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Calculatrices interdites

L utilisation des calculatrices n’est pas autorisée pour cette épreuve.
Les résultats des applications numériques seront donnés avec un chiffre significatif.
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Optomécanique en caviteé

L’ optomécanique se consacre a 1’étude du couplage de dispositifs mécaniques a une onde électromagnétique.
Ce probleme étudie différents aspects d’un systeéme optomécanique modele, a savoir une cavité résonante linéaire
formée de deux miroirs semi-réfléchissants paralleles se faisant face, dont I'un est mobile.

Dans la premicre partie, on établit les ¢quations dynamiques générales d’une cavité de longueur fixée, soumise
a un champ électromagnétique incident. Dans la seconde partie, on étudie le couplage optomécanique en supposant
que ’'un des miroirs est libre de se déplacer sous ’action de la force d’origine électromagnétique imposée par le
faisceau incident, et d’une force de rappel élastique appliquée par le support sur lequel ce miroir est monté.

Dans tout ce probléme, on utilise le signe ” = (plutdt que ” = ) pour définir une grandeur.

Dans les applications numériques, on prendra ¢ ~ 3 x 108 m.s™! pour la vitesse de la lumiére dans le vide,
T~ 3ct+/0,9~0,9.

1. Cavité résonante de longueur fixée

On considere une cavité linéaire, d’axe (Oz), délimitée par deux miroirs (diélectriques) semi-réfléchissants
plans identiques, notés (M, ) et (M>). On admettra que les faces « internes » des miroirs (M) et (M>) — ¢’est-a-dire
les faces dirigées vers 'intérieur de la cavité (représentées en trait plein sur la figure 1), ont méme coefficient de
réflexion en amplitude (pour le champ électrique) pris égal & (—p), ot p est supposé réel et positif ; le coefficient
de réflexion des faces « externes » de (M)) et (M,) — c’est-a-dire les faces dirigées vers I’extérieur de la cavité
(représentées par les zones grisées sur la figure 1), est quant a lui pris égal a p. On admettra aussi que les deux
miroirs (M) et (M>) possedent le méme coefficient de transmission en amplitude (pour le champ électrique), noté
T, que 1’on suppose réel et positif; ce coefficient est identique pour les deux sens de traversée des miroirs. On
admettra enfin que les coefficients (p,7) ne dépendent pas de la pulsation du champ incident, et que la relation
72 4+ p? = 1 est vérifiée. On note R = p? et T = t2. Dans cette partie, on suppose les deux miroirs fixes dans le
référentiel du laboratoire et I’on note L la distance qui sépare (M) et (M5).

On envoie vers la cavité formée par (M) et (M) une onde incidente plane progressive monochromatique se
propageant selon 1’axe (0z) et polarisée selon ’axe (Ox), décrite par son champ électrique :

E;i(z,1) R[Ei(z,1)] €, (1)
E;(z,1) = &exp [im (If g)] 2)
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FIGURE 1 — Cavité résonante linéaire de longueur L, soumise & un champ incident (partie 1).

oll R désigne la partie réelle, &; I’amplitude de I’onde incidente a I’ origine des temps et des coordonnées, supposée
réelle, et i = —1. Vous admettrez que cette onde crée une onde réfléchie dans le demi-espace z < 0 de méme

direction de polarisation que 1’onde incidente, de sorte que le champ total en amont de la cavité (dans la zone notée
I sur la figure 1) s’écrit

Ej(zt) = RI[E(z.1)+E (z,1)]é (3)

E.(z,t) = & exp [ia) (t + g)} (4)

oll &, désigne I’amplitude de I’onde réfléchie a I’origine des temps et des coordonnées, a priori complexe.
De méme, le champ créé a I’intérieur de la cavité (zone II) prend la forme générale

Ep(z.t) = R[E.(z,0)+E_(z.1)]2, (3)
E.(zt) = &rexp {iw (t - %)] (6)
E_(z,t) = & exp {iw (t + g)] (7)

Enfin, le champ au-dela de la cavité (zone III) s’ écrit

Enr(zt) = R[E (z,1)E] (8)
E (z,t) = &exp {ico (I—E)] (9)

Ces différents champs sont représentés sur la figure 1 ainsi que les vecteurs d’ondes associés

b=t = = 2z (10)
[
L=k = ——¢ (11)

]

