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Exercice 1 (****)

Soit E euclidien. On n'utilisera pas le théorème spectral au cours de ce problème. Un endomor-
phisme u ∈ L (E) est dit normal si u et u∗ commutent.

1. Soit u ∈ L (E) normal et F un sev de E stable par u. Montrer que F est stable par u∗,
F⊥ stable par u et u∗ et que uF est normal.

2. On suppose que dimE = 2. Soit u ∈ L (E) normal sans valeur propre réelle. Dans B base
orthonormée de E, montrer que

matBu =

Å
a −b
b a

ã
avec (a, b) ∈ R× R∗

3. Plus généralement, montrer que pour u ∈ L (E) normal, il existe une base orthonormée
B de E telle que la matrice matBu est diagonale par blocs avec des blocs diagonaux du
type

(λ) avec λ ∈ R,
Å
ai −bi
bi ai

ã
avec (ai, bi) ∈ R× R∗

Corrigé : 1. Dans une base orthonormée B adaptée à la décomposition E = F
⊥
⊕F⊥, on a

M = matBu =

Å
A B
0 C

ã
et matBu

∗ =

Å
A⊤ 0
B⊤ C⊤

ã
L'écriture matricielle de u∗ montrer que F⊥ est stable par u∗. Puis, comme u est un endomor-
phisme normal, on a

M⊤M = MM⊤ =⇒ AA⊤ + BB⊤ = A⊤A

Passant à la trace, en utilisant la propriété fondamentale de la trace, il vient

∥A∥2 + Tr (B⊤B) = ∥A∥2 =⇒ Tr (B⊤B) = 0 =⇒ B = 0

En e�et, la quantité Tr (B⊤B) est une somme de carrés de réels (que B soit une matrice carrée
ou pas). Ceci prouve que F⊥ est stable par u et F stable par u∗. En�n, dans le calcul par bloc
précédent, on a AA⊤ = A⊤A et on conclut

On a F stable par u∗, F⊥ stable par u et u∗ et uF est normal.

2. Soit B base orthonormée de E. On a M = matBu =

Å
a c
b d

ã
. Il vient

MM⊤ = M⊤M ⇐⇒


a2 + c2 = a2 + b2

ab+ cd = ac+ bd

b2 + d2 = c2 + d2
⇐⇒ b = c ou

®
c = −b
b(a− d) = 0

Si b = c, on a χM = X2 − (a + d)X + ad− b2 de discriminant ∆ = (a− d)2 + 4b2 qui admet un
racine réelle, ce qui est exclu. Ainsi, on a c = −b. Si b = 0, la matrice serait diagonale ce qui est
exclu d'où b ̸= 0 et a = d. On conclut
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Dans B base orthonormée de E, on a matBu =

Å
a −b
b a

ã
avec (a, b) ∈ R× R∗

3. On procède par récurrence sur n = dimE. Si n = 1, le résultat est immédiat. On suppose le
résultat vrai jusqu'au rang n− 1 ⩾ 1.

• Si u admet une valeur propre réelle λ, on a Eλ stable par u d'où E⊥
λ stable par u et uE⊥

λ

normal. Par hypothèse de récurrence, comme dimE⊥
λ < n, il existe une base orthonormée de E⊥

λ

qui donne la forme souhaitée pour la matrice de uE⊥
λ
dans cette base et on la concatène avec une

base orthonormée de Eλ.

• Si u n'admet pas de valeur propre réelle, le polynôme caractéristique se décompose en produit
de facteurs irréductibles de R[X] de degré 2. Il existe donc un facteur P de cette décomposition
tel que P(u) /∈ GL(E), sinon on aurait χu(u) ∈ GL(E) alors que χu(u) = 0. Ainsi, il existe
x ∈ E ∖ {0E} et a, b réels tels que (u2 + au + b id )(x) = 0 ⇐⇒ u2(x) = −bx − au(x). Par
conséquent, l'espace F = Vect (x, u(x)) est stable par u. C'est un plan vectoriel car sinon, on
aurait (x, u(x)) liée d'où u(x) = λx avec λ un réel ce qui est exclu. On a uF qui est normal et
d'après le résultat de la question précédente, dans une base orthonormée de F, la matrice de uF

est de la forme

Å
a −b
b a

ã
avec (a, b) ∈ R× R∗. Puis, comme F⊥ est stable par u et uF⊥ normal,

on applique l'hypothèse de récurrence à uF⊥ et on concatène les bases obtenues.

