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DS6 de Physique du 24/01/26 

 

Calculatrice interdite 

 

3h 
 

 

 

 

Rappel des consignes : 
 

 Présentation de la copie : 

• Laisser une marge à gauche pour la notation. 

• Encadrer ou souligner les résultats.  

• Donner le numéro complet de la question à laquelle vous répondez.  

 

Rédaction : 

• Répondre précisément aux questions posées 

• Respecter les notations de l’énoncé. 

• Ne pas utiliser d’abréviations (sauf si elles ont été définies) 

• Justifier tous les résultats.  

• Rédiger de façon claire, précise et concise. 

• Citer le nom des lois utilisées.  

• Toujours donner un résultat littéral (avant de faire éventuellement l’application numérique), sans 

application numérique intermédiaire, sans mélanger littéral et numérique.  

• Contrôler l'homogénéité du résultat. 

 

Applications numériques : 

• En l’absence de calculatrice, les applications numérique seront faite avec 1 (maximum 2) chiffres 

significatifs. 

• Arrondir correctement la valeur donnée par la calculatrice.  

• Ne jamais oublier les unités.  

• Contrôler que l'ordre de grandeur est raisonnable.  

• Ne jamais réutiliser le résultat arrondi d'une application numérique précédente (pour éviter les 

erreurs d’arrondis) 

 

La notation prendra en compte le respect de ces consignes (aucun point pour un résultat non homogène, 

des points de rédaction…) 
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Problème 1 : Spectre de la molécule d’ammoniac 
 

Des données numériques sont présentes en fin d’énoncé de ce problème. 
 

A – Conformations de la molécule d’ammoniac 
 

 

 
 

 
 

 

 

 

B – Inversion quantique de la molécule d’ammoniac 
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  On démontrera les expressions des énergies et des solutions (et de leurs normes !) en fonction de n, m, l, x, x0 et ℏ.    

 

 
 

 

 

Où vous préciserez l’expression de k en fonction de E et m et de 

constantes 
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C – Spectre d’absorption de la molécule d’ammoniac 
 

On réalise ici une expérience de spectroscopie laser où une vapeur moléculaire, à l’équilibre thermodynamique, contenue 

dans une cellule, est en interaction avec une onde laser progressive de fréquence réglable.  

On enregistre le profil d’absorption autour d’une fréquence de résonance (Figure 7). 

La raie d’absorption moléculaire est élargie par effet Doppler-Fizeau en raison de l’agitation thermique des molécules. 

 

 
 

 
 

 
 

 
 

 
 

 
Rem :Cette raie ne correspond pas à la transition étudiée en partie IIIB. 

 
 

Que dire de la fréquence d’inversion de l’arsine ? Commenter. 

Calculer en eV l’énergie Eγ d’un photon de cette fréquence. 
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III.C.4) Elargissement de la raie 
 

Le faisceau laser traversant le milieu absorbant possède la fréquence ν dans le référentiel du laboratoire. En raison du 

mouvement des molécules d’ammoniac, la fréquence perçue par ces molécules est décalée par effet Doppler. Elle n’est 

plus ν mais une fréquence 𝜈’ dépendant de leur vitesse. On admet que pour une vitesse 𝑣𝑥 suivant l’axe (Ox) très petite 

devant la vitesse de la lumière c,  𝜈′ = 𝜈(1 −
𝑣𝑥

𝑐
) . 

 

 

 
 

c) A T = 273 K, évaluer l’ordre de grandeur de Δ𝜈. Comparer à la largeur naturelle 𝛿𝜈. 

 

 
         Constante de Boltzmann      𝑘𝐵 = 1,38. 10−23𝐽.𝑚𝑜𝑙−1  

 

 

 

Analyse vectorielle : 
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Problème 2 : L’oscillateur harmonique en physique quantique 

Hormis le nombre i tel que i2 = -1, les nombres complexes sont soulignés : z  ₵. Les vecteurs seront 

traditionnellement surmontés d’une flèche, par exemple v


 pour une vitesse ; sauf s’ils sont unitaires 

et seront alors surmontés d’un chapeau, par exemple û  tel que 1=û . 

