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Exercice 1 (Décomposition de Dunford ****)

Soit E un K-ev de dimension �nie et u ∈ L (E) trigonalisable. Montrer qu'il existe un unique
couple (d, n) ∈ L (E)2 tel que u = d + n avec d ◦ n = n ◦ d et d diagonalisable, n nilpotent.
Établir également que d et u sont dans K[u].

Corrigé : Notons πu =
∏

λ∈Sp (u)

(X− λ)αλ . D'après le lemme des noyaux, on a

E = Ker πu(u) = Ker ⃝
λ∈Sp (u)

(u− λ id )αλ =
⊕

λ∈Sp (u)

Fλ avec Fλ = Ker (u− λ id )αλ

Soit λ ∈ Sp (u). On a Fλ stable par u car u commute avec (u − λ id )αλ ∈ K[u]. Notant nλ =
uFλ

− λ id Fλ
, on a nλ ∈ L (Fλ) et nαλ

λ = 0. Il existe Bλ base de Fλ telle que matBλ
nλ soit

triangulaire supérieure stricte et on concatène ces bases pour former B =
⋃

λ∈Sp (u)

Bλ une base

de E. On pose

d =
∑

λ∈Sp (u)

λ id Fλ et n =
∑

λ∈Sp (u)

nλ

Alors, on a matBd diagonale, matBn triangulaire supérieure avec commutation de ces deux
matrices en écrivant un produit par blocs ce qui prouve l'existence d'un couple (d, n) ∈ L (E)2

tel que u = d + n avec d diagonalisable , n nilpotent et d ◦ n = n ◦ d. Soit λ ∈ Sp (u). Notons
Pλ =

∏
µ∈Sp (u)∖{λ}

(X − µ)αµ . On a (X − λ)αλ ∧ Pλ = 1 d'où l'existence, d'après le théorème de

Bezout, de A et B dans K[X] tels que A(X− λ)αλ + BPλ = 1. Par conséquent, on a

id = A(u) ◦ (u− λ id )αλ + B(u) ◦ Pλ(u)

d'où pour x ∈ E x = A(u) ◦ (u− λ id )αλ(x)︸ ︷︷ ︸
aλ

+B(u) ◦ Pλ(u)(x)︸ ︷︷ ︸
bλ

Comme (X− λ)αλPλ = πu est annulateur de u, on obtient sans di�culté

bλ ∈ Fλ et aλ ∈ Ker Pλ(u) =
⊕

µ∈Sp (u)∖{λ}
Fµ

et cette décomposition x = aλ + bλ avec (aλ, bλ) ∈ Ker Pλ(u) × Fλ est unique (unicité établie
dans le lemme des noyaux). Ainsi, l'application pλ = B(u) ◦ Pλ(u) : x 7→ bλ est le projecteur sur
Fλ parallèlement à

⊕
µ∈Sp (u)∖{λ}

Fµ et on a donc établi que pλ ∈ K[u] pour tout λ ∈ Sp (u). On

véri�e sans di�culté que d =
∑

λ∈Sp (u)

λpλ ce qui prouve d ∈ K[u] et par conséquent n = u − d ∈

K[u]. En�n, considérons un autre couple (d′, n′) solution de la décomposition. Comme d′ et n′

commutent, alors d′ et u = d′+n′ commutent et par conséquent d′ commute avec tout polynôme
en u et en particulier avec d. On a alors d et d′ diagonalisables et qui commutent et qui sont
donc co-diagonalisables d'où d − d′ diagonalisable. De même, on a n et n′ qui commutent puis
n−n′ nilpotent (résultat classique). Ainsi, on a l'égalité d−d′ = n−n′ avec d−d′ diagonalisable
et n− n′ nilpotent d'où d− d′ = 0 et n− n′ = 0 et on conclut

1



Il existe un unique couple (d, n) ∈ L (E) tel que u = d + n avec d
diagonalisable, n nilpotent, d ◦ n = n ◦ d et de plus d, n dans K[u].

Remarque : On a montré l'existence et l'unicité de la décomposition de Dunford.

