ISM MP, Mathématiques
Année 2025/2026

Feuille d’exercices n°62

Exercice 1 (**)

Soit (£2,.27,P) un espace probabilisé et <Xi:j)1<ij<n
dépendantes d’espérance finie égale a u. On pose

weQ  Mw) = (Xij (), e € Aa(R)

des variables aléatoires réelles discrétes in-

Soit A réel. Justifier que yp(A) est une variable aléatoire réelle discréte d’espérance finie puis
calculer E(xm(A))-

Corrigé : Soit A € #,(R). On rappelle que det A = (o) H i (). S0it A réel. On a

ﬁ

xum(A) = det(XL, = M) = > e(0) ()‘52 o( Xiﬁ(i))

O'ESn

On en en déduit que xp(A) est bien une variable aléatoire réelle discréte en tant que fonction de

variables aléatoires réelles discrétes. Comme les X, ; sont indépendantes et d’espérance finie, il
n

s’ensuit que les variables aléatoires [] ()\(51',0(@-) — Xi,g(i)) sont d’espérance finie et par combinaison
i=1

linéaire, on obtient que yy(A) également. Par linéarité de 'espérance puis indépendance des

Aéi,a(i) — Xi,o(i)7 il vient

E(oi(N) = 3 2(0)E |

oES,

s

()\62 o(i) — <M O'(Z)):| = ; 6(0) F E (Aéi,a(i) - Xi,a(i))

=1

d’on, par linéarité E(xm(N) = > elo) [] ()\51-’0(1-) — ,u) = Xui(N)
i=1

O’GSn

avec J € #,(R) la matrice constituée de 1. Notant U la matrice colonne formée de 1, on a
JU=nJetrgJ =1doudimEyJ) =n—1et n € Sp(J). Par conséquent, la matrice J est
diagonalisable avec J semblable a D = diag(n,0,...,0). On conclut

E(xam(N) = xu(M) = x,p(A) = (A = np)A~!

Exercice 2 (***)

Soit (€2, o7, P) un espace probabilisé et (A, ), une suite d’événements. On note
A = « une infinité d’événements A,, est réalisée »

1. Montrer que A est un événement.
2. Si la série Y P(Aj) converge, montrer que P(A) = 0.

On suppose désormais les événements (A,,), indépendants.
N N
3. Montrer V(n,N) € N2 P <m Ak> < exp <— ZP(Ak))
k=n k=n
4. On suppose que y P(A,) diverge. Montrer que P(A) = 1.

1



Corrigé : 1. On a A = {w € Q | w appartient & une infinité de A, }

Ainsi, 'ensemble A s’écrit A= ﬂ U Ay

neN k>n

Par stabilité par intersection et union dénombrables, il s’ensuit

| L’ensemble A est un événement. |

2. Par continuité décroissante, on a

P(A) = lim P (U An>

n>N

+00
et d’apres I'inégalité de Boole P (U An> < Y P(A,)

n>N =

le majorant étant le reste d’une série convergente donc de limite nulle. Par comparaison, il vient

P(A)=0
3. Soit (n,N) € N2, On a par indépendance
N N - N
P{(A]=T1P@A) =1 (1—P(A)
k=n k=n k=n

Avec I'inégalité de convexité 1 + x < e” pour tout x réel, on obtient

V(n,N) € N2 <m Ak> exp <—k§;1P(Ak)>

4. Par continuité décroissante, on a

(%) s ()

et exp (— i:P(A;Q) —0

N—+o0

puisque ZIP’(Ak) — +00 (série divergente a termes positifs). Par comparaison, on a donc

k—n N—+o0
+00
Vn e N P(ﬂﬂ):@
k=n

Une union dénombrable d’événements négligeables étant négligeable, il s’ensuit par continuité
croissante

(A7) = (UfE) -

Par complémentation, on conclut

Si la série > P(A,) diverge, alors on a P(A) = 1.

Remarque : Ces résultats sont connus sous le nom de lemmes de Borel-Cantells.



