
ISM MP, Mathématiques
Année 2025/2026

Feuille d'exercices n°61

Exercice 1 (*)

Soit (Ω,A ,P) espace probabilisé et X variable aléatoire réelle discrète telle que X4 ∈ L1 et
véri�ant E(X2) = E(X4) = 1.

1. Montrer |E(X)| ⩽ 1

2. Déterminer la loi de X.

Corrigé : 1. On a V(X) ⩾ 0 ⇐⇒ E(X)2 ⩽ E(X2) = 1

D'où |E(X)| ⩽ 1

Remarque : La variable X admet un moment d'ordre 2 comme le sous-entend l'énoncé puisqu'on
a X2 ∈ L2 ⊂ L1.

2. On remarque V(X2) = 0

On en déduit (à redémontrer éventuellement)

X2 = Cte p.s.

Avec E(X2) = 1, on obtient X2 = 1 presque sûrement d'où X ∈ {−1, 1} presque sûrement. La
réciproque est immédiate. On conclut

P(X = 1) = p ∈ [ 0 ; 1 ] et P(X = −1) = 1− p

Exercice 2 (**)

Soit (Ω,A ,P) un espace probabilisé et X variable aléatoire réelle discrète telle que X(Ω) ⊂ [ a ; b ].

1. Établir V(X) ⩽
Å
b− a

2

ã2
2. Cette inégalité est-elle optimale ?

Corrigé : 1. La variable X est bornée et par conséquent X2 également ce qui assure que celle-ci
est d'espérance �nie. Puis, il vient

V(X) = V
Å
X− a+ b

2

ã
⩽ E
Å
X− a+ b

2

ã2

et
Å
X− a+ b

2

ã2
⩽
Å
b− a

2

ã2
Ainsi V(X) ⩽

Å
b− a

2

ã2
Il s'agit de l'inégalité de Popovicius.

2. Avec X∼U{a,b}, on a V(X) = E [(X− E(X))2] = E
Å
b− a

2

ã2
Ainsi L'inégalité obtenue est optimale puisqu'on a V(X) =

Å
b− a

2

ã2
.

Remarque : L'inégalité de Bathia-Davis améliore l'inégalité de Popovicius mais le majorant
fait intervenir E(X).
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Exercice 3 (**)

Soit (Ω,A ,P) un espace probabilisé, X et Y des variables aléatoires réelles discrètes �nies véri-
�ant

∀k ∈ N E(Xk) = E(Yk)

Montrer que X et Y ont même loi.

Corrigé : Par linéarité de l'espérance, on trouve

∀Q ∈ R[X] E(Q(X)) = E(Q(Y))

Notons A = X(Ω) ∪ Y(Ω) = {ai, i ∈ [[ 1 ; n ]]}. Par transfert, on a
n∑

i=1

Q(ai)P(X = ai) =
n∑

i=1

Q(ai)P(Y = ai)

En considérant la famille des polynômes de Lagrange (Lj)j associés à A, on obtient par linéarité
de l'espérance

∀j ∈ [[ 1 ; n ]] P(X = aj) = E(Lj(X)) = E(Lj(Y)) = P(Y = aj)

On conclut Les variables aléatoires X et Y ont même loi.

Exercice 4 (**)

Soit E un ensemble de cardinal n entier non nul. On tire au hasard et avec remise A, B des
parties de E. Déterminer P(Card (A ∩ B) = 1).

Corrigé : On choisit Ω = P(E)2 muni de la tribu discrète et de la probabilité uniforme. On
choisit l'élément de A ∩ B puis ceux de A∖ B puis ceux de B∖ A. On obtient

P(Card (A ∩ B) = 1) =
1

22n

n−1∑
k=0

n−1−k∑
ℓ=0

n
(
n−1
k

)(
n−1−k

ℓ

)
=

n

22n

n−1∑
k=0

(
n−1
k

)
2n−1−k =

n

22n
(1 + 2)n−1

Ainsi P(Card (A ∩ B) = 1) =
n3n−1

22n

Remarque : On peut aussi choisir une partie A non vide, choisir un élément de A puis choisir
B∖ A ce qui donne

P(Card (A ∩ B) = 1) =
1

22n

n∑
k=1

k
(
n
k

)n−k∑
ℓ=0

(
n−k
ℓ

)
=

1

22n

n∑
k=1

n
(
n−1
k−1

)
2n−k =

n3n−1

22n

Exercice 5 (**)

