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Exercice 1 (****)

Soit E euclidien. On n’utilisera pas le théoréme spectral au cours de ce probléme. Un endomor-
phisme u € Z(E) est dit normal si u et u* commutent.

1. Soit u € Z(E) normal et F un sev de E stable par u. Montrer que F est stable par u*,
FL stable par u et u* et que up est normal.

2. On suppose que dim E = 2. Soit u € Z(E) normal sans valeur propre réelle. Dans % base
orthonormée de E, montrer que

matzu = <Z _ab) avec (a,b) € R x R*

3. Plus généralement, montrer que pour u € Z(E) normal, il existe une base orthonormée
A de E telle que la matrice mat»u est diagonale par blocs avec des blocs diagonaux du

type

a; —bz

— ) avec (a;,0;) e RxR

(A) avec X eR, <

i
Corrigé : 1. Dans une base orthonormée % adaptée a la décomposition E = FGFL, on a

M = mat _<A B) ‘ t*—<AT 0)
= matzu = 0lC € matzu = BT CT

[’écriture matricielle de v* montrer que F est stable par u*. Puis, comme u est un endomor-
phisme normal, on a

M'™M=MM" = AAT+BBT=ATA
Passant a la trace, en utilisant la propriété fondamentale de la trace, il vient
A2+ Tr(B'B)=||[A? = Tr(B'B)=0 = B=0

En effet, la quantité Tr (B'B) est une somme de carrés de réels (que B soit une matrice carrée
ou pas). Ceci prouve que F est stable par u et F stable par u*. Enfin, dans le calcul par bloc
précédent, on a AAT = ATA et on conclut

On a F stable par u*, F* stable par u et u* et up est normal.

2. Soit A base orthonormée de E. On a M = matgzu = ( ) 11 vient

a c

b d
JENNE B S

MM" =M™ <= {ab+cd=ac+bd <= b=c ou {
b+ d* =+ d?

c=—b
bla—d) =0

Sib=c,onaxy=X>—(a+d)X+ad— b de discriminant A = (a — d)? + 4b* qui admet un
racine réelle, ce qui est exclu. Ainsi, on a ¢ = —b. Si b = 0, la matrice serait diagonale ce qui est
exclu d’ott b # 0 et a = d. On conclut



a

b .
b a) avec (a,b) e R xR

Dans % base orthonormée de E, on a matyu = <

3. On procéde par récurrence sur n = dimE. Si n = 1, le résultat est immédiat. On suppose le
résultat vrai jusqu’au rang n — 1 > 1.

e Si u admet une valeur propre réelle A, on a E, stable par u d’oit Ey stable par u et Up L

normal. Par hypothése de récurrence, comme dim Ey < n, il existe une base orthonormée de Ey
qui donne la forme souhaitée pour la matrice de Up L dans cette base et on la concaténe avec une
base orthonormée de E,.

e Si u n’admet pas de valeur propre réelle, le polyndéme caractéristique se décompose en produit
de facteurs irréductibles de R[X] de degré 2. Il existe donc un facteur P de cette décomposition
tel que P(u) ¢ GL(E), sinon on aurait x,(u) € GL(E) alors que x,(u) = 0. Ainsi, il existe
z € E N {0g} et a,b réels tels que (u* + au + bid)(z) = 0 <= u?*(z) = —bx — au(z). Par
conséquent, 'espace F' = Vect (z,u(z)) est stable par u. C’est un plan vectoriel car sinon, on
aurait (z,u(z)) liée d’ott u(z) = Az avec A un réel ce qui est exclu. On a up qui est normal et
d’aprés le résultat de la question précédente, dans une base orthonormeée de F, la matrice de up

est de la forme <Z

on applique 'hypothése de récurrence & up1 et on concaténe les bases obtenues.

b '
u > avec (a,b) € R x R*. Puis, comme F1 est stable par u et up. normal,

On a donc établi

Pour u € Z(E) normal, il existe une base orthonormée # de E telle que
la matrice matgu est diagonale par blocs avec des blocs diagonaux du type

(A) avec X €R, (Z’ _abz) avec  (a;, b;) € R x R*

Commentaire : Si u est auto-adjoint, il est un cas particulier d’endomorphisme normal. Il
existe donc une base orthonormée dans laquelle la matrice est de la forme souhaitée. Comme u
est auto-adjoint, cette matrice est aussi symétrique ce qui interdit la présence de blocs 2 x 2 et
on en déduit le théoréme spectral classique.