Exercice 3 (***)

Soit (€2, &7, P) un espace probabilisé. Montrer

V(A,B) € @  |[P(A)P(B) - P(ANB)| <

A

puis préciser le cas d’égalité.
Corrigé : Soit (A, B) € &2, Avec le systéme complet {B, B}, on obtient
P(A)P(B) —P(ANB) = [IP’(A NB)+P(AN }_3)} P(B) — P(ANB)
=P(ANB)[PB) - 1] +P(AnNB)PB)
P(A)P(B) —P(ANB) = P(ANB)P(B) — P(B)P(ANB)

Do P(A)P(B) — P(ANB) < P(ANB)P(B) < P(B)P(B) = (1 — P(B))P(B) <

|

et P(A)P(B)—P(ANB) > —P(B)P(ANB) > —P(B)P(B) = —(1 — P(B))P(B) > —i

Ainsi V(A,B) € &>  [P(A)P(B) — P(ANB)| <

AN

1 _ _ _
L’inégalité est une égalité si P(B) = =, P(ANB) = P(B) et P(B)P(A N B) = 0 c’est-a-dire

(\]

P(ANB) =0ou P(B) =
Comme P(A) = P(ANB)

P(ANB) =P(B) et P(B)P(ANB) = 0 cest-a-dire P(A N B) = 0.

1
2’ _
+P(A N B), on conclut

1 1
L’inégalité est une égalité si et seulement si P(A) = P(B) = 5 et PLANB) = 5 ou P(ANB) = 5

1

Remarque : Il s’agit de 'inégalité dite de Kosmanek.

Variante : Soit (A, B) € &2, D’aprés 'inégalité de Cauchy-Schwarz, on a
|COV(]1A7 ]IB)‘ g U(]IA)O'(]IB)
Or, pour X variable aléatoire de loi Z(p) avec p € [0;1], on a

o(X) = VAT =P < 5

D’apres la relation de Konig-Huygens, il vient

Cov(1a, 1p) = E(141B) — E(1,)E(1p) = E(Lans) — E(Ly)E(Ls) = P(A N B) — P(A)P(B)

1 1
Le résultat suit. Si 'inégalité est une égalité, on a o(1,) = o(1p) = 1 d’on P(A) = P(B) = )
1
puis P(ANB) € {O, 5} La réciproque est immédiate.

Exercice 4 (***)

Soit (€2, &7, P) un espace probabilisé et o, ~ %, . On note X,, le nombre de points fixes de o,,.

Montrer P(X,=0) ——se!

n—o0




Corrigé : Notons Dy, ; e nombre de permutations de S, avec k points fixes. La famille ({X,, = k}),c[¢. ]
est un systéme complet d’événements d’ou

Comme o, suit la loi uniforme sur S,,, on a
Dn,k

n!
Or, choisir une permutation de S,, & k points fixes équivaut & choisir k& points fixes puis a choisir
une permutation sans point fixe (un dérangement) sur les n — k points restants. Comme il y a
(Z) maniéres de choisir les points fixes, on a

Vke[0;n]  Dux=(})Daro

Vk e [0;n] P(X, = k) =

")D,,— 1
n! !
no1
Do VneN 1= —P(X,=0)
i=ok!
Les séries entiéres 2— et Y P(X,, = 0)z" ont des rayons supérieurs a 1 d’ou, par produit de

Cauchy de séries entleres

vz € D(0, 1) :z:;z” _ (f'z—’v (fp(xn _ O)z”)

n=07 n=0

d'oit vz € D(0,1) gP(Xn gy 2 (fﬂ) <Zz )

n=0 7’L

A nouveau par théoréme du produit de Cauchy et unicité du développement en série entiére, on
conclut

o (~1)F
VneN P(X,=0)= )
O
Ainsi PX,=0) —se™!
n—o0

Variante : On peut utiliser la formule du crible (hors-programme donc a retrouver et a redé-

montrer). On a
Ak — )k+1 A
(U ) k:l 1<11< <Lip<n ﬂ Y
Par suite, on a

P(X, #0) = <U{0n —k}) :kil(—ukﬂ S P(o(ir) = i1,y 0nin) = i)

