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Feuille d'exercices n°72

Exercice 1 (**)

Soit A ∈ Mn(C) telle que Sp (A) ∩ 2iπZ = ∅.

1. Montrer que eA − In est inversible.

2. Soit B : R → Mn,1(C) continue et 1-périodique. Montrer que l'équation

X′ = AX+ B(t)

admet une unique solution 1-périodique.

Corrigé : 1. Dans Mn(C), on dispose de P ∈ GLn(C), D diagonale et T triangulaire supérieure

stricte avec DT = TD telles que A = P(D + T)P−1. On a eT = In + T′ avec T′ =
+∞∑
k=1

Tk

k!
triangulaire supérieure stricte. D'après la relation fondamentale de l'exponentielle, il vient

P−1
(
eA − In

)
P = eP−1AP − In = eD+T − In = eDeT − In = eD + eDT′ − In

et on véri�e sans di�culté que eDT′ est triangulaire supérieure stricte (produit d'une matrice
diagonale par une matrice triangulaire supérieure stricte). On en déduit

Sp (eA − In) =
{
eλ − 1, λ ∈ Sp (A)

}
Avec l'hypothèse Sp (A) ∩ 2iπZ = ∅, on conclut

La matrice eA − In est inversible.

2. Notons (L) le système di�érentiel linéaire avec second membre. Soit X ∈ SL. Posons Y : t 7→
X(t+1). On a clairement Y ∈ SL d'où Y−X solution du système homogène (Y−X)′ = A(Y−X)
et par conséquent

∀t ∈ R (Y − X)(t) = e tAU0 avec U0 ∈ Mn,1(R)

Si (Y − X)(0) = 0, il s'ensuit que X = Y. La réciproque étant immédiate, on a établi

X 1-périodique ⇐⇒ X(1) = X(0)

Par variation de la constante, on a

∀t ∈ R X(t) = e tA

Å
X0 +

∫ t

0

e−sAB(s) ds

ã
Par suite X(1) = X(0) ⇐⇒ eA

∫ 1

0

e−sAB(s) ds = −
(
eA − In

)
X0

⇐⇒ X0 = −
(
eA − In

)−1
∫ 1

0

e−sAB(s) ds

Ainsi L'équation (L) admet une unique solution 1-périodique.
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Exercice 2 (***)

Soit A ∈ A3(R). Pour α réel, on note

U(α) =

Ñ
0 0 0
0 0 −α
0 α 0

é
1. Montrer qu'il existe P ∈ SO3(R) tel que P⊤AP = U(α) avec α réel.

2. Déterminer la nature des courbes paramétrées solutions de X′ = AX.

Corrigé : 1. On a det(A) = det(A⊤) = det(−A) = (−1)3 det(A) = − det(A)

d'où det(A) = 0 et par conséquent 0 est valeur propre de A. On note E = R3. L'endomorphisme
u est antisymétrique, c'est-à-dire

∀(x, y) ∈ E2 ⟨u(x), y⟩ = −⟨x, u(y)⟩

et l'induit par u sur un sev stable est clairement antisymétrique. Pour F sev stable par u, on a
F⊥ stable par u. En e�et, soit x ∈ F⊥. On a

∀y ∈ F ⟨u(x), y⟩ = −⟨x, u(y)︸︷︷︸
∈F

⟩ = 0

Soit ε1 ∈ E0(u) vecteur normée avec u ∈ L (E) canoniquement associé à A. Par conséquent, le
plan vectoriel F = Vect (ε1)

⊥ est stable par u et l'endomorphisme induit uF est antisymétrique.
Prenant BF = (ε2, ε3) une base orthonormée de F, la matrice matBF

uF est dans A2(R) et est

donc de la forme

Å
0 −α
α 0

ã
avec α réel. Ainsi, notant B = (ε1, ε2, ε3), la famille B est par

construction une base orthonormée de E. Quitte à échanger ε1 par −ε1, on peut la supposer
directe et on a matBu = U(α). Ainsi, d'après les formules de changement de bases, comme
P⊤ = P−1, la matrice P étant orthogonale en tant que matrice de passage entre deux bases
orthonormées directes, on conclut

Il existe P ∈ SO3(R) telle que P⊤AP = U(α) avec α réel.

