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Calculatrice interdite
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Rappel des consignes :

Présentation de la copie :
e Laisser une marge a gauche pour la notation.

e Encadrer ou souligner les résultats.

e Donner le numéro complet de la question a laquelle vous répondez.

Rédaction :
e Répondre précisément aux questions posées

e Respecter les notations de [’énonce.

o Ne pas utiliser d’abréviations (sauf si elles ont été définies)
o Justifier tous les résultats.

e Rédiger de fagon claire, précise et concise.

o Citer le nom des lois utilisées.

o Toujours donner un résultat littéral (avant de faire éventuellement I’application numérique), sans
application numérique intermédiaire, sans mélanger littéral et numérique.

e Controdler I'nomogénéité du résultat.

Applications numériques :
o En Dabsence de calculatrice, les applications numérique seront faite avec 1 (maximum 2) chiffres
significatifs.

e Arrondir correctement la valeur donnée par la calculatrice.
e Ne jamais oublier les unités.
e Contréler que I'ordre de grandeur est raisonnable.

e Ne jamais reéutiliser le résultat arrondi d'une application numérique précédente (pour éviter les
erreurs d’arrondis)

La notation prendra en compte le respect de ces consignes (aucun point pour un résultat non homogene,
des points de rédaction...)
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Probléme 1 : Spectre de la molécule d’ammoniac

Des données numériques sont présentes en fin d’énoncé de ce probléme.
A — Conformations de la molécule d’ammoniac

La molécule d’ammoniac 1*NHj, se présente sous la forme d’une pyramide symétrique, ’atome d’azote étant 3
son sommet. Les trois atomes d’hydrogéne définissent le plan de référence. La position de 'atome d’azote est
repérée par ’abscisse z telle que |z| soit la distance de atome au plan de référence Oyz (figure 8).
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Figure 8 Géométrie et énergie potentielle de la molécule d’ammoniac

ITI.A.1) Interpréter la forme, la symétrie et les points particuliers de la courbe d’énergie potentielle V' (z).

La molécule d’ammoniac peut se trouver dans deux états de conformation, selon que Patome se trouve du coté
z > 0 (conformation D, figure 9) ou du coté z < 0 (conformation G). Les deux états sont séparés par une
barriére de potentiel V; = 0,25eV. On appelle inversion le passage d’une conformation & I'autre, lorsque I'atome
d’azote traverse la barriere d’énergie due aux trois atomes d’hydrogeéne.
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Figure 9 Inversion de la molécule d’ammoniac

B — Inversion quantique de la molécule d’ammoniac

On se propose de montrer que I'inversion de la molécule d’ammoniac est possible du point de vue quantique,
indépendamment de la température. La fonction d’onde décrivant le mouvement relatif de 'atome d’azote et
des trois atomes d’hydrogéne est notée 7(x,t) ; elle vérifie 'équation de Schrédinger

. 0y R %

1hﬁ(m, t) = 97 B2 (z,t) + V(z)y(z,t)
oll m est la masse réduite du systéme composé de 'atome d’azote et des trois atomes d’hydrogéne (on prendra
m =~ 2,5 mH).
ITI.B.1) On s’intéresse aux états stationnaires d’énergie E et on pose t(x,t) = p(z) exp(—iEt/h).
Montrer que ¢(z) vérifie 'équation I11.1

d?p n 2m(E — V(z))

2 — o(z) =0 (IT1.1)
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On considére dans un premier temps un modéle de potentiel V) (x) & double puits infini symétrique rectangulaire
(figure 10).
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Figure 10 Profil en double puits infini symétrique rectangulaire

Les fonctions d’onde localisées dans le puits A sont notées 1 4(x,t), celles localisées dans le puits B, ¥g(x,t).
Les fonctions ¢(x) associées sont notées respectivement ¢ 4(z) et @ g(x).

111.B.2)

a) Que veut dire qu'une fonction d’onde est localisée sur un domaine ?

b) Pourquoi doit-on considérer les fonctions d’onde identiquement nulles pour |z| < zg et |z| > o +£7
Quelles sont les conditions aux limites de @ 4(x) et pp(x) ?

¢) Donner, sous forme intégrale, sans les calculer, les conditions de normalisation pour ¢ 4(z) et p5(z).
I11.B.3)

a) Résoudre I'équation IT1.1 pour le potentiel V; (z) dans 'intervalle [—x — £, —z,] correspondant au puits A.
On donnera les solutions normalisées ¢ 4 ,, () indicées par un entier n € N* et les énergies E;j associées.

On démontrera les expressions des énergies et des solutions (et de leurs normes !) en fonction de n, m, 1, X, Xo et #.
b) Quelles sont, sans calculs, les solutions ¢ z(z) et les énergies EZ 7

¢) Soit une molécule d’ammoniac dans un état décrit par 9 4 ,(z,£) d’énergie Eﬁ" a un instant ¢ donné.