1<ii<...<ip<n

Comme o, suit la loi uniforme sur S,,, on a

]P(Xn 7£ 0) = kf:l(—l)k-i—llq <¥<i <n(n ;!k)! _ kznjl(_l)k+l (Z) (n n!k)! _ kil(_?, +
Ainsi ]P>(Xn — 0) -1 P(Xn 4 O) _ Xn: (_1)k

et on retrouve le résultat précédent.



Exercice 5 (***)

Peut-on truquer deux dés a six faces de sorte que la somme des points soit équirépartie sur
[2;12]7

Corrigé : Soient X et Y les résultats des lancers de chaque dé. Les variables aléatoires X,Y a
valeurs dans [1; 6] sont indépendantes. Supposons que X +Y ~ %f5.127. On a
1 12

6 6
Vte[0;1]  Gx(t) = Xat®  Gy(t) = 2 bt"  Gxav(t) = =3t
=1 i=1 11,

avec a = P(X = k) et by = P(Y = k) pour tout k € [1; 6]. Par indépendance de X et Y, on
obtient

YVt € [0, 1} Gx+Y(t) = Gx(t)Gy(t)

6 6 1 12
¢’est-a-dire Yt € [(); 1} <Zaktk> <Zbktk> — Ntk
k=1 k=1 112
5 5 £2 10
Apreés factorisation V¢ € [0;1] t? (Zak+1tk> (Zbkﬂtk) =St
k=0 k=0 11450

Notant T une indéterminée, on a
5 5 T2 10
T2 <Zak+1Tk> (Zbk+1Tk) = —ZTk
k=0 k=0 11,5
puisque la différence des deux polynémes admet une infinité de racines. Par suite
1 10

5 5
<Zak+1Tk) (ZkarlTk) = —ZTk
=0 =0 11:=%

10 10 ) 10 ‘
et (T—-1) (ZT’“> =T —1=TJ[ (T—e™) = (T-1) ] (T -e")
k=0 k=0 el

5 5 1 2ikm
d’ou <Z%+1Tk> (ZkaTk) =—1I (T - eT)
k=0 k=0 11 4=

1
I1 suffit alors d’observer agbs = — # 0 pour conclure puisque les polynomes intervenant dans le

produit a gauche sont de degré 5 donc admettent chacune une racine réelle tandis que le membre
de droite n’en admet aucune. Ainsi

On ne peut piper deux dés pour que leur somme suive une loi uniforme sur [2; 12].

Exercice 6 (***)
Soit (X,,)n>1 une suite de variables aléatoires indépendantes de loi Z(p) avec p € |0;1].
On pose Vn >1 Y, =X, X1

1. Déterminer la loi de Y,, pour n > 1.

2. Discuter de I'indépendance de Y; et Y; pour (i,7) € (N*)%

3. Montrer Ve >0 P ( > 5) —0

n—o0

]_ n
—NY, —p?
n P




Corrigé : 1. Soit n > 1. On a Y,,() € {0,1} et P(Y,, = 1) = P(X,, = 1,X,,11 = 1) = p? par
indépendance de X,, et X,,.1 d’ou

Vvn>1  Y,~%B(p*

2. Supposons ¢ # j et en particulier ¢ < j sans perte de généralité. Si j =i+ 1, on a

P(Yz’ =1,Yy1 = 1) = ]P(Xi =1, X1 =1, X540 = 1) = p3 7"é P4 = P<Yi = 1) X P(Yi+1 = 1)

D’ou ’Les variables aléatoires Y; et Y,;.; sont dépendantes. ‘

Sii+1 < j, comme (X;, X;11) et (X, X;41) sont indépendantes puisque {7,i + 1}N{j,j + 1} = &,
il s’ensuit

Les variables aléatoires Y; et Y; avec ¢ + 1 < j sont indépendantes.