 

Q1.  Citer deux exemples d’oscillateurs harmoniques en physique classique, l’un en mécanique et 

l’autre en électricité. Pour chacun d’entre eux faire un schéma, établir l’équation d’évolution 

par une méthode énergétique et décrire les échanges énergétiques mis en jeu. 

 

On envisage dans cette partie un traitement quantique de l’oscillateur harmonique décrivant les 

vibrations d’une molécule diatomique. L’objectif est d’obtenir l’expression quantifiée des valeurs 

possibles de l’énergie de cet oscillateur harmonique dans cette théorie. 

 

On note Ψ(x,t) la fonction d’onde du système décrivant l’oscillateur harmonique associé à une molécule 

diatomique. Le système est assimilé à un point matériel M dont la masse est notée μ. Ce point évolue 

le long d’un axe (O, xû ), la distance x = OM représente l’élongation du ressort de raideur k modélisant 

la liaison chimique entre les deux atomes à travers le potentiel V(x) = 
1

2
𝑘𝑥2 . Il s’agit donc d’un 

problème unidimensionnel.  

Le système est de plus stationnaire, on peut donc séparer la fonction d’onde en deux parties sous la 

forme  Ψ(x,t) = f(x).exp(-iEt/ħ) où E représente les valeurs de l’énergie accessibles à ce système.  

 

La fonction Ψ(x,t) est une solution de norme unité de l’équation de Schrödinger 
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Q2.  En utilisant la relation d’indétermination spatiale de Heisenberg, montrer que les états 

stationnaires d’une particule de masse m confinée dans un puits de potentiel de largeur L et 

d’énergie potentielle minimale nulle ( V(0) = 0 J ) ont une énergie minimale Emin qui ne peut 

pas être nulle. Exprimer Emin en fonction de L, ℏ, m. 

 

On en déduit que les énergies E accessibles à l’oscillateur harmonique quantique sont strictement 

positives. 

Q3.  Écrire l’équation différentielle vérifiée par la fonction f(x) en fonction des paramètres k, μ, ħ et 

E. 

On effectue le changement de variable 
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Q4.  Quelles sont les dimensions de α et de γ ? 

 

Q5.  Écrire l’équation différentielle vérifiée par la fonction f(α) en fonction du seul paramètre γ. 

Q6.  Vérifier que dans le régime α → ±∞, on peut écrire ( )f ~
2

2

1


e . 

Q7.  Justifier succinctement que seule la solution α → 
2

2

1
−

e  est physiquement acceptable. 

 

Dès lors que nous connaissons le comportement asymptotique de la solution recherchée, nous pouvons 

l’extraire de celle-ci en effectuant le changement de fonction f(α) = g(α).
2

2

1
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e . 

Q8.  Déterminer l’équation différentielle vérifiée par la fonction α → g(α). 
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Pour résoudre cette équation, on effectue un développement en série entière de la fonction g : 

( ) 
+

=
0

p

pbg  . 

Q9.  Exprimer le coefficient bp+2 en fonction du coefficient bp, de l’entier p et de γ. 

 

Si l’on conserve tous les termes de la série, on montre que le comportement asymptotique de la fonction 

α → g(α) l’emporte sur exp(−α2/2) en ±∞ ce qui ne permet pas de construire de solution physiquement 

acceptable. La seule possibilité est de tronquer la série en imposant l’existence d’un entier n tel que si 

p ≥ n alors bp+2 = 0. 

Q10.  En déduire que les énergies accessibles à un oscillateur harmonique en régime quantique sont 

de la forme : 
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nEn  avec n  ℕ     où ω est une grandeur que l’on exprimera en fonction de μ et k. 