Soit E préhilbertien réel et (u1, . . . , un) ∈ En. On suppose qu'il existe C ⩾ 0 tel que

∀(ε1, . . . , εn) ∈ {−1, 1}n ∥
n∑

k=1

εkuk∥ ⩽ C

Montrer
n∑

k=1

∥uk∥2 ⩽ C2

Corrigé : Soit (Ω,A ,P) un espace probabilisé et X1, . . . ,Xn des variables indépendantes de loi
de Rademacher donc en particulier �nies. On a
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E(∥
n∑

k=1

Xkuk∥2) ⩽ C2

et par linéarité de l'espérance

E(∥
n∑

k=1

Xkuk∥2) =
n∑

i=1

∥ui∥2 + 2
∑

1⩽i<j⩽n

⟨ui, uj⟩E(XiXj) =
n∑

i=1

∥ui∥2

Ainsi
n∑

k=1

∥uk∥2 ⩽ C2

Remarque : On peut faire sans probabilités, par récurrence, mais c'est beaucoup moins joli.

Exercice 6 (**)

Soit (Ω,A ,P) un espace probabilisé, σ∼USn et Xσ le nombre de points �xes de σ. Justi�er que
Xσ est une variable aléatoire puis déterminer E(Xσ).

Corrigé : On a Xσ =
n∑

i=1

1σ(i)=i fonction de σ puis par linéarité de l'espérance

E(Xσ) = E
Å

n∑
i=1

1σ(i)=i

ã
=

n∑
i=1

P(σ(i) = i)

On conclut L'application Xσ est une variable aléatoire avec E(Xσ) = 1

Exercice 7 (*)

Soit (Ω,A ,P) un espace probabilisé et (Xn)n⩾1 une suite de variables aléatoires indépendantes

de même loi P(X1 = +− 1) = 1/2. On note Sn =
n∑

i=1

Xi pour n entier et Ln(t) = E
(
e
t Sn√

n

)
pour t

réel. Montrer que pour tout t réel, la suite (Ln(t))n converge.

Corrigé : Les variables aléatoires sont �nies. Soit t réel. Par indépendance des Xi et égalité en
loi, on trouve

Ln(t) = E
(
e
t Sn√

n

)
= E
Å

n∏
i=1

e t
Xi
n

ã
=

n∏
i=1

E
(
e
t
Xi√
n

)
= E

(
e
t
X1√
n

)n

et par transfert E
(
e
t
X1√
n

)
= ch

Å
t√
n

ã
d'où Ln(t) = ch

Å
t√
n

ãn
= e

n ln ch
(

t√
n

)
=

n→+∞
en( t

2n
+o( 1

n))

Ainsi ∀t ∈ R Ln(t) −−−→
n→∞

e
t2

2

Exercice 8 (**)

Soit (Ω,A ,P) un espace probabilisé et (Xn)n⩾1 une suite de variables aléatoires indépendantes

de même loi B (1/2). On note Sn =
n∑

i=1

Xi pour n entier non nul. Montrer
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P
Å
Sn ⩾

2n

3

ã
⩽ rn avec r = e− 1

6 ch

Å
1

2

ã
Corrigé : Par croissance stricte de l'exponentielle, on aß

Sn ⩾
2n

3

™
=
¶
eSn ⩾ e

2n
3

©
Puis d'après l'inégalité de Markov avec la variable aléatoire �nie eSn positive, on obtient

P
Å
Sn ⩾

2n

3

ã
⩽ e− 2n

3 E
(
eSn

)
Par indépendance des Xi et égalité en loi, il vient

E
(
eSn

)
= E
Å

n∏
i=1

eXi

ã
=

n∏
i=1

E(eXi) = E(eX1)n

et par transfert E(eX1) =
e 1 + 1

2
= e

1
2 ch

Å
1

2

ã
Ainsi ∀n ⩾ 1 P

Å
Sn ⩾

2n

3

ã
⩽ e−n

6 ch n

Å
1

2

ã
Exercice 9 (**)