2. Soit X solution de X′ = AX. Si α = 0, alors A = 0 d'où X constante. La courbe paramétrée
par t 7→ X(t) est donc réduite à un point. Supposons α ̸= 0. On pose Y(t) = P⊤X(t) pour tout
t réel. On a

X′ = AX ⇐⇒ Y′ = U(α)Y

Ainsi ∀t ∈ R Y(t) = eU(α)tY0 = eU(αt)Y0 avec Y0 ∈ Mn,1(R)

Un calcul par bloc donne

∀t ∈ R eU(αt) = exp

Å
1 0
0 U(αt)

ã
=

Å
e 0 0

0 eU(αt)

ã
=

Å
1 0
0 R(αt)

ã
matrice de rotation d'angle α. Ainsi, la courbe paramétrée par t 7→ eU(αt)Y0 est l'ensemble des
points obtenus par rotation d'angle αt de Y0 autour de l'axe Vect (ε1). Il s'agit donc d'un cercle
dans l'espace E. La transformation Y 7→ PY étant isométrique, on conclut

Les courbes paramétrées solutions de X′ = AX sont des cercles de l'espace E.

Remarque : Le cas α = 0 donne aussi un cercle mais dégénéré, de rayon nul.
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Exercice 3 (****)

Soient A et B deux matrices de Mn(C). On note [A,B] le commutateur de A et B dé�ni par
[A,B] = AB− BA. On suppose que le commutateur [A,B] commute avec A et B. On pose

∀t ∈ R φ(t) = e−t(A+B)e tAe tB

Pour t réel, déterminer une expression de φ(t) en fonction de [A,B].

Corrigé : On rappelle que pour M ∈ Mn(C), la fonction t 7→ e tM est dérivable avec

d

dt

[
e tM

]
= Me tM = e tMM

La fonction φ est dérivable comme produit de telles fonctions et on trouve

∀t ∈ R φ′(t) = −e−t(A+B)(A + B)e tAe tB + e−t(A+B)e tAAe tB + e−t(A+B)e tABe tB

= e−t(A+B)
(
−Be tA + e tAB

)
e tB

avec, par convergence absolue

∀t ∈ R − Be tA + e tAB =
+∞∑
k=1

tk

k!

[
AkB− BAk

]
On a AB− BA = [A,B]

puis A2B− BA2 = A(AB− BA) + (AB− BA)A = 2A [A,B]

On peut alors conjecturer ∀k ∈ N∗ AkB− BAk = kAk−1 [A,B]

L'initialisation pour k = 1 est déjà faite. Supposons la propriété vraie au rang k entier non nul.
Il vient

Ak+1B− BAk+1 = A
(
AkB− BAk

)
+ (AB− BA)Ak

= kAk [A,B] + [A,B]Ak = (k + 1)Ak [A,B]

ce qui clôt la récurrence. Il vient

∀t ∈ R φ′(t) = e−t(A+B)
+∞∑
k=1

tk

k!
kAk−1 [A,B] e tB

Le commutateur [A,B] commute avec A et B donc A+B puis avec e tA et e−t(A+B) et on obtient

∀t ∈ R φ′(t) = e−t(A+B)te tA [A,B] e tB = t [A,B]φ(t)

Par analogie avec le cas dans C, on calcule

d

dt

[
e

t2

2
[A,B]

]
= t [A,B] e

t2

2
[A,B]

En�n, les fonctions φ et t 7→ e
t2

2
[A,B] sont toutes deux solutions du problème de Cauchy®

X′ = t [A,B]X

X(0) = In

et d'après l'unicité du théorème de Cauchy linéaire, on conclut

∀t ∈ R φ(t) = e
t2

2
[A,B]
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Exercice 4 (***)

Soit A ∈ Mn(C). On considère les solutions de l'équation

X′ = AX (H)

Pour X0 ∈ Mn,1(C), on note t 7→ Φ(t,X0) la solution du problème de Cauchy®
X′ = AX

X(0) = X0

Les solutions de (H) sont dites stables s'il existe C ⩾ 0 tel que

∀t ⩾ 0 ∀(X0,X1) ∈ Mn,1(C)2 ∥Φ(t,X0)− Φ(t,X1)∥ ⩽ C∥X1 − X0∥

Déterminer une condition nécessaire et su�sante sur la matrice A pour que les solutions de (H)
soient stables.