On a donc établi

Pour u ∈ L (E) normal, il existe une base orthonormée B de E telle que
la matrice matBu est diagonale par blocs avec des blocs diagonaux du type

(λ) avec λ ∈ R,
Å
ai −bi
bi ai

ã
avec (ai, bi) ∈ R× R∗

Commentaire : Si u est auto-adjoint, il est un cas particulier d'endomorphisme normal. Il
existe donc une base orthonormée dans laquelle la matrice est de la forme souhaitée. Comme u
est auto-adjoint, cette matrice est aussi symétrique ce qui interdit la présence de blocs 2× 2 et
on en déduit le théorème spectral classique.

Si u est une isométrie, alors son adjoint est son inverse et c'est encore un cas particulier d'en-
domorphisme normal. Il existe donc une base orthonormée dans laquelle la matrice A est de la
forme souhaitée. L'égalité A⊤A = In garantit que les termes diagonaux sont +− 1 et que les blocs
2× 2 véri�ent a2i + b2i = 1 et sont donc des blocs de rotation.

Si u est antisymétrique, i.e. véri�e ⟨u(x), y⟩ = −⟨x, u(y)⟩ pour (x, y) ∈ E2, c'est encore un
cas particulier d'endomorphisme normal. Il existe donc une base orthonormée dans laquelle
la matrice A est de la forme souhaitée. Comme u est antisymétrique, cette matrice est aussi
antisymétrique et on en déduit que ai = 0 dans les blocs 2× 2.

2



Exercice 2 (****)

Soit M = (mi,j) ∈ Sn(R) avec n entier non nul.

1. Montrer M ∈ S ++
n (R) ⇐⇒ ∀k ∈ [[ 1 ; n ]] det

(
mi,j

)
(i,j)∈[[ 1 ; k ]]2

> 0

2. Application : Montrer que
(
t|i−j|)

1⩽i,j⩽n
∈ S ++

n (R) avec t ∈ ]−1 ; 1 [ puis montrerÅ
1

1 + |i− j|

ã
1⩽i,j⩽n

∈ S ++
n (R).

Corrigé : 1. Soit M ∈ Sn(R). D'après le théorème spectral, il existe P ∈ On(R) et D =
diag(λ1, . . . , λn) ∈Mn(R) telles queM = PDP⊤. SupposonsM ∈ S ++

n (R) et X ∈Mn,1(R)∖{0}.
Ainsi, les valeurs propres propres λi sont strictement positives. Posant Y = P⊤X, il vient

X⊤MX = X⊤PDP⊤X = Y⊤DY =
n∑

i=1

λiy
2
i

Comme P⊤ inversible, on a Y ̸= 0 pour X ̸= 0 et par suite X⊤MX > 0. Réciproquement, Soit
X ∈Mn,1(R)∖ {0} et λ réel tels que MX = λX. On a

X⊤MX = ⟨X,MX⟩ = λ∥X∥2 > 0 =⇒ λ > 0

Ainsi M ∈ S ++
n (R) ⇐⇒ ∀X ∈Mn,1(R)∖ {0} X⊤MX > 0

2. Soit k ∈ [[ 1 ; n ]]. On note Mk =
(
mi,j

)
(i,j)∈[[ 1 ; k ]]2

. On suppose M ∈ S ++
n (R). Pour X⊤ =(

x1 . . . xk 0 . . . 0
)
̸= 0, on trouve X⊤MX = Xk

⊤MkXk > 0 avec Xk =
(
x1 . . . xk

)
.

D'après l'équivalence précédente, on en déduit Mk ∈ S ++
k (R) et Mk est donc semblable à

une matrice diagonale dont les termes diagonaux sont strictement positifs d'où detMk > 0.
Réciproquement, on procède par récurrence sur n. Le cas n = 1 est immédiat. Soit M ∈ Sn+1(R)
véri�ant la condition des mineurs principaux (déterminants extraits) strictement positifs. On a
Mn ∈ S ++

n (R) d'après l'hypothèse de récurrence. Ainsi, avec le théorème spectral, il existe
P ∈ On(R) tel que P⊤MnP = diag(λ1, . . . , λn) avec les λi > 0. On pose Q = diag(P, 1). On
véri�e sans di�culté que Q est une matrice orthogonale. Avec un produit par bloc, on en déduit
qu'il existe a1, . . . , an+1 réels tels que

Q⊤MQ =



λ1 0 . . . 0 a1

0
. . .