Variante : Pour établir que les projecteurs spectraux sont dans K[u], on peut observer∧
λ∈Sp (u)

Pλ = 1

D'après la relation de Bezout, on dispose d'une famille (Uλ)λ∈Sp (u) dans K[X] telle que∑
λ∈Sp (u)

UλPλ = 1

On pose ∀λ ∈ Sp (u) pλ = (UλPλ)(u)

D'après la relation de Bezout, il vient∑
λ∈Sp (u)

pλ =
∑

λ∈Sp (u)

(UλPλ)(u) = id

Soit (λ, µ) ∈ Sp (u)2 avec λ ̸= µ. On a (X− µ)αµ diviseur de Pλ puis

pλ ◦ pµ = (UλPλUµPµ)(u) = (. . .× (X− µ)αµPµ)(u) = (. . .× πu)(u) = 0L (E)

puis pµ = pµ ◦
Ç ∑

λ∈Sp (u)

pλ

å
=

∑
λ∈Sp (u)

pµ ◦ pλ︸ ︷︷ ︸
=0 si λ̸=µ

= p2µ

ce qui prouve que les (pλ)λ∈Sp (u) sont des projecteurs. On véri�e sans di�culté

∀λ ∈ Sp (u) Im pλ ⊂ Ker (u− λ id )αλ = Fλ

Puis E = id (E) = Im
∑

λ∈Sp (u)

pλ ⊂
∑

λ∈Sp (u)

Im pλ ⊂
∑

λ∈Sp (u)

Fλ =
⊕

λ∈Sp (u)

= E

On en déduit que toutes les inclusions sont des égalités et en particulier

∀λ ∈ Sp (u) Im pλ = Fλ

En�n, pour λ ∈ Sp (u), on a

pλ(x) = 0 =⇒ x =
∑

µ∈Sp (u)

pµ(x) =
∑

µ∈Sp (u)∖{λ}
pµ(x) ∈

⊕
µ∈Sp (u)∖{λ}

Fµ

d'où ∀λ ∈ Sp (u) Ker pλ ⊂
⊕

µ∈Sp (u)∖{λ}
Fµ

avec égalité pour raison de dimension en écrivant par exemple le théorème du rang avec pλ. Ainsi,
la famille des projecteurs (pλ)λ∈Sp (u) est la famille de projecteurs associée à la décomposition

E =
⊕

λ∈Sp (u)

Fλ et on en déduit alors

d =
∑

λ∈Sp (u)

λpλ

en considérant l'écriture triangulaire par blocs dans une base adaptée à cette décomposition. On
conclut ensuite comme précédemment.

Remarque : On peut aussi poser d =
∑

λ∈Sp (u)

λpλ puis
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n = u− d =
∑

λ∈Sp (u)

(u− λ id ) ◦ pλ

et établir le caractère nilpotent de n en observant pour p entier

np =
∑

λ∈Sp (u)

(u− λ id )p ◦ pλ
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Exercice 2 (Suites récurrentes linéaires ***)

Soit E = KN et (un)n suite récurrente linéaire d'ordre p (entier non nul) véri�ant

∀n ∈ N un+p = ap−1un+p−1 + . . .+ a0un

avec a0, . . . , ap−1 des scalaires et a0 ̸= 0. On note P = Xp−
p−1∑
k=0

akX
k et on suppose P scindé dans

K[X] de la forme P =
r∏

i=1

(X − λi)
mi avec les λi deux à deux distincts et les mi des entiers non

nuls. On note σ : E → E, (un)n 7→ (un+1)n et ∆ = σ − id .

1. Justi�er que σ ∈ L (E) puis interpréter SH à l'aide de P(σ).

2. Soit λ ∈ K∗ et m entier non nul. On note eλ = (λn)n et pour u ∈ E, on note u = eλy avec
y ∈ E. En�n, pour k entier, on pose rk = (nk)n et Fk = Vect (r0, . . . , rk).

(a) Justi�er que y est bien dé�nie puis établir

u ∈ Ker (σ − λ id )m ⇐⇒ y ∈ Ker ∆m

(b) Établir Fm−1 ⊂ Ker ∆m

(c) Conclure que l'inclusion précédente est une égalité.

3. En déduire que (n 7→ njλn
i , i ∈ [[ 1 ; r ]], j ∈ [[ 0 ; mi − 1 ]]) est une base de SH.

Corrigé : 1. On a clairement σ linéaire et à valeurs dans E et sans di�culté, il vient

σ ∈ L (E) et SH = Ker P(σ)

2.(a) La suite y est bien dé�nie par y = eλ−1u. On observe

(σ − λ id )(u) = λeλ∆(y)

et par récurrence ∀k ∈ N (σ − λ id )k(u) = λkeλ∆
k(y)

Ainsi u ∈ Ker (σ − λ id )m ⇐⇒ y ∈ Ker ∆m

Remarque : Poser u = eλy est l'analogue discret de la variation de la constante puisque
Ker (σ − λ id ) = Vect (eλ).