Quelle est la probabilité de trouver 'atome d'azote dans 'intervalle [z, 2 + €] & V'instant ¢ > ¢ 7 Conclure.

On modélise cette fois le profil d’énergie potentielle par un double puits infini rectangulaire & saut fini, V,(z)
(figure 11).

Vy ()

Vo

Vo sz <z
Vo=<10 sizg < || <zg+ £
+oo sizg+€< |z

—Zp Lo

Figure 11 Profil en double puits & saut fini
On donne V; = 0,25 eV, 5 = 10 pm. On considére 0 € E < Vj,.

IT1.B.4) Justifier que dans le domaine zy < z € £y + £, 1a solution de 'équation ITI.1 s’éerit

) = B sin(k(z — zn — ¢ Ou vous préciserez I’expression de k en fonction de E et m et de
#n() (K 0 =) constantes

ot B une constante que l'on ne cherchera pas & exprimer. En déduire une forme de solution ¢ 4(z) dans le
domaine —zy — £ < £ € —x,.
III.B.5) Dans le domaine —zy < < x, les solutions de 1'équation IIL.1 s’écrivent

¢e(z) = Cy cosh(Kx) + Cy sinh(Kz)
o1 C}, C, et K sont des constantes.

a) Exprimer K en fonction de F, V,,, m et A.
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b) Quelles conditions doivent &tre vérifiées par la fonction d’onde t(x,t) en tout point ou le potentiel est borné ?
d d
En déduire deux relations entre pg(z;), wp(zy), %(ma) et %(ma‘)

A partir de ces relations qui relient K & k, il est possible de déterminer 1'énergie E de I’état stationnaire o(z),
selon qu'il est symétrique (ou pair en z, ce qui conduit & C, = 0) ou antisymétrique (ou impair en z, donc
Cl = 0)

III.B.6) La premiére solution symétrique ¢¥™(z) d’énergie E}*™ et la premiére solution antisymétrique, im-
paire en x, 2" (z) d’énergie E‘?Hti sont représentées figure 12. Dans le cas ol les énergies de ces deux états sont

1
trés petites devant Vj, leur différence est

SE = Eimti _ Eiym _ 47T2h3 exp (_2"30 V vab/h)

me3 V2mV,

ei" (@)

__________

!
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anti

Figure 12 Solutions "™ et ¢?

A Dinstant ¢ = 0, la molécule d’ammoniac est dans une conformation G (figure 13), décrite par la fonction
d’onde

sym

¥(z,0) = pg(z) = % (o™ () + 3™ (z))
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Figure 13 Fonctions ¢g et ¢p

o) Ecrire expression de la fonction d’onde (x,t) de la molécule d’ammoniac & un instant ¢ quelconque, en
fonction de ™, @3, des énergies B2 et E7™ et de .

b) Pourquoi deux fonctions d’onde ), et 15 telles que 1, = 15 exp(icr), ol exp(ier) est un nombre complexe de
module 1, décrivent-elles le méme état physique ?

¢) En déduire que la fonction d’onde (z,t) décrit une évolution périodique de Iétat de la molécule d’ammo-
niac, dont on exprimera la période 7 en fonction de 6F et de fi. Calculer la fréquence f correspondante si
dFE = 9,85 x 107° V. Dans quel domaine spectral se situe une onde électromagnétique de fréquence f ?

C’est sur cette transition que fonctionna le premier maser construit par C. Townes, J. Gordon et H. Ziegler
en 1954.
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d) Décrire I'état de la molécule d’ammoniac & l'instant £ = 7/2. En quoi ce changement d’état entre les instants
t =0 et t = 7/2 permet-il d’illustrer Ueffet tunnel 7

e) Quelle est I'influence de la barriére de potentiel Vj et de la largeur z, sur la fréquence d’oscillation f 7 Pour
l’arsine, de formule AsH;, de méme structure que NHs, la hauteur de la barriére de potentiel est multipliée par

six et sa largeur par ¢ing. Que dire de la fréquence d’inversion de I’arsine ? Commenter.

C — Spectre d’absorption de la molécule d’ammoniac

On réalise ici une expérience de spectroscopie laser ou une vapeur moléculaire, a 1’équilibre thermodynamique, contenue
dans une cellule, est en interaction avec une onde laser progressive de fréquence réglable.

On enregistre le profil d’absorption autour d’une fréquence de résonance (Figure 7).

La raie d’absorption moléculaire est élargie par effet Doppler-Fizeau en raison de 1’agitation thermique des molécules.
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Figure 7 Schéma de principe de la spectroscopie laser

Un faisceau lumineux monochromatique, dont le champ électrique est donné par E(x, t)y=E, €, expi (wt — kx)
en notation complexe, traverse, dans le sens des x croissants, un milieu matériel homogene localement neutre,
dont la conductivité électrique est v > 0. La célérité de la lumiére dans le vide est notée c.

