour tout
(i,7) € [1; n]?. Enfin, comme on a Tr B € K, il vient

Vie[l;n] Ai:l(i()\i—l—uj)—TrB)EK

n j=1

et de méme pour les p1;. Par conséquent, les polynomes xa = [[(X —\;) et xg = [[ (X — 1 )
i=1 j=1

sont scindés dans K[X] et il s’ensuit que les matrices A et B sont trigonalisables dans ., (K).

On conclut

’L’endomorphisme ® est trigonalisable si et seulement si les matrices A et B le sont.‘

Remarques :(a) On a notamment prouvé le résultat auxiliaire suivant :

Spc(®) = Spc(A) +Spe(B)
(b) Pour déduire de AM = MC avec M € #,(C) ~ {0} que Sp(A) NSp(C) # @, on peut
aussi procéder comme suit. On note r = rg M. On dispose de P et Q dans GL,(C) telles que
M =PJ,Q d’ou
A/ A/ C/ C/ >
1 _ ! /I _ p-1 _ 1 2 /I __ -1 _ 1 2

A'J,=J,C" avec A'=P AP = < Al AZ) C'=QCQ _<Cg c,
Le calcul par blocs donne A} = Cj, A5 =0 et C; = 0 d’out xar|xar, Xc;|xcr avee xar = xc; et
XA = XA/» Xc = X par similitude. Ceci prouve que ya et xc ont un facteur commun de degré
r > 1 d’ou le résultat.



Exercice 5 (***%*)
Soit E un K-ev de dimension finie égale a n entier non nul et u € Z(E). Pour z € E, on pose
E, = Vect (u*(z), ke N) et I, ={PeK[X]|P(u)(z) =0g}

L’endomorphisme u est dit cyclique s’il existe x € E tel que E, = E. On définit le commutant
de u noté €' (u) par

C(u)={ve ZE)|uov=vou}

1. Soit = € E. Justifier qu’il existe un polynéme unitaire 7, , € K[X] tel que I, = m, ,K[X]
et vérifiant m, . |m,.

2. (a) On suppose m, = P® avec P € K[X] irréductible et a entier non nul. Etablir qu’il
existe z € E tel que 7, , = 7.
(b) Généraliser le résultat précédent avec m, quelconque. On pourra considérer sa décom-
position en facteurs irréductibles dans K[X].

3. En déduire u cyclique <= m, = x.

4. On suppose u trigonalisable.

(a) Etablir dim%(u) > n

(b) En déduire Tu = Xu <= Klu| =€ (u)

Corrigé : 1. L’ensemble I, est un idéal de K[X], non réduit a {OK[X]} car il contient 7,. Ainsi

Il existe 7, , unitaire engendrant I, et donc diviseur de m,.

2.(a) On a P*"!(u) # 0gm). On dispose donc de = € E tel que P*~(u)(x) # Op. Comme 7, ,
divise 7, = P* avec P irréductible, alors on a m,, = P® avec s < a. Or, par choix de z, on a
P 1(u)(z) # Og d’olt s > « et par conséquent

Il existe z € E tel que 7, , = m,.

2.(b) On décompose 7, = [[ P;" avec r entier non nul, les P; dans K[X] irréductibles unitaires
i=1

deux a deux distincts et les «; entiers non nuls. Les Pj" sont deux a deux premiers entre eux.
D’aprés le lemme des noyaux, il vient

T

E = Ker 7, (u) = @ Ker P (u)

i=1
On note u; € Z(E;) l'induit par u sur E; = Ker P (u) stable par u pour ¢ € [1;r]. On a
P (u;) = 0.,y pour tout ¢ € [1; r] par construction. Comme I’endomorphisme u est caracté-
risé par ses restrictions et donc ses induits sur les E; pour i € [1; r], ¢’il existe j € [1; r] tel
que P “u;) =0 (&), alors on aurait P}’ ' JI  P% annulateur de u ce qui contredirait

i€[15r N5}
la minimalité de m,. On en déduit
Vie[l;r] Ty, = P

Ainsi, d’apreés le résultat de la question précédente, on a

Vie[l;r] A, € B | muya = T

T
On pose r= ).
i=1

9



On a T (W)(®) = Y e (u)(w) = > muo(ui)(2;) = Op
i=1 '
Par somme directe, il vient
Vie[l;r] Tz (i) () = O,
d’ou Vie[l;r] PY = Ty, | Tu s

,

Comme les P;" sont deux & deux premiers entre eux, il s’ensuit que m, = [[ P{" divise m,, et
i=1

on sait que 7, , divise 7,. Ainsi, les deux polyndomes sont associés et unitaires et on conclut

Il existe z € E tel que 7, , = m,.