2.(b) Soit k ∈ N. On a ∆(rk)(n) = (n+ 1)k − nk =
k−1∑
ℓ=0

(
k
ℓ

)
nℓ

d'où ∆(rk) ∈ Fk−1 et par suite ∆(Fk) ⊂ Fk−1 et par récurrence ∆ℓ(Fk) ⊂ Fk−ℓ pour tout
ℓ ∈ [[ 0 ; k ]] d'où ∆k+1(Fk) ⊂ ∆(F0) = {0E}. En particulier, on a ∆m(Fm−1) = {0E}, c'est-à-dire

Fm−1 ⊂ Ker ∆m

2.(c) L'espace Ker ∆m est l'ensemble des suites récurrentes linéaires d'ordre m véri�ant une
certaine relation de récurrence linéaire. Etant donné un choix de m scalaires, il existe, par
principe de récurrence une suite dans Ker ∆m ayant pour m premiers termes ces m scalaires
et toujours par principe de récurrence, une telle suite est unique ce qui revient à dire que Φ :
Ker ∆m → Km, (un)n 7→ (u0, . . . , um−1) est un isomorphisme et par conséquent dimKer ∆m =
m = dimFm−1. Par inclusion et égalité des dimensions, on conclut

Fm−1 = Ker ∆m
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Remarque : Il faut comprendre l'opérateur comme une dérivée � discrète �. Ainsi, les suites
dont la dérivée discrète d'ordre m est nulle sont les suites polynomiales d'ordre inférieur.

3. D'après le lemme des noyaux, il vient

SH =
r⊕

i=1

Ker (σ − λi id )
mi

avec les λi des scalaires non nuls puisque a0 ̸= 0 et les mi des entiers non nuls. D'après le résultat
de la question précédente, on a

∀i ∈ [[ 1 ; r ]] (n 7→ njλn
i , k ∈ [[ 0 ; mi − 1 ]]) base de Ker (σ − λi id )

mi

On conclut

La famille (n 7→ njλn
i , i ∈ [[ 1 ; r ]], j ∈ [[ 0 ; mi − 1 ]]) est une base de SH.
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Exercice 3 (Trigonalisation simultanée ***)

Soient A,B deux matrices de Mn(C) qui commutent. Montrer que A et B sont simultanément
trigonalisables, c'est-à-dire qu'il existe P ∈ GLn(C) telle que P−1AP et P−1BP sont triangulaires
supérieures.

Corrigé : La matrice A admet au moins une valeur propre λ ∈ C puisque χA est scindé dans
C[X]. Le sous-espace propre Eλ(A) est stable par B et l'endomorphisme bλ induit par B sur
Eλ(A) admet lui aussi une valeur propre µ pour la même raison que précédemment. Considérant
X matrice colonne d'un vecteur propre de l'endomorphisme bλ, on a

BX = µX et AX = λX

Ainsi, les matrices A et B admettent un vecteur propre commun. On procède ensuite par récur-
rence en notant

P(n) : ∀(A,B) ∈ Mn(C)2 AB = BA =⇒ ∃S ∈ GLn(C) | (S−1AS, S−1BS) ∈ T +
n (C)2

• P(1) : l'initialisation est évidente.
• P(n − 1) =⇒ P(n) Supposons P(n − 1) vraie pour n ⩾ 2 �xé. Soit (A,B) ∈ Mn(C)2 avec
AB = BA. D'après le résultat préliminaire, il existe ε1 vecteur propre commun à A et B. En
complétant (ε1) en base B = (ε1, . . . , εn) de Cn, notant P = matC (B), on obtient les matrices
par blocs

P−1AP =

Å
λ ∗
0 A′

ã
et P−1BP =

Å
µ ∗
0 B′

ã
où le symbole ∗ désigne des termes qu'il n'est pas utile de préciser. Le produit par blocs donneÅ

λ ∗
0 A′

ãÅ
µ ∗
0 B′

ã
=

Å
λµ ∗
0 A′B′

ã
et
Å

µ ∗
0 B′

ãÅ
λ ∗
0 A′

ã
=

Å
µλ ∗
0 B′A′

ã
Comme A et B commutent, il s'ensuit que les matrices de Mn−1(C) A′ et B′ commutent. D'après
l'hypothèse P(n−1), il existe Q ∈ GLn−1(C) tel que A′ = QTQ−1 et B′ = QSQ−1 avec (T, S) ∈

T +
n−1(C)2. En�n, posant R =

Å
1 0
0 Q

ã
, on a clairement R ∈ GLn(C) avec R−1 =

Å
1 0
0 Q−1

ã
.