Si u est une isométrie, alors son adjoint est son inverse et ¢’est encore un cas particulier d’en-
domorphisme normal. Il existe donc une base orthonormée dans laquelle la matrice A est de la
forme souhaitée. L’égalité ATA = I,, garantit que les termes diagonaux sont 1 et que les blocs
2 x 2 vérifient a? + b7 = 1 et sont donc des blocs de rotation.

Si u est antisymétrique, i.e. vérifie (u(x),y) = — (z,u(y)) pour (z,y) € E?, c¢est encore un
cas particulier d’endomorphisme normal. Il existe donc une base orthonormée dans laquelle
la matrice A est de la forme souhaitée. Comme u est antisymétrique, cette matrice est aussi
antisymétrique et on en déduit que a; = 0 dans les blocs 2 x 2.



Exercice 2 (***%¥)

Soit M = (m; ;) € #,(R) avec n entier non nul.

1. Montrer M € ./ (R) <= Vke[1;n] det (mivj)(ij)e[[l-kp >0

2. Application : Montrer que (t|i7j|)1<ij<n € I (R) avec t € |—1;1] puis montrer

1
(1) eorm
L+ i —j 1<i,j<n

Corrigé : 1. Soit M € .7,(R). D’aprés le théoréme spectral, il existe P € O,(R) et D =
diag(A1, ..., \n) € A, (R) telles que M = PDP . Supposons M € .71 (R) et X € 4, 1(R)~{0}.
Ainsi, les valeurs propres propres \; sont strictement positives. Posant Y = P "X, il vient
XTMX =X"PDPTX = Y'DY = Y \iy?
i=1
Comme PT inversible, on a Y # 0 pour X # 0 et par suite X' MX > 0. Réciproquement, Soit
X € M1 (R) N {0} et A réel tels que MX = AX. On a

XTMX = (X, MX) = AIX[2>0 = A>0

Ainsi M e ZHH(R) < VX € M, (R)~ {0} XTMX >0

2. Soit k € [1;n]. On note My, = (mi7j>(ij)e[[1~k]]2' On suppose M € ., (R). Pour X' =

(71 ... @ 0 ... 0) # 0, on trouve X 'MX = X;,'M;X), > 0 avec X = (21 ... ).
D’aprés I'équivalence précédente, on en déduit My € . F(R) et My, est donc semblable a
une matrice diagonale dont les termes diagonaux sont strictement positifs d’oit det M > 0.
Réciproquement, on procéde par récurrence sur n. Le cas n = 1 est immédiat. Soit M € .7, 1(R)
vérifiant la condition des mineurs principaux (déterminants extraits) strictement positifs. On a
M, € Zt(R) d’aprés 'hypothése de récurrence. Ainsi, avec le théoréme spectral, il existe
P € O,(R) tel que P"M,P = diag(\1,...,\,) avec les \; > 0. On pose Q = diag(P,1). On
vérifie sans difficulté que Q est une matrice orthogonale. Avec un produit par bloc, on en déduit
qu’il existe ay, ..., a,y1 réels tels que

)\1 0 0 aq

0 ERSR PO
QMQ=1|: - -

0 0 A\

a ... ... ... Qpi1

Par ailleurs, on a det M = det(Q"MQ) > 0 et avec I'opération L, 1 + L1 — Z%Li, on trouve
=1 A
n Cl2 n G2
det(QTMQ) = A1 ... A\ (an+1 — Z)\ ) >0 =  ap41— Z/\— >0
=1 =1
Enfin, posant Y = QX avec X € ,.11(R), on obtient

XTMX =Y"Q™™MQY = Y Ny2 + ans1¥2,1 + 2> ailiYni1
=1 i=1

n 2 n 2
a; i
= ;)\z‘ (yi + yyn+1> (an+1 - Z)\—> yn+1



et comme Y = 0 si et seulement si X = 0 puisque Q est inversible, on en déduit X" MX > 0 pour
X # 0 ce qui clot la récurrence. On conclut

Me S (R) <= Vke[l;n] det (mm‘)(ij)eﬂl.kp >0

Remarque : 1l s’agit du critere de Sylvester sur les mineurs principaux.