Corrigé : Dans tout ce qui suit, la norme considérée est la norme ∥ · ∥1. On a

∀(t,X0) ∈ R× Mn,1(R) Φ(t,X0) = e tAX0

Ainsi, pour (X1,X0) ∈ Mn,1(C)2, on a

∀t ⩾ 0 Φ(t,X0)− Φ(t,X1) = e tA(X0 − X1)

d'où ∀t ⩾ 0 ∥Φ(t,X0)− Φ(t,X1)∥ ⩽ ∥e tA∥∥X0 − X1∥

Montrons l'équivalence

∥e tA∥ =
t→+∞

O(1) ⇐⇒ ∀Y ∈ Mn,1(C) ∥e tAY∥ =
t→+∞

O(1) (∗)

Le sens direct est immédiate puisque pour Y ∈ Mn,1(C), on a ∥e tAY∥ ⩽ ∥e tA∥∥Y∥. Récipro-
quement, notant Y =

n∑
i=1

yiei avec (ei)1⩽i⩽n base canonique de Mn,1(C), il vient par inégalité

triangulaire

∀t ⩾ 0 ∥e tAY∥ ⩽
n∑

i=1

|yi| ∥e tAei∥

On dispose de M ⩾ 0 tel que ∥e tAei∥ ⩽ M pour tout i ∈ [[ 1 ; n ]] et tout t ⩾ 0. Il vient

∀t ⩾ 0 ∥e tAY∥ ⩽ M
n∑

i=1

|yi| = M∥Y∥

d'où le sens indirect. On a établi dans l'exercice 9 feuille 71 le résultat suivant :

Les solutions de (H) sont bornées sur R+ si et seulement si pour λ ∈ Sp (A),
on a Re (λ) < 0 ou Re (λ) = 0 et le bloc correspondant diagonalisable.

Avec l'équivalence (∗), on conclut

Les solutions de (H) sont stables sur R+ si et seulement si pour λ ∈ Sp (A),
on a Re (λ) < 0 ou Re (λ) = 0 et le bloc correspondant diagonalisable.

Exercice 5 (****)

Soit A : t 7→ A(t) continue de R+ dans Mn(R) telle que
∫ +∞

0

∥A(t)∥1 dt converge. Montrer que

toute solution de X′ = A(t)X admet une limite dans Mn,1(R) pour t→ +∞.
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Corrigé : Dans tout ce qui suit, la norme considérée est la norme ∥ · ∥1. Soit X solution de
X′ = A(t)X. On note X⊤ =

(
x1 . . . xn

)
. On a

∀t ⩾ 0 X(t) = X(0) +

∫ t

0

X′(s) ds = X(0) +

∫ t

0

A(s)X(s) ds

On observe sans di�culté∫ +∞

0

∥X′(s)∥ ds converge ⇐⇒ ∀i ∈ [[ 1 ; n ]]

∫ +∞

0

x′i(s) ds converge absolument

et cette dernière condition implique la converge de

∫ t

0

X′(s)ds pour t→ +∞. La norme ∥·∥1 véri�e

la propriété ∥A(s)X(s)∥ ⩽ ∥A(s)∥∥X(s)∥ pour tout s ⩾ 0 et combinée à l'inégalité triangulaire,
il vient

∀t ⩾ 0 ∥X(t)∥ ⩽ ∥X(0)∥+
∫ t

0

∥A(s)∥∥X(s)∥ ds

Alors, d'après le lemme de Gronwall, on obtient

∀t ⩾ 0 ∥X(t)∥ ⩽ ∥X(0)∥ exp
Å∫ t

0

∥A(s)∥ ds
ã

=
t→+∞

O(1)

d'où ∀t ⩾ 0 ∥X′(t)∥ = ∥A(t)X(t)∥ ⩽ ∥A(t)∥∥X(t)∥ = O (∥A(t)∥)

ce qui prouve l'intégrabilité de t 7→ ∥X′(t)∥ par comparaison. Avec l'équivalence préliminaire, on
conclut

Toute solution de X′ = A(t)X admet une limite dans Mn,1(R) pour t→ +∞.