Le produit par blocs donne

R−1(P−1AP)R =

Å
λ ∗
0 Q−1A′Q

ã
=

Å
λ ∗
0 T

ã
et R−1(P−1BP)R =

Å
µ ∗
0 Q−1B′Q

ã
=

Å
µ ∗
0 S

ã
Ainsi ((PR)−1A(PR), (PR)−1B(PR)) ∈ T +

n (C)2

ce qui clôt la récurrence. On a donc prouvé

Deux matrices de Mn(C) qui commutent sont simultanément trigonalisables.

Remarque : Le résultat se généralise à une famille de matrices (Ai)i∈I qui commutent. L'espace
Vect (Ai)i∈I est de dimension �nie et admet une base qu'on note (A1, . . . ,Ap). Par récurrence
sur p, on montre qu'il existe un vecteur propre commun à A1, . . ., Ap. Puis, par une récurrence
sur n identique à celle présentée plus haut, on montre que les matrices sont simultanément
trigonalisables.
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Exercice 4 (****)

Soit E = Mn(K), (A,B) ∈ E2 et on pose Φ(M) = AM + MB pour tout M ∈ E. Justi�er
que Φ ∈ L (E) puis montrer que les matrice A et B sont trigonalisables si et seulement si
l'endomorphisme Φ l'est.

Corrigé : L'application Φ est linéaire par bilinéarité du produit matriciel et clairement à valeurs
dans E d'où

Φ ∈ L (E)

On pose ∀M ∈ E f(M) = AM et g(M) = MB

Pour les mêmes raisons qu'avec Φ, les applications f et g sont des endomorphismes de E. On
remarque

∀M ∈ E f ◦ g(M) = AMB = g ◦ f(M)

Par ailleurs, on observe que pour P ∈ K[X], on a

∀M ∈ E P(f)(M) = P(A)M et P(g)(M) = MP(B)

ce qui prouve que les polynômes annulateurs de A et de f coïncident et de même pour B et
g. Supposons les matrices A et B trigonalisables. Les polynômes caractéristiques χA et χB sont
scindés dans K[X], annulateurs respectivement de A et de B donc de f et de g ce qui prouve
que les endomorphismes f et g sont trigonalisables. Comme ils commutent, il existe une base de
trigonalisation simultanée ce qui prouve que l'endomorphisme Φ est trigonalisable. On considère
A et B comme matrices de Mn(C) et Φ comme endomorphisme de Mn(C). On a χB = χtB par
propriété du déterminant et par conséquent, on dispose de X et Y dans Mn,1(C) ∖ {0} telles
que AX = λX et B⊤Y = µY ou encore Y⊤B = µY⊤. Posant M = XY⊤ =

(
xiyj

)
1⩽i,j⩽n

non nulle

puisqu'il existe (i0, j0) ∈ [[ 1 ; n ]]2 tel que xi0 ̸= 0 et yj0 ̸= 0, on trouve

Φ(M) = AXY⊤ +XY⊤B = λXY⊤ +XµY⊤ = (λ+ µ)M

ce qui prouve Sp C(A) + Sp C(B) ⊂ Sp C(Φ)

Soit α ∈ C et M ∈ Mn(C)∖ {0} tels que Φ(M) = αM. On a

Φ(M) = αM ⇐⇒ AM = MC avec C = αIn − B

Supposons Sp C(A) ∩ Sp C(C) = ∅. Par récurrence, on montre AkM = MCk pour tout k entier
d'où P(A)M = MP(C) pour tout P ∈ K[X]. En particulier, il vient

MχA(C) = χA(A)M = 0

Notant χA =
∏

λ∈Sp (A)

(X− λ)mλ(A), on a

detχA(C) =
∏

λ∈Sp (A)

det(C− λIn)
mλ(A) =

∏
λ∈Sp (A)

((−1)nχC(λ))
mλ(A) ̸= 0

La matrice χA(C) étant inversible, il s'ensuit M = 0 ce qui est faux.
Ceci prouve l'existence d'une valeur propre commune λ ∈ C pour A et C. Ainsi, on dispose de
X ∈ Mn,1(C) non nulle telle que CX = λX, c'est-à-dire BX = (α− λ)X et par conséquent