3. Soit P € K[X]. On dispose d’un unique couple (Q,R) € K[X]? avec degR < degm, . tel que
P = Qm,, + R. 1l vient

P(u)(z) = Q(u) © mye(u)(x) + R(u)(2) = R(u)(z)

ce qui prouve que (u*(z))ke[o;degra.—1] €St génératrice de E, et libre car R(u)(z) = 0 avec
degR < degm, .(x) et R non nul contredit la minimalité de 7, .. Ainsi, on a

dimE, = degm, ,
Si 'endomorphisme wu est cyclique, on dispose de x € E tel que E, = E d’ou
deg xy, = dimE = dimE, = degm,,

Ainsi, on a m,, divise 7, qui divise x, et ces polynomes sont unitaires et de méme degré d’ou
Ty = Xu- Réciproquement, si m, = x,, on dispose de x € E tel que 7, , = 7 d’ou

dimE, = degm,, = degm, = deg x, = dimE

On en déduit E, = E. On a donc montré

’u cyclique <— m, = Xu‘

4.(a) Soit Z une base de trigonalisation de u et T = matgu € T,(K) (espace des matrices
triangulaires supérieures). Notant

¢(T)={Me #,K) | MT=TM}
on a clairement dim %' (T) = dim €' (f). Considérons la dimension de I'espace de solutions de
I’équation
MT -TM =0 (S)
d’inconnue M € T,,(K). Les termes diagonaux donnent les équations triviales
Vie[1;n] miti; — tiimi; =0

(n+1) n(n+1)

n ) .
Par conséquent, le systéme (S) possede —n équations pour —s inconnues. Comme

le rang de (S) est majorée par le nombre d’équations, il s’ensuit

: n(n+1) n(n+1)
dim%(T) N T,(K) > S < 5 — n> >n

Ainsi dim % (u) =dim%(T) > dim % (T) N T, (K) > n

4.(b) Si m, = xu, comme on dispose de = € E tel que E = E,, on vérifie sans difficulté (exercice
classique) que Klu] = €(u). Supposons Klu| = € (u). On a

10



degm, = dimKu] < n < dim %' (u)

Les inégalités sont donc des égalité et comme 7, divise x, et que ceux-ci sont de méme degré et
unitaires, ils sont égaux. On conclut

Tu = Xu = Ku] =€ (u)

11



Exercice 6 (****)

Soit A € 4, (C) et #(A) la classe de similitude de A, i.e.
L(A)={M e #,(C) | M semblable a A}

1. Montrer que si A est inversible, alors . (A) C GL,(C).

2. Montrer A diagonalisable <= .7(A) fermée
Corrigé : 1. Soit A € GL,(C) et (B,), € #(A)Y avec B, —— B. Le déterminant est continu
n—oo
et invariant par similitude d’ou

Vn € N det A =detB, —— detB=detA = detB=detA #0

n—oo

Ainsi < (A) C GL,(C)

2. Supposons A diagonalisable. Soit (B,,), € Z(A)Y avec B,, — B. Comme B,, est semblable
n—oo

a A pour tout n entier, on a mg, = T et par suite
7, (Br) =0=ma(B,) —— ma(B) =0
n—o0

Comme A est diagonalisable, w5 scindé a racines simples et ma est annulateur de B, donc par

théoréme, la matrice B est diagonalisable. Par continuité de M +— xy, on a xao = xB, ——
n—oo

XB = Xa- Ainsi, les matrices A et B sont diagonalisables avec méme polynomes caractéristiques
donc méme valeurs propres et mémes multiplicités pour les valeurs propres. 11 s’ensuit que A et
B sont semblables a une méme matrice diagonale et donc semblables entre elles. Ceci prouve que
B € ¥(A). Réciproquement, supposons . (A) fermée. Soit u € Z(C") canoniquement associé a
A et soit B = (&1, ...,€,) une base de trigonalisation de u. On note %), = (e1,e2/k, ..., e, /k"1).
Ainsi

. ; Jj—1 . .
Vie[l;n] u( 5 )z)\» % + > L A

ou les \; désignent les valeurs propres de u et les a; ; les coefficients au dessus de la diagonale
dans matgu. On en déduit

Ay = maty,u —— D = diag(A,..., \n)
k—+o00

La suite (Ag)g est a valeurs dans .(A) puisque les Ag et A sont matrices d’un méme endomor-

phisme dans des bases distinctes et Ay — D d’ou D semblable & A par fermeture de . (A).
—+00