Soit (Ω,A ,P) un espace probabilisé et (Xn)n⩾1 une suite de variables aléatoires indépendantes

de même loi B(x) avec x ∈ [ 0 ; 1 ]. On note Sn =
n∑

i=1

Xi pour n entier non nul. On considère

f : [ 0 ; 1 ] → R, t 7→ |t− 1/2| et on pose

∀x ∈ [ 0 ; 1 ] Bn(f)(x) = E
ï
f

Å
Sn

n

ãò
et ∆n(f) = ∥Bn(f)− f∥∞

1. Pour X ∈ L2, comparer E(X)2 et E(X2).

2. Véri�er que f est lipschitzienne.

3. Montrer ∆n(f) =
n→+∞

O
Å

1√
n

ã
Corrigé : 1.D'après l'inégalité de Cauchy-Schwarz appliquée aux variables aléatoires X et 1
(constante), il vient

E(X)2 = E(X× 1)2 ⩽ E(X2)× E(12) = E(X2)

Remarque : On peut aussi invoquer la relation de König-Huygens et la positivité de V(X) :

V(X) = E(X2)− E(X)2 ⩾ 0

2. Par inégalité triangulaire inverse, on a

∀(u, v) ∈ [ 0 ; 1 ]2 |f(u)− f(v)| = ||u− 1/2| − |v − 1/2|| ⩽ |u− v|

3. La variable aléatoire Sn est �nie. Soit x ∈ [ 0 ; 1 ]. Par inégalité triangulaire, il vient

|Bn(f)(x)− f(x)| =
∣∣∣∣E ïf ÅSn

n

ã
− f(x)

ò∣∣∣∣ ⩽ E
Å∣∣∣∣f ÅSn

n

ã
− f(x)

∣∣∣∣ã
Puis
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|Bn(f)(x)− f(x)| ⩽ E
Å∣∣∣∣Sn

n
− x

∣∣∣∣ã ⩽

√
E
ñÅ

Sn

n
− x

ã2ô
=

 
V
Å
Sn

n

ã
=

…
x(1− x)

n

On a la majoration ∀x ∈ [ 0 ; 1 ] x(1− x) ⩽
1

4

Par conséquent ∆n(f) ⩽
1

2
√
n
−−−→
n→∞
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Figure 1 � Tracé des graphes de x 7→ Bn(f)(x) pour n ⩾ 1

Exercice 10 (**)

Soient X1, . . . ,Xn une suite de variables aléatoires indépendantes de loi B(p) et N une variable
aléatoire indépendante des Xi avec N ∼ B(n, p) où n est un entier non nul et p ∈ ] 0 ; 1 [. On

note Y =
N∑
i=1

Xi.

1. Justi�er que Y est une variable aléatoire réelle discrète.

2. Déterminer la loi de Y à l'aide de fonctions génératrices mais sans recours aux familles

sommables. On pourra utiliser la variable aléatoire
n∑

j=0

1{N=j}.

3. Retrouver le résultat précédent sans utiliser les fonctions génératrices.

Corrigé : 1. On a

Y =
N∑
i=1

Xi = f(X1, . . . ,Xn,N) avec f(x1, . . . , xn,m) =
m∑
i=1

xi

Ainsi, on a Y fonction de variables aléatoires discrètes et par conséquent

L'application Y est une variable aléatoire réelle discrète.

2. Soit t ∈ [ 0 ; 1 ]. On a

GN(t) = E(tN) =
n∑

k=0

tkP(N = k) =
n∑

k=0

tk
(
n
k

)
pk(1− p)n−k =

n∑
k=0

(
n
k

)
(tp)k(1− p)n−k
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D'où GN(t) = (tp+ 1− p)n

Avec le système complet ({N = j})j∈[[ 0 ;n ]], on trouve

GY(t) = E(tY) = E
ñÅ

N∏
i=1

tXi

ãÇ
n∑

j=0

1{N=j}

åô
=

n∑
j=0

E
ñÇ

j∏
i=1

tXi

å
1{N=j}

ô
Par indépendance des Xi avec N puis indépendance des Xi entre elles, il vient

GY(t) =
n∑

j=0

E
Ç

j∏
i=1

Xi

å
E(1{N=j})

=
n∑

j=0

Ç
j∏

i=1

E(tXi)

å
P(N = j) =

n∑
j=0

Gj
X1
(t)P(N = j)

D'où GY = GN ◦GX1

Remarque : La preuve utilise un argument assez �n. Une variante plus naïve serait :
Par transfert, on a pour t réel

GY(t) = E(tY) =
n∑

k=0

ttP(Y = k)

En considérant le système complet ({N = j})j∈[[ 0 ;n ]], il vient d'après la formule des probabilités
totales pour k ∈ [[ 0 ; n ]]