(0]
c

1) Que représentent les coefficients R et T ? Que signifie physiquement la relation R+7 =17
2) Justifiez la nature progressive choisie pour le champ Enr (z,1).
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3) Au moyen des coefficients de réflexion et transmission, écrivez trois relations entre les amplitudes &;, &, &
et & traduisant la transmission/réflexionen z=0etz = L.
4) Déduisez les amplitudes &, &- et & en fonction de &;, , L, ¢, R et T. Vous mettrez le résultat sous la forme

0(w)
& = —&; 12
" VT IR
R 2ioL

E = — e A= éf’
0 (w)4/ Texp< ; ) (13)
& = O& (14)

et vérifierez que la fonction ® (@) prend la forme
T
O(w) = oL (15)
I —Rexp| — -

5) Exprimez la fonction |® ( ﬂ))|2 et tracez sa représentation graphique pour R = 0,9 en fonction de la variable

oL
réduite (—) .
C

6) Montrez |’existence d’une famille discréte de pulsations @<y du champ incident pour lesquelles |®|2 est
maximale. A quoi ces pulsations correspondent-elles physiquement pour I'intensité transmise ?

7) Montrez que 'intensité (moyennée sur une période) I; (z) a I'intérieur de la cavité se met sous la forme
I (2) = = |0(0)|* £ (w,2)I; o I; désigne I'intensité incidente et .% (@, z) un terme que vous exprimerez en fonc-
tionde Retw(z—L)/c.

8) Tracez les courbes représentatives de % (®,,z) pour R = 0,9 et n = 1, 2 et 3 en fonction de la variable
réduite (z/L). Méme question pour R = 1 ; quelle est la nature de 1’onde observée a I'intérieur de la cavité dans ce
cas?

9) On revient au cas général (R < 1). En vous plagant au voisinage d’une pulsation @, déterminez une expres-
sion approchée de la fonction © (@) puis mettez la fonction |© (@)|* sous la forme

I
©(0) ~ . (16)
®— o,
Y e

ou A@; est un parametre dont vous préciserez I'expression et la signification physique. Donnez I’expression ap-
prochée de Aw 1 dans la limite 7 < 1.

10) En vous servant des résultats précédents, établissez une analogie entre la cavité étudiée et des dispositifs
rencontrés dans un (d’) autre(s) domaine(s) de la physique. A partir de cette analogie, définissez un facteur de
qualité pour la cavité considérée et indiquez sa signification physique.

Dans les questions 11 a 15, on cherche a relier le parametre Aw: au taux de perte en énergie de la cavité.
Pour ce faire, on va suivre une approche particulaire. On rappelle quune onde électromagnétique est composée
de photons, particules sans masse, dont la quantité de mouvement p et I’énergie £ sont données par les formules
p="hw/cet E=ho, ol o est la pulsation du rayonnement électromagnétique considéré. On admet que, lorsqu’il
atteint I’'un des miroirs (M) ou (M>), un photon est transmis, sans modification de son énergie ni de sa quantité de
mouvement, avec la probabilité T, tandis qu’il « rebondit », sans modification de son énergie mais avec une quantité
de mouvement opposée, avec la probabilité R.

11) Exprimez le temps At mis par un photon pour parcourir une longueur de cavité.

12) Durant cet intervalle de temps, combien un photon subit-il de rebonds sur les parois de la cavité ?
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13) Quelle est la probabilité pour ce photon de quitter la cavité pendant la durée Ar ?

14) Si la cavité contient, a I'instant 1, np;, (1) photons, combien de photons auront quitté la cavité a I’instant
(t+ Ar) (on suppose np; 3> 1) ?

15) Reliez I’énergie électromagnétique E,, (1) contenue dans la cavité au nombre de photons n,y (7). En sup-
posant n,; > 1, exprimez la variation d’énergie €lectromagnétique (AEEM)pertes entre ¢ et £ + Ar due aux pertes au
niveau des miroirs. En assimilant (AEem)pertes et Ar a des éléments infinitésimaux exprimez le taux de perte de la

. 1 (dE ) . . . . .
cavite¢ y= —— — . Finalement, reliez y au parametre A@; introduit a la question 9.
Egm \ dr pertes :

On suppose maintenant que les champs sont quasi-monochromatiques, c’est-a-dire qu’ils peuvent se mettre
sous la forme de paquets d’ondes

E.(z,1) = 1]6"+(w)exp [ico (rfg)] dw (17)

o
Ei(z1) = é/é‘}(w)exp [:ia) (:—S)} do, (18)

. o . o c
ol les fonctions &; () et &; (@) ne prennent de valeurs significatives que sur ’intervalle [a)c — =, W+ 3 autour