On conclut

A diagonalisable <= .7(A) fermée

12



Exercice 7 (***)
Soit E un K-evn. Déterminer la nature topologique de
A={(z1,...,z,) €E" | (21,...,2,) libre }

Corrigé : Soit (zM), = (azgk), . ,x%k))k € (E ~ AN convergente de limite z € E. Montrons
x € E~ A ce qui prouvera la fermeture de E ~. A et donc 'ouverture de A. Pour tout k entier,

il existe A® = (AP, APy e Kn < {0} tel que Z)\l(-k)asgk) = 0. Pour tout k entier, on pose
i=1

A&
alk) = A La suite (a®), est a valeurs dans S(0,1) qui est un fermé borné de R™ donc un
compact de R”. Par conséquent, il existe une extractrice ¢ telle que a?*) —— o € S(0,1).

n—oo
n
On a Zagk)xl(-k) = 0 pour tout k entier et par combinaison linéaire de limites, il vient
i=1

Za(@ (%)) k_> ZO‘ z;
—+00  ;—1

n
d’on > ayx; = 0 ce qui prouve z € E~ A d’ou la fermeture de E \. A et on conclut
i=1

| L’ensemble A est un ouvert de E”. |

Variante : Soit (z1,...,2,) € A. On pose

O K" >R, (ag,...,qn) = ||D oz
i=1

et on note S:{(ala--'7an)€Kn ’ Z’Oﬁi,:l}
i=1

On a S compact de K" (fermé borné en dimension finie) et & € (K", R) (composée de la norme
avec une application linéaire en dimension finie) admet donc un minimum sur S. Par liberté

de (z1,...,x,), il s’ensuit que MSin ® > 0. Soit ¢ € } 0; Msin ) [ et (y1,...,yn) € E" tel que
|zi — vi]| < & pour tout ¢ € [1; n]. Supposons qu’il existe 8 = (51,...,0,) € K"\ {0kn} tel
que > SByy; = Og. Il vient
i=1

2 By =05 = > Bixi= ) Bi(vi —yi)

i=1 i=1 i=1
Par inégalité triangulaire

HZ@%H 2 |Billlzi = yill < 222 16
Notant v; = 5;/]|5||1 pour tout ¢ € [1; n], on obtient
(v, ) = ||Z%xl|| e avec (Y1,---,%) €S

ce qui est absurde par choix de . Ainsi
Y Byi=0g = pfi=...=0,=0
i=1

On retrouve le résultat attendu.
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Exercice 8 (***%*)

Soit f : R? — R, continue surjective. Montrer que pour tout a réel, ensemble f~! ({a}) n’est
pas compact.

Corrigé : Soit f : R? — R, continue surjective. Soit a réel tel que f~'({a}) est compact. Alors,
il existe R > 0 tel que f~!({a}) C B(0,R). Pour la suite, on note

BRZBf(O,R) et CR=R2\BJC(O,R)

On a Cg connexe par arcs. Soit (u,v) € C%. On confond R? et C. On note

u = rel® v = roei’
avec 01, 05 réels et 1, ro dans |R; +0o [. On pose
Vi e [0;1] o(t) = ri-trlei(1=0)01+102)
L’application ¢ est continue avec ¢(0) = u, p(1) = v et
Vte]0;1] lo(t)| = ri b > RI'RY = R

ce qui prouve que @ est a valeurs dans Cg.

Ya

()

S

FIGURE 1 — Chemin reliant v & v dans Cg

L’image f(Cr) est un connexe par arcs de R autrement dit un intervalle de R qui ne contient
pas a donc

©(Cr) Cla;+00[ ou ¢(Cgr) C]-00;a]

Enfin, on a f(Br) C [—b;b] avec b > 0 puisque f(Bgr) est un compact. Donc, avec f(R?) =
f(Br) U f(Cgr), on trouve

f(R?) C [min(a, —b);+00[ ou f(R?) C]-oc;max(a,b)]

Dans tous les cas, ceci contredit la surjectivité de f.

Variante : Par construction, on aa € f(Bg) et f(Br) est un compact. Soient ¢, d dans R~ f(Bg)
avec ¢ < a < d. Par surjectivité, il existe o, 3 dans R? tels que f(a) = c et f(3) = d et par choix
de c et d, on a a et § dans Cg. Comme Cg est connexe par arcs, il existe ¢ € €([0;1],Cg)
telle que ¢(0) = c et p(1) = d. Puis, d’aprés le théoréme des valeurs intermédiaires, on a

[e;d]=[fop(0);fop(l)] C fop([0;1])C f(Cr)

Comme a € [c¢;d], et a ¢ f(Cgr), on a une contradiction.
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