P(Y = k) =
n∑

j=0

P
Å

N∑
i=1

Xi = k,N = j

ã
=

n∑
j=0

P
Ç

j∑
i=1

Xi = k,N = j

å
et par indépendance des Xi avec N

P(Y = k) =
n∑

j=0

P
Ç

j∑
i=1

Xi = k

å
P(N = j)

On remarque que P(
j∑

i=1

Xi = k) = 0 pour j < k d'où

GY(t) =
n∑

k=0

tk
Ç

n∑
j=k

P(
j∑

i=1

Xi = k)P(N = j)

å
=

∑
0⩽k⩽j⩽n

P(N = j)P(
j∑

i=1

Xi = k)tk

En changeant l'ordre de sommation, notant Zj =
j∑

i=1

Xi, on obtient

GY(t) =
n∑

j=0

P(N = j)

Ç
j∑

k=0

tkP(
j∑

i=1

Xi = k)

å
=

n∑
j=0

P(N = j)GZj
(t) =

n∑
j=0

P(N = j)GX1(t)
j

D'où GY = GN ◦GX1

Pour t ∈ [ 0 ; 1 ], il vient

GY(t) = GN(tx+ 1− x) = [(tp+ 1− p)p+ 1− p]n = (tp2 + 1− p2)n

Comme la fonction génératrice caractérise la loi, on conclut

La variable aléatoire Y suit la loi binomiale B(n, p2).

3. Soit k ∈ Y(Ω) ⊂ [[ 0 ; n ]]. D'après la formule des probabilités totales sur le système complet
({N = j})j∈[[ 0 ;n ]] puis indépendance des Xi avec N, il vient
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P(Y = k) =
n∑

j=0

P
Å

N∑
i=1

Xi = k,N = j

ã
=

n∑
j=0

P
Ç

j∑
i=1

Xi = k,N = j

å
=

n∑
j=0

P
Ç

j∑
i=1

Xi = k

å
P(N = j)

On sait que
j∑

i=1

Xi ∼ B(j, p) d'où P
Ç

j∑
i=1

Xi = k

å
= 0 si j < k. Par suite, on a

P(Y = k) =
n∑

j=k

P
Ç

j∑
i=1

Xi = k

å
P(N = j)

=
n∑

j=k

(
j
k

)
pk(1− p)j−k

(
n
j

)
pj(1− p)n−j = pk(1− p)n−k

n∑
j=k

(
j
k

)(
n
j

)
pj

Avec le changement d'indice ℓ = j − k, on obtient

P(Y = k) = pk(1− p)n−k
n−k∑
ℓ=0

(
j+k
k

)(
n

j+k

)
pℓ+k

= p2k(1− p)n−k
n−k∑
ℓ=0

n!

k!j!(n− k − j)!
pj =

n!

k!(n− k)!
p2k(1− p)n−k

n−k∑
j=0

(
n−k
j

)
pℓ

On identi�e alors un binôme et il vient

P(Y = k) =
(
n
k

)
p2k(1− p)n−k(1 + p)n−k =

(
n
k

)
p2k [(1− p)(1 + p)]n−k

On conclut Y suit la loi binomiale B(n, p2).

Exercice 11 (**)

Soit (Ω,A ,P) un espace probabilisé et X une variable aléatoire réelle positive �nie. Soit φ ∈
C 1([ 0 ; +∞ [ , [ 0 ; +∞ [) strictement croissante telle que φ(0) = 0. Montrer

E(φ(X)) =
∫ +∞

0

φ′(t)P(X ⩾ t) dt

Corrigé : On note φ(X)(Ω) = {y1, . . . , yn}. On a

E(φ(X)) =
n∑

k=1

ykP(φ(X) = yk)

=
n∑

k=1

∫ φ−1(yk)

0

φ′(t) dtP(φ(X) = yk) =
n∑

k=1

∫ +∞

0

φ′(t)1[ 0 ;φ−1(yk) ](t)P(φ(X) = yk) dt

Par linéarité car convergence des intégrales concernées, il vient

E(φ(X)) =
∫ +∞

0

φ′(t)
n∑

k=1

1[φ(t) ;+∞ [(yk)P(φ(X) = yk) dt =

∫ +∞

0

φ′(t)E
(
1{φ(X)⩾φ(t)}

)
dt

Par stricte croissance de φ, on a {φ(X) ⩾ φ(t)} = {X ⩾ t} et on conclut

E(φ(X)) =
∫ +∞

0

φ′(t)P(X ⩾ t) dt
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