α = λ︸︷︷︸
∈Sp C(A)

+ α− λ︸ ︷︷ ︸
∈Sp C(B)

Par double inclusion, on a donc établi
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Sp C(Φ) = Sp C(A) + Sp C(B)

Les matrices A et B sont trigonalisables dans Mn(C) et d'après le résultat démontré précédem-
ment, l'application Φ vu comme endomorphisme de Mn(C) est trigonalisable et avec la relation
sur les spectres, il vient

χΦ =
∏

1⩽i,j⩽n

(X− λi − µj)

avec λi, µj les valeurs propres de A et B répétées avec leurs multiplicités. On considère de
nouveau l'application Φ comme endomorphisme du K-ev E et on le suppose trigonalisable. Le
polynôme caractéristique χΦ est scindé dans K[X] ce qui prouve que λi + µj ∈ K pour tout
(i, j) ∈ [[ 1 ; n ]]2. En�n, comme on a Tr B ∈ K, il vient

∀i ∈ [[ 1 ; n ]] λi =
1

n

Ç
n∑

j=1

(λi + µj)− Tr B

å
∈ K

et de même pour les µj. Par conséquent, les polynômes χA =
n∏

i=1

(X − λi) et χB =
n∏

j=1

(X − µj)

sont scindés dans K[X] et il s'ensuit que les matrices A et B sont trigonalisables dans Mn(K).
On conclut

L'endomorphisme Φ est trigonalisable si et seulement si les matrices A et B le sont.

Remarques :(a) On a notamment prouvé le résultat auxiliaire suivant :

Sp C(Φ) = Sp C(A) + Sp C(B)

(b) Pour déduire de AM = MC avec M ∈ Mn(C) ∖ {0} que Sp C(A) ∩ Sp C(C) ̸= ∅, on peut
aussi procéder comme suit. On note r = rg M. On dispose de P et Q dans GLn(C) telles que
M = PJrQ d'où

A′Jr = JrC
′ avec A′ = P−1AP =

Å
A′

1 A′
2

A′
3 A′

4

ã
C′ = QCQ−1 =

Å
C′

1 C′
2

C′
3 C′

4

ã
Le calcul par blocs donne A′

1 = C′
1, A

′
3 = 0 et C′

2 = 0 d'où χA′
1
|χA′ , χC′

1
|χC′ avec χA′

1
= χC′

1
et

χA = χA′ , χC = χC′ par similitude. Ceci prouve que χA et χC ont un facteur commun de degré
r ⩾ 1 d'où le résultat.
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Exercice 5 (****)

Soit E un K-ev de dimension �nie égale à n entier non nul et u ∈ L (E). Pour x ∈ E, on pose

Ex = Vect
(
uk(x), k ∈ N

)
et Ix = {P ∈ K[X] | P(u)(x) = 0E}

L'endomorphisme u est dit cyclique s'il existe x ∈ E tel que Ex = E. On dé�nit le commutant

de u noté C (u) par

C (u) = {v ∈ L (E) | u ◦ v = v ◦ u}
1. Soit x ∈ E. Justi�er qu'il existe un polynôme unitaire πu,x ∈ K[X] tel que Ix = πu,xK[X]

et véri�ant πu,x|πu.

2. (a) On suppose πu = Pα avec P ∈ K[X] irréductible et α entier non nul. Établir qu'il
existe x ∈ E tel que πu,x = π.

(b) Généraliser le résultat précédent avec πu quelconque. On pourra considérer sa décom-
position en facteurs irréductibles dans K[X].

3. En déduire u cyclique ⇐⇒ πu = χu

4. On suppose u trigonalisable.

(a) Établir dimC (u) ⩾ n

(b) En déduire πu = χu ⇐⇒ K[u] = C (u)

Corrigé : 1. L'ensemble Ix est un idéal de K[X], non réduit à
{
0K[X]

}
car il contient πu. Ainsi

Il existe πu,x unitaire engendrant Ix et donc diviseur de πu.

2.(a) On a Pα−1(u) ̸= 0L (E). On dispose donc de x ∈ E tel que Pα−1(u)(x) ̸= 0E. Comme πu,x

divise πu = Pα avec P irréductible, alors on a πu,x = Ps avec s ⩽ α. Or, par choix de x, on a
Pα−1(u)(x) ̸= 0E d'où s ⩾ α et par conséquent

Il existe x ∈ E tel que πu,x = πu.