Variante : On peut chercher une colonne C telle que DC + A = 0 avec D = diag(Ay,...,\,)
L,
01
M = (QR)TMQR et on vérifie que la matrice M est symétrique définie positive si et seulement
la matrice M’ l’est. On conclut sans difficulté avec det(M').

et AT = (a1 an). On pose ensuite R = < ) puis on considére la matrice diagonale

3. Soit t € ] —1;1[. Notant My(t) = (¢l=)
on obtient

L<i <k AVEC la séquence d’opérations L; < L; —tL;_1,

Vke[l;n] det My(t) = (1 —2)*1 >0
D’apreés le critére de Sylvester, on en déduit

Vie]-1;1[  Mu(t) = (¢1) _

n €7 T (R)

Soit X € #,1(R) ~ {0}. On a X"M,(t)X > 0 pour tout ¢ € [0;1[ et par continuité de
t — XM, (¢)X, il vient par séparation de l'intégrale

1
/ XM, ()X dt > 0

0

Par linéarité de I'intégrale, on en déduit

1
X' / M, (¢) dtX > 0
0

1
ey 1
et V(i,j) € [1;n]? / th=ldt = ———
0 L+ 1]i—j
1
On conclut (—) € S (R)
L+ ]i—jl 1<i,j<n




Exercice 3 (***)
Soit E =%°([0;1],R), C >0 et F un sev de E tel que
vieF |flle < Cllfl
1. Montrer que F # E.

2. Montrer que F est de dimension finie inférieure ou égale a C2.

Corrigé : 1. Considérant la suite de fonctions (f,,), a valeurs dans E définie par f, : t — "
pour n entier, on trouve

1
Van+1

ne peut avoir lieu pour tout n entier. On en déduit

1
2. On munit F du produit scalaire (f, g) — / f(t)g(t) dt et on choisit (f1,..., f,) une famille

1
Walle =1 et [lfulls = / 20 dt =
0

L’inégalité 1 <

C
vVon+1

0
orthornomée de F. Pour (A\y,...,\,) € R, on a

p 2 p
Ve e [0;1] <Z)\1fz($)> <C*YN
i=1 i=1

En particulier, pour x € [0;1], en choisissant \; = f;(z) pour tout ¢ € [1; n], on a

($0r) <o (S )

p
d’o > filx)? < C?
i=1
p
On integre sur [0;1] et il vient SIAI?=p < C?
i=1

Le sev F est nécessairement de dimension finie sans quoi on pourrait construire une famille
orthonormée de F de cardinal p > C? ce qui est exclu. On conclut

Le sev F est de dimension finie inférieure ou égale a C2.




Exercice 4 (***%¥)

Soit E = ¢°([0;1],R) muni du produit scalaire

Yo €E* (f.g) = / F(Hg(t) dt

On pose H = {f €k | /Qf(t) dt = O}. Déterminer H*.
0
1
Corrigé : Soit u € H*. Pour ¢ > 0, on définit u. € E par u.(t) = 0 pour t € {0 5 } , ue(t) = u(t)

1 11
pour t € [§+€;1:| et u. affine sur [§;§+8}.OnauE€Het

1

0= (u,u.) g/ﬁgu(t)us(t) dt+/ u(t)? dt

1 1
2 zte

3te 1
< / 11| 0o u<—+6>
L 2

1
La fonction x — / u(t)? dt est continue sur [0;1] d’aprés le théoréme fondamental d’analyse
x

On a dt < E||U||Zo

/jﬁu(t)ua(t) dt

et on trouve

0= (u,us) = [ w(t)? dt + o(1)

1
Faisant tendre ¢ — 0, il vient / u(t)*dt =0

2

1 1
Par séparation, l'intégrande étant continu positif sur [5 ; 1} , il vient u(t) = 0 pour t € [5 ; 1} .