. . .
...

...
...

. . .
. . . 0

...

0 . . . 0 λn

...
a1 . . . . . . . . . an+1


Par ailleurs, on a detM = det(Q⊤MQ) > 0 et avec l'opération Ln+1 ← Ln+1−

n∑
i=1

ai
λi

Li, on trouve

det(Q⊤MQ) = λ1 . . . λn

Å
an+1 −

n∑
i=1

a2i
λi

ã
> 0 =⇒ an+1 −

n∑
i=1

a2i
λi

> 0

En�n, posant Y = QX avec X ∈Mn+1,1(R), on obtient

X⊤MX = Y⊤Q⊤MQY =
n∑

i=1

λiy
2
i + an+1y

2
n+1 + 2

n∑
i=1

aiyiyn+1

=
n∑

i=1

λi

Å
yi +

ai
λi

yn+1

ã2
+

Å
an+1 −

n∑
i=1

a2i
λi

ã
y2n+1
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et comme Y = 0 si et seulement si X = 0 puisque Q est inversible, on en déduit X⊤MX > 0 pour
X ̸= 0 ce qui clôt la récurrence. On conclut

M ∈ S ++
n (R) ⇐⇒ ∀k ∈ [[ 1 ; n ]] det

(
mi,j

)
(i,j)∈[[ 1 ; k ]]2

> 0

Remarque : Il s'agit du critère de Sylvester sur les mineurs principaux.

Variante : On peut chercher une colonne C telle que DC + A = 0 avec D = diag(λ1, . . . , λn)

et A⊤ =
(
a1 . . . an

)
. On pose ensuite R =

Å
In C
0 1

ã
puis on considère la matrice diagonale

M′ = (QR)⊤MQR et on véri�e que la matrice M est symétrique dé�nie positive si et seulement
la matrice M′ l'est. On conclut sans di�culté avec det(M′).

3. Soit t ∈ ]−1 ; 1 [. Notant Mk(t) =
(
t|i−j|)

1⩽i,j⩽k
, avec la séquence d'opérations Li ← Li− tLi−1,

on obtient

∀k ∈ [[ 1 ; n ]] detMk(t) = (1− t2)k−1 > 0

D'après le critère de Sylvester, on en déduit

∀t ∈ ]−1 ; 1 [ Mn(t) =
(
t|i−j|)

1⩽i,j⩽n
∈ S ++

n (R)

Soit X ∈ Mn,1(R) ∖ {0}. On a X⊤Mn(t)X > 0 pour tout t ∈ [ 0 ; 1 [ et par continuité de
t 7→ X⊤Mn(t)X, il vient par séparation de l'intégrale∫ 1

0

X⊤Mn(t)X dt > 0

Par linéarité de l'intégrale, on en déduit

X⊤
∫ 1

0

Mn(t) dtX > 0

et ∀(i, j) ∈ [[ 1 ; n ]]2
∫ 1

0

t|i−j| dt =
1

1 + |i− j|

On conclut

Å
1

1 + |i− j|

ã
1⩽i,j⩽n

∈ S ++
n (R)
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Exercice 3 (***)

Soit E = C 0([ 0 ; 1 ] ,R), C > 0 et F un sev de E tel que

∀f ∈ F ∥f∥∞ ⩽ C∥f∥2
1. Montrer que F ̸= E.

2. Montrer que F est de dimension �nie inférieure ou égale à C2.

Corrigé : 1. Considérant la suite de fonctions (fn)n à valeurs dans E dé�nie par fn : t 7→ tn

pour n entier, on trouve

∥fn∥∞ = 1 et ∥fn∥2 =
 ∫ 1

0

t2n dt =
1√

2n+ 1

L'inégalité 1 ⩽
C√

2n+ 1
ne peut avoir lieu pour tout n entier. On en déduit

E ̸= F

2. On munit F du produit scalaire (f, g) 7→
∫ 1

0

f(t)g(t) dt et on choisit (f1, . . . , fp) une famille

orthornomée de F. Pour (λ1, . . . , λp) ∈ Rp, on a

∀x ∈ [ 0 ; 1 ]

Å
p∑

i=1

λifi(x)