2.(b) On décompose πu =
r∏

i=1

Pαi
i avec r entier non nul, les Pi dans K[X] irréductibles unitaires

deux à deux distincts et les αi entiers non nuls. Les Pαi
i sont deux à deux premiers entre eux.

D'après le lemme des noyaux, il vient

E = Ker πu(u) =
r⊕

i=1

Ker Pαi
i (u)

On note ui ∈ L (Ei) l'induit par u sur Ei = Ker Pαi
i (u) stable par u pour i ∈ [[ 1 ; r ]]. On a

Pαi
i (ui) = 0L (Ei) pour tout i ∈ [[ 1 ; r ]] par construction. Comme l'endomorphisme u est caracté-

risé par ses restrictions et donc ses induits sur les Ei pour i ∈ [[ 1 ; r ]], s'il existe j ∈ [[ 1 ; r ]] tel
que P

αj−1
j (uj) = 0L (Ej), alors on aurait Pαj−1

j

∏
i∈[[ 1 ; r ]]∖{j}

Pαi
i annulateur de u ce qui contredirait

la minimalité de πu. On en déduit

∀i ∈ [[ 1 ; r ]] πui
= Pαi

i

Ainsi, d'après le résultat de la question précédente, on a

∀i ∈ [[ 1 ; r ]] ∃xi ∈ Ei | πui,xi
= πui

On pose x =
r∑

i=1

xi

9



On a πu,x(u)(x) =
r∑

i=1

πu,x(u)(xi) =
r∑

i=1

πu,x(ui)(xi)︸ ︷︷ ︸
∈Ei

= 0E

Par somme directe, il vient

∀i ∈ [[ 1 ; r ]] πu,x(ui)(xi) = 0Ei

d'où ∀i ∈ [[ 1 ; r ]] Pαi
i = πui,xi

|πu,x

Comme les Pαi
i sont deux à deux premiers entre eux, il s'ensuit que πu =

r∏
i=1

Pαi
i divise πu,x et

on sait que πu,x divise πu. Ainsi, les deux polynômes sont associés et unitaires et on conclut

Il existe x ∈ E tel que πu,x = πu.

3. Soit P ∈ K[X]. On dispose d'un unique couple (Q,R) ∈ K[X]2 avec degR < deg πu,x tel que
P = Qπu,x +R. Il vient

P(u)(x) = Q(u) ◦ πu,x(u)(x) + R(u)(x) = R(u)(x)

ce qui prouve que (uk(x))k∈[[ 0 ; deg πu,x−1 ]] est génératrice de Ex et libre car R(u)(x) = 0 avec
degR < deg πu,x(x) et R non nul contredit la minimalité de πu,x. Ainsi, on a

dimEx = deg πu,x

Si l'endomorphisme u est cyclique, on dispose de x ∈ E tel que Ex = E d'où

degχu = dimE = dimEx = deg πu,x

Ainsi, on a πu,x divise πu qui divise χu et ces polynômes sont unitaires et de même degré d'où
πu = χu. Réciproquement, si πu = χu, on dispose de x ∈ E tel que πu,x = π d'où

dimEx = deg πu,x = deg πu = degχu = dimE

On en déduit Ex = E. On a donc montré

u cyclique ⇐⇒ πu = χu

4.(a) Soit B une base de trigonalisation de u et T = matBu ∈ Tn(K) (espace des matrices
triangulaires supérieures). Notant

C (T) = {M ∈ Mn(K) | MT = TM}
on a clairement dimC (T) = dimC (f). Considérons la dimension de l'espace de solutions de
l'équation

MT− TM = 0 (S)

d'inconnue M ∈ Tn(K). Les termes diagonaux donnent les équations triviales

∀i ∈ [[ 1 ; n ]] mi,iti,i − ti,imi,i = 0

Par conséquent, le système (S) possède
n(n+ 1)

2
−n équations pour

n(n+ 1)

2
inconnues. Comme

le rang de (S) est majorée par le nombre d'équations, il s'ensuit

dimC (T) ∩ Tn(K) ⩾
n(n+ 1)

2
−
Å
n(n+ 1)

2
− n

ã
⩾ n

Ainsi dimC (u) = dimC (T) ⩾ dimC (T) ∩ Tn(K) ⩾ n

4.(b) Si πu = χu, comme on dispose de x ∈ E tel que E = Ex, on véri�e sans di�culté (exercice
classique) que K[u] = C (u). Supposons K[u] = C (u). On a

10



deg πu = dimK[u] ⩽ n ⩽ dimC (u)

Les inégalités sont donc des égalité et comme πu divise χu et que ceux-ci sont de même degré et
unitaires, ils sont égaux. On conclut

πu = χu ⇐⇒ K[u] = C (u)
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Exercice 6 (****)

Soit A ∈ Mn(C) et S (A) la classe de similitude de A, i.e.

