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Feuille d’exercices n°72

Exercice 1 (**)
Soit A € 4, (C) telle que Sp (A) N2inZ = @.

1. Montrer que e® —I,, est inversible.

2. Soit B: R — .#,1(C) continue et 1-périodique. Montrer que I'équation

X' =AX + B(t)
admet une unique solution 1-périodique.
Corrigé : 1. Dans .#,(C), on dispose de P € GL,,(C), D diagonale et T triangulaire supérieure
stricte avec DT = TD telles que A = P(D+ T)P~™'. On a e = I, + T avec T/ = +OO£—T
triangulaire supérieure stricte. D’aprés la relation fondamentale de I'exponentielle, il Vien’E:1 .
Pl(er—1,)P=el AP — T, =eP*T — T, =ePeT — [, =eP +ePT' -1,

et on vérifie sans difficulté que ePT’ est triangulaire supérieure stricte (produit d’une matrice
diagonale par une matrice triangulaire supérieure stricte). On en déduit

Sp(e® —1I,) ={e*—=1,AeSp(A)}
Avec I’hypothése Sp (A) N 2inrZ = &, on conclut

La matrice e® — I,, est inversible.

2. Notons (L) le systéeme différentiel linéaire avec second membre. Soit X € Syi,.. Posons Y : ¢ —
X(t+1). On a clairement Y € Sp, d’ou Y — X solution du systéme homogéne (Y —X)" = A(Y —X)
et par conséquent

vVt e R (Y = X)(t) =e™Uy avec Uy € 4, (R)
Si (Y — X)(0) =0, il s’ensuit que X = Y. La réciproque étant immédiate, on a établi
X 1-périodique <= X(1) = X(0)

Par variation de la constante, on a

t
VteR  X(t)=e* <X0 + / e *AB(s) ds>
0

1
Par suite X(1) =X(0) — eA/ e AB(s) ds = — (e —1,,) X
0

1
— Xp=— (e - In)_l/ e *AB(s) ds
0

Ainsi L’équation (L) admet une unique solution 1-périodique.




Exercice 2 (***)

Soit A € o73(R). Pour « réel, on note

1. Montrer qu'il existe P € SO3(R) tel que PTAP = U(a) avec « réel.

2. Déterminer la nature des courbes paramétrées solutions de X' = AX.

Corrigé : 1. On adet(A) = det(AT) = det(—A) = (—1)*det(A) = — det(A)

d’ot det(A) = 0 et par conséquent 0 est valeur propre de A. On note E = R3. L’endomorphisme
u est antisymétrique, c’est-a-dire

V(r,y) e B2 (u(x),y) = — (z,u(y))

et I'induit par u sur un sev stable est clairement antisymétrique. Pour F sev stable par u, on a
FL stable par u. En effet, soit z € F-. On a

WeF  {ul@),y) = —(vuly) =0

Soit 1 € Eg(u) vecteur normée avec u € Z(E) canoniquement associé & A. Par conséquent, le
plan vectoriel F = Vect (1) est stable par u et 'endomorphisme induit up est antisymétrique.
Prenant #r = (e2,3) une base orthonormée de F, la matrice matg,ur est dans o%(R) et est

donc de la forme (2

0
construction une base orthonormée de E. Quitte & échanger £; par —e;, on peut la supposer
directe et on a matgu = U(«a). Ainsi, d’aprés les formules de changement de bases, comme
PT = P!, la matrice P étant orthogonale en tant que matrice de passage entre deux bases
orthonormées directes, on conclut

> avec « réel. Ainsi, notant B = (e1,¢e9,¢3), la famille Z est par

Il existe P € SO3(R) telle que PTAP = U(a) avec « réel.

2. Soit X solution de X’ = AX. Si a = 0, alors A = 0 d’ou X constante. La courbe paramétrée
par t — X(t) est donc réduite & un point. Supposons a # 0. On pose Y(t) = PTX(¢) pour tout
t réel. On a

X =AX <<= Y =U(o)Y
Ainsi VteR  Y(t) =eV@tY, =YY avec Y€ #,1(R)

Un calcul par bloc donne

1| 0 e 0 1| 0
U(at) __ _ —
Vte R e (at) —6Xp< 0 ‘ U(Oét) > — < 0 ‘ eU(oaf) > - ( 0 R,(Oét) >

matrice de rotation d’angle «. Ainsi, la courbe paramétrée par t — eV(@)Y, est 'ensemble des
points obtenus par rotation d’angle at de Y, autour de 'axe Vect (g1). 1l s’agit donc dun cercle
dans l'espace E. La transformation Y — PY étant isométrique, on conclut

Les courbes paramétrées solutions de X’ = AX sont des cercles de I'espace E.

Remarque : Le cas o = (0 donne aussi un cercle mais dégénéré, de rayon nul.