2
. N e
d’une pulsation @, = @, ol n € N et 0 € —.
16) Rappelez brievement pourquoi un paquet d’ondes de la forme précédente constitue une solution des équa-

tions de MAXWELL.
17) En utilisant la forme approchée pour ® (@) obtenue a la question 9, établissez la relation linéaire entre les

composantes &, (@) et & (@) dans le régime R ~ 1.
18) Déduisez du résultat précédent I’équation différentielle vérifiée par la fonction E.

ad
at

Y . Ye
E %—[——IO)}E +/ZE. 19
-+ 2 (& -+ 4L i ( )
19) On considére une cavité de longueur L = 0,9 mm, constituée de deux miroirs de méme coefficient R = 0,99.
Calculez @300 ainsi que la longueur d’onde associée A3p0. A quel type d’onde électromagnétique a-t-on affaire ?
Calculez A ainsi que le facteur de qualité Ozgpp. Commenter la comparaison aux ordres de grandeur caractéris-
tiques rencontrés dans d’autres domaines de la physique.

2. Cavité résonante 2 miroir mobile

Dans cette partie, on suppose que le miroir (M) est libre de se déplacer selon la direction z. Il est soumis a
la force imposée par le champ électromagnétique a I'intérieur de la cavité ainsi qu’a une force de rappel élastique
linéaire modélisée par un ressort de raideur K et de masse négligeable devant celle du miroir (M>) qu’on notera m.
Expérimentalement, cette configuration peut étre réalisée en suspendant le miroir comme un pendule. On repere
la position de (M>) par son écart, noté & (1), & sa position d’équilibre & champ incident nul, correspondant & une
longueur de cavité L (cf Figure 2). On supposera que le mouvement de (M) reste de faible amplitude devant la
longueur initiale L de la cavité.

20) Exprimez la longueur de la cavité a la date 7.

21) Donnez la nouvelle expression @, (¢) de la pulsation introduite dans la premiére partie. Calculez sa forme
; ) : ) _ nic @, B}
approchée au premier ordre en & /L. Vous ferez intervenir les grandeurs @, = I et G, = f (appelée « constante

de couplage €lectromécanique »).
22) A quelle condition (intuitive) I’équation dynamique (19) reste-t-elle valable ? Pour répondre i cette ques-

tion, vous pourrez introduire 1’échelle des variations temporelles de la fonction & (1).
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FIGURE 2 — Cavité résonante a miroir mobile (partie 2).

On suppose que le champ incident est monochromatique, de pulsation @w; = @, + A,
E;(z,t) = & exp [imL (t — S)} (20)
ol &; est une constante réelle, et I’on écrit la composante £ du champ a I’intérieur de la cavité sous la forme
Ei (z,1) = & (t)exp [icr)L (t — S)] (21)

23) Pourquoi suppose-t-on, a priori, que &4 (1) dépend du temps ? Justifiez qualitativement que &7 (1) ne varie
pas de maniére significative sur une période du champ incident.
24) Montrez que &4 (t) vérifie

ey m i Y ¥,
6O~ [i6+GH+ T 60+ 4 (22)

Dans les questions 25 4 34, on souhaite déterminer 1’expression de la force imposée au miroir (M) par le champ
électromagnétique en cavité, appelée « force de pression de radiation », en fonction des parametres du probléme
et notamment du déplacement & (¢). Pour ce faire, on va suivre le méme type d’approche particulaire que dans les
questions 11 a 15.

25) Exprimez la quantité de mouvement fournie au miroir (M,) par un photon de pulsation @, lors d’un re-
bond. Comme dans la premiere partie, on supposera que ce rebond ne modifie pas 1’énergie du photon de manicre
significative mais change sa quantité de mouvement en son opposée.

26) En notant dN,, = 7, (1)dr le nombre de photons qui frappent le miroir (M) entre ¢ et t + dr, donnez
I’expression de la force de pression de radiation due au champ a I'intérieur de la cavité.

27) Reliez myp (¢) a la puissance électromagnétique, moyennée sur une période du champ incident, qui est
réfléchie par le miroir (M) a I'instant ¢.