ã2
⩽ C2

p∑
i=1

λ2
i

En particulier, pour x ∈ [ 0 ; 1 ], en choisissant λi = fi(x) pour tout i ∈ [[ 1 ; n ]], on aÅ
n∑

i=1

fi(x)
2

ã2
⩽ C2

Å
p∑

i=1

fi(x)
2

ã
d'où

p∑
i=1

fi(x)
2 ⩽ C2

On intègre sur [ 0 ; 1 ] et il vient
p∑

i=1

∥fi∥2 = p ⩽ C2

Le sev F est nécessairement de dimension �nie sans quoi on pourrait construire une famille
orthonormée de F de cardinal p > C2 ce qui est exclu. On conclut

Le sev F est de dimension �nie inférieure ou égale à C2.
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Exercice 4 (****)

Soit E = C 0([ 0 ; 1 ] ,R) muni du produit scalaire

∀(f, g) ∈ E2 ⟨f, g⟩ =
∫ 1

0

f(t)g(t) dt

On pose H =

®
f ∈ E |

∫ 1
2

0

f(t) dt = 0

´
. Déterminer H⊥.

Corrigé : Soit u ∈ H⊥. Pour ε > 0, on dé�nit uε ∈ E par uε(t) = 0 pour t ∈
ï
0 ;

1

2

ò
, uε(t) = u(t)

pour t ∈
ï
1

2
+ ε ; 1

ò
et uε a�ne sur

ï
1

2
;
1

2
+ ε

ò
. On a uε ∈ H et

0 = ⟨u, uε⟩ ⩽
∫ 1

2
+ε

1
2

u(t)uε(t) dt+

∫ 1

1
2
+ε

u(t)2 dt

On a

∣∣∣∣∣
∫ 1

2
+ε

1
2

u(t)uε(t) dt

∣∣∣∣∣ ⩽
∫ 1

2
+ε

1
2

∥u∥∞
∣∣∣∣uÅ12 + ε

ã∣∣∣∣ dt ⩽ ε∥u∥2∞

La fonction x 7→
∫ 1

x

u(t)2 dt est continue sur [ 0 ; 1 ] d'après le théorème fondamental d'analyse

et on trouve

0 = ⟨u, uε⟩ =
∫ 1

1
2

u(t)2 dt+ o(1)

Faisant tendre ε→ 0, il vient

∫ 1

1
2

u(t)2 dt = 0

Par séparation, l'intégrande étant continu positif sur

ï
1

2
; 1

ò
, il vient u(t) = 0 pour t ∈

ï
1

2
; 1

ò
.

Puis, on observe que u− 2

∫ 1
2

0

u(t) dt ∈ H d'oùÆ
u, u− 2

∫ 1
2

0

u(t) dt

∏
= 0

ce qui équivaut à

Ç∫ 1
2

0

u(t)

å2

=
1

2

∫ 1
2

0

u(t)2 dt

C'est un cas d'égalité dans l'inégalité de Cauchy-Schwarz sur l'espace C 0([ 0 ; 1/2 ] ,R) muni du

produit scalaire induit par celui sur E. Ceci prouve que la fonction u est constante sur

ï
0 ;

1

2

ò
et par continuité en

1

2
, on en déduit la nullité de u. Ainsi

H⊥ = {0E}
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Exercice 5 (***)

Soit M ∈ Sn(R). On note S la sphère unité de Mn,1(R) qu'on munit du produit scalaire cano-
nique. Soit F un sev non trivial de Mn,1(R). On pose

RM(F) = Max
X∈F∩S

X⊤MX

1. Montrer que RM(F) est bien dé�ni.

2. On considère (v1, . . . , vn) une base orthonormée de Mn,1(R) de vecteurs propres res-
pectivement associés aux valeurs propres λ1(M) ⩽ . . . ⩽ λn(M)). Soit d ∈ [[ 1 ; n ]]. Si
F = Vect (v1, . . . , vd), montrer

RM(F) = λd(M)

3. On considère à présent F un sev de Mn,1(R) de dimension d entier etG = Vect (vd, . . . , vn).
Montrer que F ∩G ∩ S ̸= ∅. En déduire

RM(F) ⩾ λd(M)

4. Soient A, B symétriques réelles. On note C = A+ B.

(a) On considère F et G deux sev de Mn,1(R) d'intersection non triviale. Montrer

RC(F ∩G) ⩽ RA(F) + RB(G)

(b) Soient k, ℓ, m entiers non nuls tels que ℓ+m = k + n. Montrer

λk(C) ⩽ λℓ(A) + λm(B)

(c) Soient k, ℓ, m entiers non nuls tels que ℓ+m = k + 1. Montrer

λk(C) ⩾ λℓ(A) + λm(B)

5. Montrer que l'application N qui à M ∈ Sn(R) associe Max
X∈S
∥MX∥ est une norme sur

Sn(R).
6. Exprimer N(M) en fonction des λk(M).