3. Soit € > 0. D’aprés I'inégalité de Bienaymé-Tchebycheff, il vient
1 n

#(l ) < v (£Y)
n= c 252 Z

> Y —
n n n—1
On a \Y% (ZY2> = ZV(YZ) + 2 Z COV(YZ',Y]') = nV(Yl) + 2ZCOV(YZ',Y1‘+1)
i=1 =1 i=1

1<i<j<n

Les couples (Y;, Y;41) suivent tous la méme loi pour ¢ € [1; n —1]. Ainsi

v @1\() — nV(Y1) +2(n — 1)Cov(Y1,Ys) = O(n)

2 25)—>0

n—o0

Par suite Ve >0 P <

1 n
_ YZ _

Exercice 7 (***)
Soit E un ensemble fini de cardinal n.

1. Dénombrer le cardinal de 'ensemble des couples (X,Y) € P(E)? tels que X C Y.

2. Une urne contient n boules. On tire une poignée aléatoirement, on remet les boules dans
I'urne et on tire une deuxiéme poignée. Quelle est la probabilité pour qu’aucune boule
n’ait été tirée deux fois?

Corrigé : 1. Soit (X,Y) € P(E)2. Choisir X C Y équivaut a choisir X puis Z =Y . X puisque
Y = X UZ. Ainsi

Card {(X,Y) e P(E)}, X C Y} =Card {(X,Z) e P(E)>,Z e P(E~xX)}

Puis {((X,Z2) e P(E)%,Z € P(E~X)} |_| | | P(E X)
k=0 XeP(E),Card X=Ek
Par conséquent, il vient
n n k n
Card {(X,Y) e P(E)2,XCY} = 3 Card PE~X)= > ()X () = > (H2*
k=0XeP(E),Card X=k k=0 £=0 k=0
Ainsi Card {(X,Y) e P(E)2,XCY}=3"




Remarque : On peut aussi choisir Y a k éléments avec k € [0; n] puis choisir X une partie
de Y pour laquelle on a 2* choix et le résultat suit.

2. Soit (Q, &7, P) espace probabilisé et }N(, Z les variables aléatoires correspondant aux tirages
de poignées successifs. On a X et Z indépendantes de méme loi %pE) oit E est I'ensemble des
boules. On cherche P(XNZ = @). On a

-~ - _ Card {(X,Z) € P(E)%,XNZ =2}

PXNZ=2)= Card P(E)?
~ Card {(X,Z) e P(E)>,Z e P(EXX)}
B Card P(E)?
~ o~ 3 n
On conclut PXNZ=2)= (Z)

Remarques : (1) Pour lier plus précisément les deux questions, on peut interpréter le comptage
de X, Z parties de E vérifiant X N Z = @ comme le comptage de X, Z parties de E vérifiant
X CZ.

(2) Pour le cadre formel, on peut considérer @ = P(E)? muni de la tribu discréte et de la pro-
babilité uniforme et X : w = (wr,w2) = wy, 7 w= (w1, wsa) = wa.

(3) On peut aussi reformuler I’énoncé en considérant qu’un tirage de X ~ %p(1;,) (on nu-
mérote les éléments de E de 1 & n) équivaut a n tirages indépendants Xj,..., X,, de méme loi
2(1/2). Si on dispose de X, on définit X; = 1x (i) pour ¢ € [1; n]. Réciproquement, on définit
X ={ie[1;n],X;=1}. On peut alors vérifier qu’on a bien les comportements attendus. La
probabilité attendue s’écrit alors

P (ﬂ X =Y = 1}) — }jl(l CPXi=1,Y,= 1)) = G)"

Exercice 8 (***)

Soit (€2, 47, P) un espace probabilisé et X, Y indépendantes de loi uniforme sur P([1; n]) avec
n entier non nul. Calculer E(Card X) puis E(Card X NY).