N

Puis, on observe que u — 2/ u(t) dt € H d’on

0
%
<u,u—2/ u(t) dt> =0
0
3 SR
ce qui équivaut a (/ u(t)) = 5/ u(t)? dt
0 0

C’est un cas d’égalité dans I'inégalité de Cauchy-Schwarz sur Pespace €°([0;1/2],R) muni du

produit scalaire induit par celui sur E. Ceci prouve que la fonction u est constante sur | 0; 2

1
et par continuité en 2 on en déduit la nullité de u. Ainsi

H* = {Og}




Exercice 5 (***)

Soit M € .,(R). On note S la sphére unité de .4, 1(R) qu’on munit du produit scalaire cano-
nique. Soit F un sev non trivial de ., ;(R). On pose

RM(F) = }}\é[g%{s XTMX

1. Montrer que Ry (F) est bien défini.

2. On considére (vy,...,v,) une base orthonormée de ., (R) de vecteurs propres res-
pectivement associés aux valeurs propres A\ (M) < ... < A\,(M)). Soit d € [1;n]. Si
F = Vect (vy, ..., v4), montrer

Ru(F) = Aa(M)

3. On considére a présent F un sev de ., 1 (R) de dimension d entier et G = Vect (vg, . .., v,).
Montrer que FNG NS # @. En déduire

Ru(F) = Aa(M)
4. Soient A, B symétriques réelles. On note C = A + B.
(a) On considére F et G deux sev de ., 1(R) d’intersection non triviale. Montrer
Rc(FNG) <Ra(F) + Rs(G)
(b) Soient k, ¢, m entiers non nuls tels que £ +m = k + n. Montrer
Ar(C) < Ae(A) + Am(B)
(c) Soient k, ¢, m entiers non nuls tels que £ +m = k + 1. Montrer
A(C) = M(A) + N0 (B)
5. Montrer que l'application N qui & M € .7,(R) associe 1\)/([28}( IMX]|| est une norme sur
Zn(R).
6. Exprimer N(M) en fonction des \g(M).
7. Soit k € [1; n]. Montrer que I'application .7,(R) — R, M — A\(M) est lipschitzienne.

Corrigé : 1. L’application X — X'MX = Y m, z;z; est polynomiale donc continue sur
1<i,j<n
F NS fermé borné de 'espace de dimension finie .4, 1(R). Il s’agit donc d’un compact et par

conséquent

La quantité Ry (F) est bien définie.

d
2. Soit X € FN'S. On note X = Y x;v; avec Y 27 =1. On a

d
—1

i=1 )
d d d

XTMX = <X, MX) = Zl’ﬂ)i, Z)\j(M)Ijl}j = Z)\zﬂflz < )\d(M)
=1 j=1 =1

et pour X = vy, on a bien X € FNS avec X' MX = \y(M). On conclut
Ru(F) = Aa(M)

3. Supposons F NG = {0}. D’aprés la formule de Grassmann, on aurait alors

dim(F + G) =dimF +dimG —dim(FNG)=d+n—-d+1=n+1



ce qui est absurde. On en déduit que F N G est un sev non trivial et s’il contient un vecteur X
non nul, alors il contient X/||X|| par stabilité par combinaison linéaire. Ainsi

FNGNS+# 2]

Soit X € FNGNS. On note X = > zyv; avec > 27 =1. On a
i=d i=d

n

n

XTMX = (X, MX) = S Ah(M)a? > M(M) et Max X MX > Max XTMX
i=d XeFnS XeFNGNS

Ainsi RM(F) 2 )\d<M)

4.(a) Soit X € FNGNS. En particulier, on a X e FNS et X € GNS puis
XTCX = XTAX + XTBX < RA(F) + RB(G)
Passant a la borne supérieure, on obtient

Re(F N G) < Ra(F) + Rp(G)

4.(b) Soit (uy,...,u,) une base orthonormée de vecteurs propres de A associés aux valeurs
propres ordonnées et de méme pour (vy,...,v,) avec B. On pose

F = Vect (uq,...,us) et G = Vect (vy,...,0n)
D’aprés le résultat de la question 3, on a
RA(F) = M(A) et Rp(G) = \n(B)