7. Soit k ∈ [[ 1 ; n ]]. Montrer que l'application Sn(R)→ R,M 7→ λk(M) est lipschitzienne.

Corrigé : 1. L'application X 7→ X⊤MX =
∑

1⩽i,j⩽n

mi,jxixj est polynomiale donc continue sur

F ∩ S fermé borné de l'espace de dimension �nie Mn,1(R). Il s'agit donc d'un compact et par
conséquent

La quantité RM(F) est bien dé�nie.

2. Soit X ∈ F ∩ S. On note X =
d∑

i=1

xivi avec
d∑

i=1

x2
i = 1. On a

X⊤MX = ⟨X,MX⟩ =
Æ

d∑
i=1

xivi,
d∑

j=1

λj(M)xjvj

∏
=

d∑
i=1

λix
2
i ⩽ λd(M)

et pour X = vd, on a bien X ∈ F ∩ S avec X⊤MX = λd(M). On conclut

RM(F) = λd(M)

3. Supposons F ∩G = {0}. D'après la formule de Grassmann, on aurait alors

dim(F + G) = dimF + dimG− dim(F ∩G) = d+ n− d+ 1 = n+ 1
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ce qui est absurde. On en déduit que F ∩ G est un sev non trivial et s'il contient un vecteur X
non nul, alors il contient X/∥X∥ par stabilité par combinaison linéaire. Ainsi

F ∩G ∩ S ̸= ∅

Soit X ∈ F ∩G ∩ S. On note X =
n∑

i=d

xivi avec
n∑

i=d

x2
i = 1. On a

X⊤MX = ⟨X,MX⟩ =
n∑

i=d

λi(M)x2
i ⩾ λd(M) et Max

X∈F∩S
X⊤MX ⩾ Max

X∈F∩G∩S
X⊤MX

Ainsi RM(F) ⩾ λd(M)

4.(a) Soit X ∈ F ∩G ∩ S. En particulier, on a X ∈ F ∩ S et X ∈ G ∩ S puis

X⊤CX = X⊤AX+X⊤BX ⩽ RA(F) + RB(G)

Passant à la borne supérieure, on obtient

RC(F ∩G) ⩽ RA(F) + RB(G)

4.(b) Soit (u1, . . . , un) une base orthonormée de vecteurs propres de A associés aux valeurs
propres ordonnées et de même pour (v1, . . . , vn) avec B. On pose

F = Vect (u1, . . . , uℓ) et G = Vect (v1, . . . , vm)

D'après le résultat de la question 3, on a

RA(F) = λℓ(A) et RB(G) = λm(B)

Si dimF∩G = 0, alors dim(F+G) = dimF+dimG = n+k > n ce qui est absurde. Par ailleurs,
on a

d = dimF ∩G = dimF + dimG− dim(F + G) ⩾ ℓ+m− n ⩾ k

D'après le résultat de la question 5, il vient

RC(F ∩G) ⩾ λd(C) et λd(C) ⩾ λk(C)

Ainsi λk(C) ⩽ λℓ(A) + λm(B)

4.(c) Pour M ∈ Sn(R), on observe

∀i ∈ [[ 1 ; n ]] λi(−M) = −λn+1−i(M)

On a n + 1 − ℓ + n + 1 −m = n + (n + 1 − k) puis, avec le résultat de la question précédente
appliquée à −A, −B et −C, il vient

λn+1−k(−C) ⩽ λn+1−ℓ(−A) + λn+1−m(−B)
Avec la remarque préliminaire, on conclut

λℓ(A) + λm(B) ⩽ λk(C)

5. Soit (A,B) ∈ Sn(R)2. On a

∀X ∈ S ∥(A + B)X∥ ⩽ ∥AX∥+ ∥BX∥ ⩽ N(A) + N(B)