Corrigé : Les variables aléatoires X et Y sont finies donc Card X et Card Y également et
admettent donc une espérance. On a clairement (Card X)(Q2) = (Card XN Y)(2) C [0;n]

et Card P([1;n]) = > (Z) = 2" puisque choisir une partie équivaut a choisir une partie a k

éléments pour k € [O;n] et il y a (Z) maniéres de choisir une partie a k éléments. Puis, on
trouve

E(Card X) = 3" kP(Card X = k)

k=0
et comme la variable X suit la loi uniforme

Acl; A= 1
Vke[0:n]  P(Card X — k) — S AC] ,Zn]]]Card k}:2_n(n)

autrement dit Card X ~ %(n,1/2). On obtient

E(Card X) = g




Ensuite, il vient, E(Card XNY) = > kP(Card XNY = k)

k=0
et comme les variables X et Y sont indépendantes et suivent la loi uniforme sur P([1; n]), alors
le couple (X,Y) suit la loi uniforme sur P([1; n])? et on a
Card {A,BC[1;n]| Card ANB =k}

22n
Reste donc évaluer ce numérateur qu’on note N. Compter les parties A, B dont I'intersection est
de cardinal égal a k équivaut a choisir d’abord cette intersection avec (Z) choix possibles puis
choisir les éléments de A hors de A N B soit choisir £ € [0; n — k] éléments avec (",*) choix
possibles et choisir les éléments de B qui ne sont pas dans A N B soit choisir p € [0; n— (k+¢)]

Vk e [0;n] P(Card XNY =k) =

éléments avec ("_(;fJFZ)) choix possibles. Ainsi, on trouve
n—kn-(k}+0) n\ (n—k\ (n—(k+£) n nk k+¢) (n—k
N = Zo pzo (lc)(ﬁ)( P ):(k);)Qn_(Jr)(e)

On remarque la somme restante est un bindéme de Newton développé d’ou
n n—k n—k(n
N:(k) (1+2) =3 k(k)

1 k n—k
et donc Vk e [0;n] IP’(CardXﬂY:k:):(Z) <4_1> (g)

c’est-a~dire Card XN'Y ~ #A(n,1/4) et on conclut

E(Card XNY) = —

Exercice 9 (***%*)

Soit (€2, &7, P) espace probablllse et (X;);5, une suite de variables indépendantes de loi uniforme

sur {—1,1}. On pose S,, = ZXi pour n entier. On appelle marche aléatoire la suite (S,)n>1.
i=1

1. Pour n > 1, préciser H X;(Q) et la loi du n-uplet (Xy,...,X,).

2. Soit f:R—>Retn> 1 Déterminer une expression sous forme de somme pour

Tn(f) = E(f(sn))

3. Pour f: R — R, en déduire la relation de récurrence

fe+)+ flz—1)
2

Vn > 2 T.(f)=T,-1(9) avec g:z—

Etablir la monotonie de la suite (E(|Sy|)),;-

Comparer les suites (E(|S,|)),>; et (V7)1

Déterminer la loi de S,, pour n entier non nul.

NS O

Montrer que la marche aléatoire repasse une infinité de fois presque siirement par zéro.

Corrigé : 1. Soit n > 1. On a X () ={-1,1}"
i=1




n

On remarque (Xy,...,X,)(Q) C [ Xi(Q2) et pour (z1,...,x,) € {—1,1}", il vient par indépen-

dance
n 1
P((Xlu 7Xn> = (Il’ 71771)) = H ]P)(Xl = ‘TZ) = 2_n
=1
Ainsi (Xpy ooy X)) ~ X1 yn

2.5itn>1et f:R—R. Ona

T(f) =BG = E (£ (%))

Par transfert, on obtient

Vi€ FRR) Va1 T.f)l=— X f <§:;1x>

2n (T1,eyzn ) E{—1,1}"

3.5itn>2et f:R—R. Ona

nh=5 X f(5n)