SidimFNG =0, alors dim(F+ G) = dimF +dim G = n+k > n ce qui est absurde. Par ailleurs,
on a

d=dmFNG=dmF+dmG—-dim(F+G)>/+m—-n>k
D’aprés le résultat de la question 5, il vient

Re(FNG) > Aa(C) et Ag(C) = AW(Q)

Ainsi Ae(C) < Ae(A) + A (B)
4.(c) Pour M € ., (R), on observe

Onan+1—{¢+n+1—m=n+(n+1—k) puis, avec le résultat de la question précédente
appliquée & —A, —B et —C, il vient

As1-k(—C) < Apg1—e(=A) + As1-m(—B)
Avec la remarque préliminaire, on conclut

Ae(A) + A (B) < A (C)

5. Soit (A,B) € .%,(R)? On a
vXeS  [(A+B)X][ < |AX] + |[BX]| < N(A) + N(B)

Passant a la borne supérieure en X € S, on en déduit que N satisfait 'inégalité triangulaire.
Supposons N(M) = 0 pour M € .7, (R). Pour X € ., 1(R) avec X # 0, notant U = X/||X]|, on
a U e S puis

= |MUJ| < N(M) =0



d’ott MX = 0 et par suite M = 0. Enfin, pour (A, M) € R x .%,(R), on a pour X € S
AMX]| = [A][MX]] < [A[ N(M)

puis N(AM) < [A|N(M)

et pour X\ # 0, on a

N(M) = N (%AM) < |17|N(AM)

On conclut L’application N est une norme sur .7, (R).

n n
6. Soit M € .7, (R). Avec les notations définies précédemment, pour X = > z;v; avec Y z? =1,

=1 =1
on a

n n 2
INEX? = SNzl = 353202 < ( M )
=1 i=1 €] 1l;n
Sans difficulté, on constate que

Max, [A(M)| = Max (A (M)], [An(M)][)

i€[1;n
En choisissant le vecteur X vecteur propre associé a la valeur propre dont la valeur absolue réalise
le maximum, on constate que 1'inégalité précédente peut étre une égalité et on conclut

N(M) = Max (|A(M)], [An(M)])

7. Soit (A,B) € #,(R)? et k € [1; n]. Avec le résultat de la question 4.(c), on obtient,
A(A) = Ae(B) = A(A) + A1 x(—B) < A\ (A —B) < N(A —B)

et 'autre inégalité suit par symétrie des roles. On conclut

Pour k € [1; n], Papplication .#,(R) — R, M — Ax(M) est 1-lipschitzienne.




Exercice 6 (***)

Soit E euclidien de dimension n entier non nul et uy, ..., u, des endomorphismes auto-adjoints
de E vérifiant

p P
Srgui=n et VzeE > (w(x),z) = |z
i=1 =1
I
Montrer que E= @ Im u; et que les u; sont des projecteurs orthogonaux.
i€[1;p]

p p
Corrigé : On a Y u; € . (E). Supposons qu’il existe A € Sp <ZU1) avec A # 1. Pour x vecteur
i=1 =1

propre associé, on aurait

(Suta).z) = Alel? # lal?

p
ce qui contredit 'hypothése. Par conséquent, 'endomorphisme auto-adjoint » u; admet 1 pour
i=1

p
unique valeur propre et comme il est diagonalisable, il s’ensuit » u; = id. On remarque 1'égalité

i=1
P P
i=1 i=1
P P
et on en déduit dim > Im u; =n = > dimIm u;
i=1 i=1
d’on E= @ Imuy
i€[1;p]
p
Puis V(z, k) e Ex[1;p] uk(z) = D> u; o ug(x)
i=1

et par unicité de la décomposition, il s’ensuit pour k € [1; p] que u, = u} d’out u; projecteur
et endomorphisme auto-adjoint donc projecteur orthogonal. Il résulte également de 'unicité que
pour (i,k) € [1; p]? avec i # k, on a u; oup = 0 d’ott Im uy, € Ker u; = (Im w;)™ ce qui prouve
I'orthogonalité des Im uy. On conclut

1
E= @ Im u; et les u; sont des projecteurs orthogonaux.
i€[1;p]

Remarque : Il s’agit du théoréme de Fischer-Cochran.
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