Passant à la borne supérieure en X ∈ S, on en déduit que N satisfait l'inégalité triangulaire.
Supposons N(M) = 0 pour M ∈ Sn(R). Pour X ∈Mn,1(R) avec X ̸= 0, notant U = X/∥X∥, on
a U ∈ S puis

0 ⩽
∥MX∥
∥X∥

= ∥MU∥ ⩽ N(M) = 0
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d'où MX = 0 et par suite M = 0. En�n, pour (λ,M) ∈ R×Sn(R), on a pour X ∈ S

∥λMX∥ = |λ| ∥MX∥ ⩽ |λ|N(M)

puis N(λM) ⩽ |λ|N(M)

et pour λ ̸= 0, on a

N(M) = N

Å
1

λ
λM

ã
⩽

1

|λ|
N(λM)

On conclut L'application N est une norme sur Sn(R).

6. Soit M ∈ Sn(R). Avec les notations dé�nies précédemment, pour X =
n∑

i=1

xivi avec
n∑

i=1

x2
i = 1,

on a

∥MX∥2 = ∥
n∑

i=1

λi(M)xivi∥2 =
n∑

i=1

λ2
ix

2
i ⩽
Å

Max
i∈[[ 1 ;n ]]

|λi(M)|
ã2

Sans di�culté, on constate que

Max
i∈[[ 1 ;n ]]

|λi(M)| = Max (|λ1(M)| , |λn(M)|)

En choisissant le vecteur X vecteur propre associé à la valeur propre dont la valeur absolue réalise
le maximum, on constate que l'inégalité précédente peut être une égalité et on conclut

N(M) = Max (|λ1(M)| , |λn(M)|)

7. Soit (A,B) ∈ Sn(R)2 et k ∈ [[ 1 ; n ]]. Avec le résultat de la question 4.(c), on obtient

λk(A)− λk(B) = λk(A) + λn+1−k(−B) ⩽ λn(A− B) ⩽ N(A− B)

et l'autre inégalité suit par symétrie des rôles. On conclut

Pour k ∈ [[ 1 ; n ]], l'application Sn(R)→ R,M 7→ λk(M) est 1-lipschitzienne.
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Exercice 6 (***)

Soit E euclidien de dimension n entier non nul et u1, . . ., up des endomorphismes auto-adjoints
de E véri�ant

p∑
i=1

rg ui = n et ∀x ∈ E
p∑

i=1

⟨ui(x), x⟩ = ∥x∥2

Montrer que E =
⊥⊕

i∈[[ 1 ; p ]]
Im ui et que les ui sont des projecteurs orthogonaux.

Corrigé : On a
p∑

i=1

ui ∈ S (E). Supposons qu'il existe λ ∈ Sp

Å
p∑

i=1

ui

ã
avec λ ̸= 1. Pour x vecteur

propre associé, on aurait ≠
p∑

i=1

ui(x), x

∑
= λ∥x∥2 ̸= ∥x∥2

ce qui contredit l'hypothèse. Par conséquent, l'endomorphisme auto-adjoint
p∑

i=1

ui admet 1 pour

unique valeur propre et comme il est diagonalisable, il s'ensuit
p∑

i=1

ui = id . On remarque l'égalité

E = Im
p∑

i=1

ui ⊂
p∑

i=1

Im ui ⊂ E

et on en déduit dim
p∑

i=1

Im ui = n =
p∑

i=1

dim Im ui

d'où E =
⊕

i∈[[ 1 ; p ]]
Im ui

Puis ∀(x, k) ∈ E× [[ 1 ; p ]] uk(x) =
p∑

i=1

ui ◦ uk(x)

et par unicité de la décomposition, il s'ensuit pour k ∈ [[ 1 ; p ]] que uk = u2
k d'où uk projecteur

et endomorphisme auto-adjoint donc projecteur orthogonal. Il résulte également de l'unicité que
pour (i, k) ∈ [[ 1 ; p ]]2 avec i ̸= k, on a ui ◦ uk = 0 d'où Im uk ⊂ Ker ui = (Im ui)

⊥ ce qui prouve
l'orthogonalité des Im uk. On conclut

E =
⊥⊕

i∈[[ 1 ; p ]]
Im ui et les ui sont des projecteurs orthogonaux.

Remarque : Il s'agit du théorème de Fischer-Cochran.
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