ITI.C.1) Quelle est 'équation de propagation du champ électrique dans le milieu ? En déduire la relation de
dispersion &%(w) en fonction de 7, 1o, ¢ et w.

I11.C.2)

a) On note k = k, — ik; ou k, et k; sont respectivement les parties réelle et imaginaire de k. Montrer, sans
chercher & expliciter k;, que k;, > 0. Que cela signifie-t-il pour 'onde 7

L’onde traverse une cuve de longueur L contenant le milieu puis se propage a nouveau dans le vide. On admet
que les coefficients de transmission en amplitude sont égaux & 1, en entrée et en sortie de cuve.

b) Rappeler la relation liant 'intensité I de 1'onde électromagnétique et le vecteur de Poynting #. Montrer
que l'intensité de Ponde I(L) aprés la cuve s’exprime en fonction de l'intensité I, avant la cuve selon la loi
I(L) = I exp(—aL). Donner 'expression de a en fonction de k.

ITI.C.3) La transition choisie pour la mesure de I"absorption lumineuse est une raie de ’ammoniac de fréquence
vy = 2,8953694 x 103 Hz, fortement absorbante et située dans un domaine d’émission d’un laser & COq. Le
spectre d’absorption représente l'intensité lumineuse ayant traversé le milieu, en fonction de la fréquence du
rayonnement (figure 14).

a) Quelle longueur d’onde est associée & un rayonnement électromagnétique de fréquence v ? A quel domaine

. P ) . o ) . i ]
électromagnétique appartient cette raie 7 cajoyler en eV I’énergie E, d’un photon de cette fréquence.

b) Cette absorption correspond, pour la molécule d’ammoniac, & la transition entre deux états d’énergie E;
et By > F,. Le niveau E, est supposé parfaitement défini alors que le niveau FE, présente une largeur éF
(figure 14). En quoi cette largeur explique-t-elle le spectre d’absorption 7 Estimer la valeur de la largeur dite
naturelle dv pour 6E = 2,0 x 108 eV,

Rem :Cette raie ne correspond pas a la transition étudiée en partie 111B.
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Figure 14 Niveaux d’énergie et spectre d’absorption
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111.C.4) Elargissement de la raie

Le faisceau laser traversant le milieu absorbant posséde la fréquence v dans le référentiel du laboratoire. En raison du
mouvement des molécules d’ammoniac, la fréquence pergue par ces molécules est décalée par effet Doppler. Elle n’est
plus v mais une fréquence v’ dépendant de leur vitesse. On admet que pour une vitesse v, suivant I’axe (Ox) trés petite

- N v
devant la vitesse de la lumierec, V' = v(1 — ?x :

~ Le spectre d’absorption de la figure 14 est celui d’une molécule d’ammoniac au repos dans le laboratoire.
Tracer le spectre d’absorption d’une molécule de vitesse v > 0 telle que vyv, /c > dv.

On considére dans la suite que les molécules d’ammoniac au repos absorbent uniquement les rayonnements dont
la fréquence se situe dans intervalle de largeur i autour de la fréquence vy, soit Uintervalle [v,—év/2, vy +61/2].
Dans 'ammoniac gazeux & la température T, les molécules de masse m, sont animées de vitesses aléatoires,
dont la répartition suit la loi de Maxwell-Boltzmann. Selon cette loi, la probabilité dP(v,) que la composante
selon €_ de la vitesse soit comprise entre v, et v, + dv, est donnée par

m,v2
dP(v,) = K,exp ~R,T dv,

ou K, est une constante de normalisation.

ITI.C.5) L’ammoniac gazeux est traversé par un faisceau laser de fréquence v dirigé selon €,. Exprimer la
probabilité dP(v, 1) qu'une molécule percoive la fréquence vy 4 dv pres, en fonction de Ky, mg, kg, T', c, v,
dv et 1. Si ng est le nombre de molécules éclairées par le faisceau laser, quel est le nombre dn de molécules
pouvant absorber une partie de l'intensité du faisceau ?

I11.C.6)

a) Expliquer pourquoi le spectre d’absorption d’une vapeur 4 la température T' différe de celui d’une molécule
au repos dans le référentiel du laboratoire.

b) En se référant aux propriétés de la courbe de Gauss (figure 16), donner Pexpression de la largeur Av du
spectre d’absorption, en fonction de kg, T', m,, et c.

U —1u, 2
exp (——( 2a20) )

|

]

]

1

l
Ug

Figure 16 Courbe de Gauss

¢) A T=273 K, évaluer I’ordre de grandeur de Av. Comparer a la largeur naturelle év.