Exercice 6 (****)

1. Montrer que l'exponentielle réalise une bijection entre les matrices nilpotentes et les ma-
trices unipotentes (de la forme In +N avec N nilpotente) de Mn(C).

2. Quelle est l'image de Mn(C) par l'exponentielle ?

Corrigé : 1. On rappelle que l'indice de nilpotence d'une matrice de Mn(C) est majoré par n.
Notons N l'ensemble des matrices nilpotentes de Mn(C) et considérons l'application dé�nie par

∀N ∈ N φ(N) = eN − In

Pour N ∈ N , on a

eN =
n−1∑
k=0

Nk

k!
= In +N′ avec N′ =

n−1∑
k=1

Nk

k!
= N× P(N) où P ∈ C[X]

La matrice N′ est donc nilpotente autrement dit l'application φ est dé�nie de N dans N . Mon-
trons qu'elle est bijective. Si on travaillait sur R, la réciproque de l'application x 7→ ex−1 serait
x 7→ ln(1+x) dé�nie de ]−1 ; +∞ [ dans R. On connaît le développement limité de x 7→ ln(1+x)
et on va simplement adapter son usage aux matrices nilpotentes. Posons

∀N ∈ N ψ(N) =
n−1∑
k=1

(−1)k−1N
k

k

L'application ψ est à valeurs dans N puisque pour N ∈ N , on a ψ(N) = N×Q(N) avec Q ∈ C[X].
Notons
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A =
n−1∑
k=1

Xk

k!
et B =

n−1∑
k=0

(−1)k−1X
k

k

On a ex − 1 =
x→0

A(x) + o(xn−1) et ln(1 + x) =
x→0

B(x) + o(xn−1)

et ∀N ∈ N φ(N) = A(N) et ψ(N) = B(N)

Notons πn−1 le projecteur de C[X] sur Cn−1[X] parallèlement à Vect (Xk, k ⩾ n). On a

e ln(1+x)−1 = x =
x→0

πn−1(A◦B)(x)+o(xn−1) et ln(1+ex−1) = x =
x→0

πn−1(B◦A)(x)+o(xn−1)

Par unicité du développement limité, on en déduit

πn−1(A ◦ B) = X et πn−1(B ◦ A) = X

Or, pour N ∈ N , du fait du caractère nilpotent, on a exactement

φ ◦ ψ(N) = πn−1(A ◦ B)(N) et ψ ◦ ϕ(N) = πn−1(B ◦ A)(N)

d'où ∀N ∈ N φ ◦ ψ(N) = ψ ◦ φ(N) = N

On conclut

L'exponentielle réalise une bijection entre matrices nilpotentes et unipotentes de Mn(C).

2. Montrons que exp (Mn(C)) = GLn(C). Soit B ∈ GLn(C) avec Sp (B) = {λ} où λ ∈ C∗.
D'après le théorème de Cayley-Hamilton, on a

χB(B) = 0 ⇐⇒ (B− λIn)
n = 0

Par suite, la matrice N =
1

λ
(B − λIn) est nilpotente et on a B = λ(In + N). D'après le résultat

de la question 1 et d'après la surjectivité de exp : C → C∗, on dispose de µ ∈ C et M ∈ Mn(C)
tels que

λ = eµ et In +N = eM

d'où B = eµeM = eµIn+M

Généralisons au cas d'une matrice B ∈ GLn(C) quelconque. Il existe P ∈ GLn(C) telle que
P−1BP soit une matrice diagonale par blocs de la forme

P−1BP = diag(λ1Im1 +N1, . . . , λrImr +Nr)

avec les Ni ∈ Mmi
(C) nilpotentes. D'après le cas préliminaire, on a

∀i ∈ [[ 1 ; r ]] ∃Mi ∈ Mni
(C) | λiIni

+Ni = eMi

d'où P−1BP = diag(eM1 , . . . , eMr) = exp [diag(M1, . . . ,Mr)]

et par suite B = Pexp [diag(M1, . . . ,Mr)] P
−1 = exp [P diag(M1, . . . ,Mr)P

−1]

On conclut exp (Mn(C)) = GLn(C)
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