28) Montrez que, dans la limite R == 1, la force de pression de radiation instantanée prend alors la forme

Fp(t) = &8 (1) (23)

On introduit les nouvelles grandeurs a et a; définies par

haoy,
8()-5/ L

2hﬂ‘)L
& = aiy| 25
“ &c. .
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29) Précisez les dimensions respectives de a et a; et explicitez la signification physique des quantités |a
Jail.
30) Etablissez I’équation régissant 1’évolution de a.
31) Etablissez 1’équation mécanique sur & (¢) régissant le mouvement du miroir. Vous introduirez la pulsation
propre de I’oscillateur Q que vous relierez a la raideur K du ressort et la masse m de (M).
32) On se propose d’étudier le systeme dans le cas ¥ > €. Que signifie cette condition physiquement ?
33) Montrez que, pour des temps ¢ 3> 1 /7, on peut alors écrire

Y

a(t) = 2 a;. (26)

1
iA+GE (1) +1
34) Dans le régime considéré a la question précédente, établissez I’expression de la force de pression de radia-
tion.

Dans la suite du probléme, on supposera toujours étre dans les conditions d’application de la formule (26).

Le but des questions 35 a 40 est d’étudier les positions d’équilibre mécanique du miroir mobile (M>), ainsi que
leur stabilité.

35) Etablissez la condition d’équilibre mécanique du miroir mobile (M) reliant & & |a;

36) En I’absence de champ incident, déterminez le nombre et la nature (stable ou instable) de points d’équilibre
du miroir mobile (M>).

On considére maintenant le cas d’un champ incident non nul.

37) Mettez la condition d’équilibre identifiée a la question 35 sous la forme A§ = F (&), ot F est une fonction
sans dimension de maximum unité et A une constante qui s’exprime en fonction des parameétres du probléme, puis
montrez comment déterminer graphiquement le(s) point(s) d’équilibre du miroir (M;).

38) A I’aide de la représentation graphique de la question précédente, montrez que le miroir (M>) possede au
plus trois points d’équilibre et étudiez leur stabilité respective. Justifiez le nom de bistabilité donné au phénomene
observé.
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FIGURE 3 — Relevé expérimental de la puissance P (représentée en ordonnée) transmise par une cavité (L = 0,9
mm, m = 60 mg, R = 0,99) obtenu en faisant passer trés lentement la puissance du champ incident P, (représentée

(inf) _, p(sup)

— P, , on suit la partie
~ 0,2 mW); au cours du passage

en abscisse) de P, = 1,L1Wa Pi(sup) =2,2 W etinversement. Lors du passage P,
inférieure du cycle d’hystérésis (le niveau moyen du plateau inférieur est P,(mf)

P;SUP) — Pl.(mf), on suit la partie supérieure du cycle (le niveau moyen du plateau supérieur est P,(SUP) ~ 5 mW).
La figure est extraite de A. DORSEL et al, Phys. Rev. Lett. 51, 1550 (1983).
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39) A partir de la condition d’équilibre de la question 35, montrez qu’il est nécessaire de choisir A < —

pour obtenir plus d’un point d’équilibre pour le miroir (M>).

3
40) En supposant A < —yT, identifiez I'intervalle dans lequel |a,-|2 doit se situer pour qu’il existe plus d’un

point d’équilibre pour le miroir mobile (M,).

Dans les questions suivantes, on considére une cavité de longueur initiale L = 0,9 mm, constituée d’un miroir
massif (immobile) et d’un miroir mobile de masse 60 mg, tous deux possédant le méme coefficient R = 0,99.
La figure 3 présente un relevé expérimental de la puissance transmise par la cavité, notée P et représentée en
ordonnée, obtenu lorsque ’on fait passer trés lentement la puissance incidente P; (représentée en abscisse) de

P m . Su; .. 2
la valeur inférieure Pf f) vers la valeur supérieure P,.( p)’ puis inversement. La courbe obtenue, appelée cycle
d’hystérésis, présente deux branches dont le sens de parcours est indiqué par des fleches : durant la premiere
inf) | (su
(inf) , p(sup)

f , on suit la partie inférieure du cycle ; au cours de la

deuxiéme phase, c’est-a-dire lorsque 1’on diminue 7; de Pi(SUP) a P,-(mf), on suit la partie supérieure du cycle.
41) Etablissez la relation entre puissances transmise et incidente faisant intervenir la quantité E.
42) En vous appuyant sur les résultats des questions 37 et 38, donnez une interprétation qualitative des résultats
obtenus. Expliquez notamment I’existence de deux plateaux pour la puissance transmise et le « passage » de 'un
a ’autre de ces plateaux. Vous pourrez vous aider de représentations graphiques de votre choix pour illustrer votre

réponse.

phase, ¢’est-a-dire lorsque I’on augmente F; de P,
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