Données numériques

Célérité de la lumiére dans le vide c=299792458 m-s!

Charge élémentaire e=1,602176621 x 107*° C

Constante d’Avogadro N 4 =6,02214086 x 10?3 mol™*

Constante de Planck h = 6,626 070040 x 10734 J.s
h=h/2r =1,054571800 x 10734 J-s

Masse de 1'électron m, = 9,10938356 x 103! kg

Masse de 1’atome d’hydrogéne my = 1,67372 x 10727 kg

Masse molaire de I’ammoniac Myu, = 17,031 g-mol !

Température du point triple de Peau Tpp = 273,16 K

Constante de Boltzmann kp =1,38.10723].mol™?
Analyse vectorielle : rot(rot A) = grad(div A) — A4
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Probleme 2 : L.’oscillateur harmonique en physique quantique

Hormis le nombre i tel que i? = -1, les nombres complexes sont soulignés : z € C. Les vecteurs seront
traditionnellement surmontés d’une fléche, par exemple V pour une vitesse ; sauf s’ils sont unitaires

et seront alors surmontés d’un chapeau, par exemple U tel que |] = 1.

Q1. Citer deux exemples d’oscillateurs harmoniques en physique classique, 1’'un en mécanique et
I’autre en électricité. Pour chacun d’entre eux faire un schéma, établir 1’équation d’évolution
par une méthode énergétique et decrire les échanges energétiques mis en jeu.

On envisage dans cette partie un traitement quantique de 1’oscillateur harmonique décrivant les
vibrations d’une molécule diatomique. L’objectif est d’obtenir 1’expression quantifiée des valeurs
possibles de 1’énergie de cet oscillateur harmonique dans cette théorie.

On note ¥(x,t) la fonction d’onde du systeme décrivant I’oscillateur harmonique associé a une molécule
diatomique. Le systeme est assimilé a un point matériel M dont la masse est notée «. Ce point évolue
le long d’un axe (O, U, ), la distance x = OM représente 1’élongation du ressort de raideur k modelisant

la liaison chimique entre les deux atomes a travers le potentiel V(x) = %kxz. Il s’agit donc d’un

probléme unidimensionnel.
Le systeme est de plus stationnaire, on peut donc séparer la fonction d’onde en deux parties sous la
forme W(x,t) = f(x).exp(-iEt/%) ou E représente les valeurs de 1’énergie accessibles a ce systeme.

La fonction ¥(x,t) est une solution de norme unité de 1’équation de Schrédinger
op(x,t 2 9%y(x,t
ihL) _LLW(XMM)

ot 2u 0% -

Q2. En utilisant la relation d’indétermination spatiale de Heisenberg, montrer que les états
stationnaires d’une particule de masse m confinée dans un puits de potentiel de largeur L et
d’énergie potentielle minimale nulle ( V(0) = 0 J) ont une énergie minimale Emin qui ne peut
pas étre nulle. Exprimer Emin en fonction de L, A, m.

On en déduit que les énergies E accessibles a I’oscillateur harmonique quantique sont strictement
positives.

Q3. Ecrire I’équation différentielle vérifiée par la fonction f(x) en fonction des paramétres k, x, 7 et
E.

4IJE2 Jl/ 2

1/4
On effectue le changement de variable o = X(:_Zj et’on pose y = ( ETY

Q4. Quelles sont les dimensions de o et de y ?

Q5. Ecrire I’équation différentielle vérifiée par la fonction f(«) en fonction du seul paramétre y.
1,

Q6. Vérifier que dans le régime o — 0, on peut écrire f (a)~e 2 .

2

1
Q7.  Justifier succinctement que seule la solution « — e 2 est physiquement acceptable.

Dés lors que nous connaissons le comportement asymptotique de la solution recherchée, nous pouvons
1,
I’extraire de celle-ci en effectuant le changement de fonction f(«) = g(a).e 2 .

Q8. Déterminer 1’équation différentielle vérifiée par la fonction a — g(a).
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Pour résoudre cette équation, on effectue un développement en série entiere de la fonction g :
g(a) = prap .
0

Q9. Exprimer le coefficient bp+> en fonction du coefficient by, de I’entier p et de .

SiI’on conserve tous les termes de la série, on montre que le comportement asymptotique de la fonction
a — g(a) ’emporte sur exp(—a?/2) en +oo ce qui ne permet pas de construire de solution physiquement
acceptable. La seule possibilité est de tronquer la série en imposant I’existence d’un entier n tel que si
p >nalors bp+2 = 0.

Q10.  En déduire que les énergies accessibles a un oscillateur harmonique en régime quantique sont
de la forme :

1 . : )
E, = (n + E)ha) avecn € N  oU w est une grandeur que 1’on exprimera en fonction de u et k.

n
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