(@1 man)e{-11}" Ni=l

g, B sl (Earr) s (a)

(#1500 —1)E{—1,1}

On conclut ‘Vf € Z(R,R) Vn > 1 T,.(f) =Tn-1(9) ‘
4. Soit n > 1. On choisit f =|-|. On a
E([Sni1]) = E(g(Sa))

Pour x réel, il vient par inégalité triangulaire

1
|| :§]x+1+x—1] < g(x)
Par croissance de ’espérance, on conclut

Vn € N* E(|Sn+1]) = E(|Sx])

5. Soit n > 1. Avec I'inégalité de Cauchy-Schwarz ou la positivité de V(|S,|), on obtient
E(ISa])? < E((Sn)?) = V(Sn) =n

Ainsi Vvn>=1  E(S.]) <+vn

X;+1

6. La suite <

n (X 41
5 (%5

=1

) est une suite de variables indépendantes de loi #(1/2). Ainsi, on a

121

) ~ HB(n,1/2) puis

vk €[0;n] P(i (X’;l) :k) zP(Sn:%—n):Qin(Z)

—(é) si{+n € 2N

sinon

Ainsi Vle]—n;n] P(S, =) =




Remarque : Le calcul précédent dit plus précisément que S, (Q) = {2k —n,k € [0; n]}.

7. On pose Sg = 0. L’événement « la marche aléatoire passe un nombre fini de fois par zéro »
s’écrit
2n+k
A= |_|{sgn=()}mﬂ{ ) xﬁéo}
neN ps1 li=2n+1
autrement dit, la marche aléatoire passe une derniére fois en zéro a I'instant 2n pour un certain n

entier puis n’y repasse plus. Par incompatibilité et par indépendance de Sy, avec Xo,,11, Xopio, - - -
il vient
+00 2n+k
P(A) = > P(S2, = 0)P (ﬂ { > Xi# 0})
n=0 k>1 Li=2n+1

On a égalité en loi pour toutes familles finies extraites de (X;)ison41 €t (X;);>1. Par suite, avec
la continuité décroissante, on obtient

(0fEx ) e (A Fxo)
~ lim P (fK] {;Xi # 0}) =F (ﬂ {;Xi 7 O}>

k=1 * k>1

qui est donc une quantité indépendante de n et qu’on peut noter o. Ainsi, on a

P(A) = 3. P(S2 = O)a

. (2”) (2n)! 1
Par ailleurs Vn € N P(Sy, =0) = an 4n(n!)? nsioo ST

Pour que la somme définissant P(A) soit convergente, on a donc nécessairement o« = 0 et par
conséquent P(A) = 0 et on conclut

’La marche aléatoire repasse une infinité de fois par zéro presque stirement.

Exercice 10 (***)

1
Soit o € {0;5 { On pose

n n

meN  u,= > (1) w= X WE()
k=|an]|+1 k=|an|+1

Déterminer un équivalent simple de u,, et v, pour n — +oc.

Corrigé : Soit n entier. On a I’équivalence pour k entier

k> |lan]+1 < k>an

puis U, =2" > % =2"P(S,, >an) et P(S,>an)="P (ﬁ ! > —€>

an<k<n 2 n 2

n
avec S, = > X; ol (Xj)g=1 est une suite de variables aléatoires indépendantes de méme loi
i=1

1
HB(1/2) et € = > 0. Puis, on observe

10



Sn, 1

g =t g e3>
n 2 = c n 2 c n 2 c

D’aprés la loi faible des grands nombres, il vient

n 1 n
IP’(S——— <€> :1—IP’<S———’2€> — 1
n 2 n n—00
d’olt par comparaison P(S, > an) — 1
n—oo
On conclut U, ~ 2"
n—-+o0o

Par croissance de In, il vient

In(an) > (7) <va<In(n) > (})

an<k<n an<k<n
d’on In(an)u, < v, <In(n)u,
Ainsi v, ~ In(n)2"
n—+00

11