S (A) = {M ∈ Mn(C) | M semblable à A}

1. Montrer que si A est inversible, alors S (A) ⊂ GLn(C).

2. Montrer A diagonalisable ⇐⇒ S (A) fermée

Corrigé : 1. Soit A ∈ GLn(C) et (Bn)n ∈ S (A)N avec Bn −−−→
n→∞

B. Le déterminant est continu

et invariant par similitude d'où

∀n ∈ N detA = detBn −−−→
n→∞

detB = detA =⇒ detB = detA ̸= 0

Ainsi S (A) ⊂ GLn(C)

2. Supposons A diagonalisable. Soit (Bn)n ∈ S (A)N avec Bn −−−→
n→∞

B. Comme Bn est semblable

à A pour tout n entier, on a πBn = πA et par suite

πBn(Bn) = 0 = πA(Bn) −−−→
n→∞

πA(B) = 0

Comme A est diagonalisable, πA scindé à racines simples et πA est annulateur de B, donc par
théorème, la matrice B est diagonalisable. Par continuité de M 7→ χM, on a χA = χBn −−−→

n→∞
χB = χA. Ainsi, les matrices A et B sont diagonalisables avec même polynômes caractéristiques
donc même valeurs propres et mêmes multiplicités pour les valeurs propres. Il s'ensuit que A et
B sont semblables à une même matrice diagonale et donc semblables entre elles. Ceci prouve que
B ∈ S (A). Réciproquement, supposons S (A) fermée. Soit u ∈ L (Cn) canoniquement associé à
A et soit B = (ε1, . . . , εn) une base de trigonalisation de u. On note Bk = (ε1, ε2/k, . . . , εn/k

n−1).
Ainsi

∀j ∈ [[ 1 ; n ]] u
( εj
kj−1

)
= λj

εj
kj−1

+
j−1∑
i=1

αi,j

kj−i︸︷︷︸
−−−−→
k→+∞

0

εi
ki−1

où les λj désignent les valeurs propres de u et les αi,j les coe�cients au dessus de la diagonale
dans matBu. On en déduit

Ak = matBk
u −−−−→

k→+∞
D = diag(λ1, . . . , λn)

La suite (Ak)k est à valeurs dans S (A) puisque les Ak et A sont matrices d'un même endomor-
phisme dans des bases distinctes et Ak −−−−→

k→+∞
D d'où D semblable à A par fermeture de S (A).

On conclut

A diagonalisable ⇐⇒ S (A) fermée
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Exercice 7 (***)

Soit E un K-evn. Déterminer la nature topologique de

Λ = {(x1, . . . , xn) ∈ En | (x1, . . . , xn) libre }

Corrigé : Soit (x(k))k = (x
(k)
1 , . . . , x

(k)
n )k ∈ (E ∖ Λ)N convergente de limite x ∈ E. Montrons

x ∈ E ∖ Λ ce qui prouvera la fermeture de E ∖ Λ et donc l'ouverture de Λ. Pour tout k entier,

il existe λ(k) = (λ
(k)
1 , . . . , λ

(k)
n ) ∈ Kn ∖ {0} tel que

n∑
i=1

λ
(k)
i x

(k)
i = 0. Pour tout k entier, on pose

α(k) =
λ(k)

∥λ(k)∥
. La suite (α(k))k est à valeurs dans S(0, 1) qui est un fermé borné de Rn donc un

compact de Rn. Par conséquent, il existe une extractrice φ telle que α(φ(k)) −−−→
n→∞

α ∈ S(0, 1).

On a
n∑

i=1

α
(k)
i x

(k)
i = 0 pour tout k entier et par combinaison linéaire de limites, il vient

n∑
i=1

α
(φ(k))
i x

(φ(k))
i −−−−→

k→+∞

n∑
i=1

αixi

d'où
n∑

i=1

αixi = 0 ce qui prouve x ∈ E∖ Λ d'où la fermeture de E∖ Λ et on conclut

L'ensemble Λ est un ouvert de En.