Exercice 3 (***%*)

Soient A et B deux matrices de .,(C). On note [A,B| le commutateur de A et B défini par
[A,B] = AB — BA. On suppose que le commutateur [A, B] commute avec A et B. On pose

VteR @(t) — g t(A+B)gtAtB

Pour t réel, déterminer une expression de (¢) en fonction de [A, B.

Corrigé : On rappelle que pour M € .#,,(C), la fonction t — e™ est dérivable avec
d
dt

La fonction ¢ est dérivable comme produit de telles fonctions et on trouve

Vit € R gol(t) — _e—t(A—i-B)(A 4 B)etAetB + e—t(A+B)etAAetB + e—t(A—i—B)etABetB

— o—t(A+B) (_BetA + etAB) otB

avec, par convergence absolue

[etM] — MetM — etMM

k

+00

t
tA | IAp _ N~ U TAkD _ pAk
Vi e R — Be™ +e B—kz:%k![AB BA]
On a AB — BA = [A B]
puis A’B —BA? =A(AB—-BA)+ (AB—-BA)A =2A[A, B|

On peut alors conjecturer Vk € N*  A*B — BA* = kAF-1[A B|

L’initialisation pour k = 1 est déja faite. Supposons la propriété vraie au rang k entier non nul.
Il vient

AFTIB — BAR! = A (A*B — BAF) 4 (AB — BA) A*
= kA*[A,B] + [A,B]A* = (k + 1)AF [A, B]

ce qui clot la récurrence. Il vient
+00 tk
104 — a—tA+B) N~ U A k-1 tB
vVt eR O(t)=e kz::lk!kA [A,BJe

tA ot ¢ ~tATB) of on obtient

Le commutateur [A, B] commute avec A et B donc A + B puis avec e
VteR  ¢(t) = e tAFBltetA[A Ble'® =t [A, B]o(t)
Par analogie avec le cas dans C, on calcule

dt
[A.B]

C [eam] = t[a, Blob1rm

+2

Enfin, les fonctions p et t — e = sont toutes deux solutions du probléme de Cauchy

X' =t[A,B]X

et d’aprés 'unicité du théoréme de Cauchy linéaire, on conclut

+2
vieR o(t) = e zAB]




Exercice 4 (***)
Soit A € 4, (C). On considére les solutions de 1'équation
X' = AX (H)
Pour X, € #,,1(C), on note t — ®(t,Xy) la solution du probléme de Cauchy
{X’ = AX
X(0) = Xo
Les solutions de (H) sont dites stables s’il existe C > 0 tel que
vVt >0 V(Xo,Xy) € A, (C)> 1D (t, Xo) — @(, X1)|| < C|| Xy — Xo|

Déterminer une condition nécessaire et suffisante sur la matrice A pour que les solutions de (H)
solent stables.

Corrigé : Dans tout ce qui suit, la norme considérée est la norme | - ||;. On a
V(t,Xo) ER x M1 (R) Bt Xo) = e™X,

Ainsi, pour (Xy,Xo) € #4,1(C)?, on a
ViE=0 Dt Xg) — D¢, Xy) = e Xy — Xy)

d’on V=0 [0t Xo) — @t Xy < [l Xo — X
Montrons I’équivalence

[ =_O(1) = ¥Y € Au1(C)  [eY] =_O(1) (+)

t—+oo

Le sens direct est immédiate puisque pour Y € ., 1(C), on a [le"*Y]| < [le]|||Y]|. Récipro-
n

quement, notant Y = > y;e; avec (e;)1<i<n base canonique de .4, 1(C), il vient par inégalité

i=1
triangulaire

VE2 0 [eY] < X [uil e el
i=1
On dispose de M > 0 tel que ||e**e;|] < M pour tout i € [1; n] et tout ¢ > 0. Tl vient
vt 0 [e™Y[ < MY [yl = M||Y]|
i=1

d’ot le sens indirect. On a établi dans 'exercice 9 feuille 71 le résultat suivant :

Les solutions de (H) sont bornées sur R, si et seulement si pour A € Sp (A),
on a Re (A) < 0 ou Re(\) =0 et le bloc correspondant diagonalisable.

Avec I'équivalence (x), on conclut

Les solutions de (H) sont stables sur R, si et seulement si pour A € Sp (A),
on a Re (A) <0 ou Re(\) =0 et le bloc correspondant diagonalisable.

Exercice 5 (****)

+00
Soit A : ¢ — A(t) continue de R, dans .#,(R) telle que / I|A(t)]|1 dt converge. Montrer que
0
toute solution de X’ = A(¢)X admet une limite dans .4, ; (R) pour t — +o0.