Variante : Soit (x1, . . . , xn) ∈ Λ. On pose

Φ : Kn → R, (α1, . . . , αn) 7→ ∥
n∑

i=1

αixi∥

et on note S =

ß
(α1, . . . , αn) ∈ Kn |

n∑
i=1

|αi| = 1

™
On a S compact de Kn (fermé borné en dimension �nie) et Φ ∈ C (Kn,R) (composée de la norme
avec une application linéaire en dimension �nie) admet donc un minimum sur S. Par liberté

de (x1, . . . , xn), il s'ensuit que Min
S

Φ > 0. Soit ε ∈
]
0 ; Min

S
Φ
[
et (y1, . . . , yn) ∈ En tel que

∥xi − yi∥ < ε pour tout i ∈ [[ 1 ; n ]]. Supposons qu'il existe β = (β1, . . . , βn) ∈ Kn ∖ {0Kn} tel

que
n∑

i=1

βiyi = 0E. Il vient

n∑
i=1

βiyi = 0E ⇐⇒
n∑

i=1

βixi =
n∑

i=1

βi (xi − yi)

Par inégalité triangulaire

∥
n∑

i=1

βixi∥ ⩽
n∑

i=1

|βi| ∥xi − yi∥ ⩽ ε
n∑

i=1

|βi|

Notant γi = βi/∥β∥1 pour tout i ∈ [[ 1 ; n ]], on obtient

Φ(γ1, . . . , γn) = ∥
n∑

i=1

γixi∥ ⩽ ε avec (γ1, . . . , γn) ∈ S

ce qui est absurde par choix de ε. Ainsi
n∑

i=1

βiyi = 0E =⇒ β1 = . . . = βn = 0

On retrouve le résultat attendu.
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Exercice 8 (****)

Soit f : R2 → R, continue surjective. Montrer que pour tout a réel, l'ensemble f−1 ({a}) n'est
pas compact.

Corrigé : Soit f : R2 → R, continue surjective. Soit a réel tel que f−1({a}) est compact. Alors,
il existe R ⩾ 0 tel que f−1({a}) ⊂ Bf (0,R). Pour la suite, on note

BR = Bf (0,R) et CR = R2 ∖ Bf (0,R)

On a CR connexe par arcs. Soit (u, v) ∈ C2
R. On confond R2 et C. On note

u = r1e
iθ1 v = r2e

iθ2

avec θ1, θ2 réels et r1, r2 dans ] R ; +∞ [. On pose

∀t ∈ [ 0 ; 1 ] φ(t) = r1−t
1 rt2e

i((1−t)θ1+tθ2)

L'application φ est continue avec φ(0) = u, φ(1) = v et

∀t ∈ ] 0 ; 1 [ |φ(t)| = r1−t
1 rt2 > R1−tRt = R

ce qui prouve que φ est à valeurs dans CR.

•
u

•v

R
x

y

φ(t)

Figure 1 � Chemin reliant u à v dans CR

L'image f(CR) est un connexe par arcs de R autrement dit un intervalle de R qui ne contient
pas a donc

φ(CR) ⊂ ] a ; +∞ [ ou φ(CR) ⊂ ] −∞ ; a [

En�n, on a f(BR) ⊂ [−b ; b ] avec b ⩾ 0 puisque f(BR) est un compact. Donc, avec f(R2) =
f(BR) ∪ f(CR), on trouve

f(R2) ⊂ [ min(a,−b) ; +∞ [ ou f(R2) ⊂ ] −∞ ; max(a, b) ]

Dans tous les cas, ceci contredit la surjectivité de f .

Variante : Par construction, on a a ∈ f(BR) et f(BR) est un compact. Soient c, d dans R∖f(BR)
avec c < a < d. Par surjectivité, il existe α, β dans R2 tels que f(α) = c et f(β) = d et par choix
de c et d, on a α et β dans CR. Comme CR est connexe par arcs, il existe φ ∈ C ([ 0 ; 1 ] ,CR)
telle que φ(0) = c et φ(1) = d. Puis, d'après le théorème des valeurs intermédiaires, on a

[ c ; d ] = [ f ◦ φ(0) ; f ◦ φ(1) ] ⊂ f ◦ φ([ 0 ; 1 ]) ⊂ f(CR)

Comme a ∈ [ c ; d ], et a /∈ f(CR), on a une contradiction.
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