Corrigé : Dans tout ce qui suit, la norme considérée est la norme || - ||;. Soit X solution de
X' =A()X. On note X" = (1 ... z,).Ona

Vi>0  X(t)=X(0)+ /OtX’(s) ds = X(0) + /OtA(S)X(S) ds

On observe sans difficulté
“+00

+00
/ |X'(s)|| ds converge <= Vi€ [1;n] / x}(s) ds converge absolument
0 0

t
et cette derniére condition implique la converge de / X'(s)ds pour t — +00. La norme ||-||; vérifie
0
la propriété ||A(s)X(s)|| < ||A(s)|[|IX(s)]| pour tout s > 0 et combinée a 'inégalité triangulaire,
il vient

viZ0 X < [IXO)] + /OtHA(S)HHX(S)H ds

Alors, d’aprés le lemme de Gronwall, on obtient

viz0 X < [IX(0)] exp </0 [A(s)] d8> O(1)

t—+o00

ot viz0  X'@)) = [AOX® < JAGOIX@I = O ([[A@I])

ce qui prouve U'intégrabilité de ¢t — || X'(¢)|| par comparaison. Avec I’équivalence préliminaire, on
conclut

Toute solution de X" = A(#)X admet une limite dans .4, ;(R) pour ¢t — +o0.

Exercice 6 (****)

1. Montrer que ’exponentielle réalise une bijection entre les matrices nilpotentes et les ma-
trices unipotentes (de la forme I,, + N avec N nilpotente) de .#,(C).

2. Quelle est I'image de ., (C) par I'exponentielle ?

Corrigé : 1. On rappelle que l'indice de nilpotence d’une matrice de .,(C) est majoré par n.
Notons N l'ensemble des matrices nilpotentes de .#;,(C) et considérons 'application définie par

VNeN  oN)=eN-1,

Pour N € NV, on a

n—1 Nk n—1 k

eN=>S—=I,+N avec N =Y —=NxP(N) ou PeC[]

k=0 k! k=1 k!
La matrice N’ est donc nilpotente autrement dit ’application ¢ est définie de A" dans N'. Mon-
trons qu’elle est bijective. Si on travaillait sur R, la réciproque de I'application x — e® — 1 serait
x — In(1+ ) définie de | —1; +00 [ dans R. On connait le développement limité de z — In(1+x)
et on va simplement adapter son usage aux matrices nilpotentes. Posons

n—1 Nk
YWNeN  oN)= 3 (-1)'—
=1 k

L’application ¢ est a valeurs dans N puisque pour N € N, on a )(N) = Nx Q(N) avec Q € C[X].
Notons



A n—1Xk B n—1 . k—le
& ¢ PERCUT Y
On a e? —1 = A(z) +o(z™') et In(l+x) =, B(z) + o(z™ 1)
et VNeN  oN)=A(N) et ¢(N)=B(N)

Notons 7,_; le projecteur de C[X] sur C,_;[X] parallélement a Vect (X*,k > n). On a
elnl+?) 1 =g =, Tno1(AoB)(x)+o(2z™ 1) et In(l+e*—1)=ux =, Tn_1(BoA)(z)+o(z™ 1)
Par unicité du développement limité, on en déduit
T-1(AoB)=X et 7, 1(BoA)=X
Or, pour N € N, du fait du caractére nilpotent, on a exactement
potp)(N)=m,_1(AoB)(N) et ©op(N)=m,_1(BoA)N)
d’ou VN e N potp(N) =1 op(N)=N

On conclut

[’exponentielle réalise une bijection entre matrices nilpotentes et unipotentes de ., (C).

2. Montrons que exp (#,(C)) = GL,(C). Soit B € GL,(C) avec Sp (B) = {A\} ou A € C*.
D’aprés le théoréme de Cayley-Hamilton, on a

x5(B)=0 < (B—AL)" =0

1
Par suite, la matrice N = X(B — AlL,) est nilpotente et on a B = A(I,, + N). D’apreés le résultat

de la question 1 et d’aprés la surjectivité de exp : C — C*, on dispose de € C et M € #,(C)
tels que

A=¢e* et I,+N=eM
d’ot B = eteM = eplntM

Généralisons au cas d'une matrice B € GL,(C) quelconque. 1l existe P € GL,(C) telle que
P~!BP soit une matrice diagonale par blocs de la forme

P-1BP = diag(AiLn, + Ni, ..., ALy, +N,)
avec les N; € #,,.(C) nilpotentes. D’apreés le cas préliminaire, on a
Vi € [[1, Tﬂ M, € %m((C) | /\11?% +N; = eMi
d’ott P~IBP = diag(eM,... eM) = exp[diag(My, ..., M,)]

et par suite B = Pexp[diag(Mj,...,M,)] P~ = exp [P diag(Mj, ..., M,)P~]

On conclut exp (A4,(C)) = GL,(C)




