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Feuille d'exercices n°62

Exercice 1 (**)

Soit (Ω,A ,P) un espace probabilisé et (Xi,j)1⩽i,j⩽n des variables aléatoires réelles discrètes in-
dépendantes d'espérance �nie égale à µ. On pose

∀ω ∈ Ω M(ω) =
(
Xi,j(ω)

)
1⩽i,j⩽n

∈ Mn(R)

Soit λ réel. Justi�er que χM(λ) est une variable aléatoire réelle discrète d'espérance �nie puis
calculer E(χM(λ)).

Corrigé : Soit A ∈ Mn(R). On rappelle que detA =
∑
σ∈Sn

ε(σ)
n∏

i=1

ai,σ(i). Soit λ réel. On a

χM(λ) = det(XIn −M) =
∑
σ∈Sn

ε(σ)
n∏

i=1

(
λδi,σ(i) − Xi,σ(i)

)
On en en déduit que χM(λ) est bien une variable aléatoire réelle discrète en tant que fonction de
variables aléatoires réelles discrètes. Comme les Xi,j sont indépendantes et d'espérance �nie, il

s'ensuit que les variables aléatoires
n∏

i=1

(
λδi,σ(i) − Xi,σ(i)

)
sont d'espérance �nie et par combinaison

linéaire, on obtient que χM(λ) également. Par linéarité de l'espérance puis indépendance des
λδi,σ(i) − Xi,σ(i), il vient

E(χM(λ)) =
∑
σ∈Sn

ε(σ)E
ï

n∏
i=1

(
λδi,σ(i) − Xi,σ(i)

)ò
=
∑
σ∈Sn

ε(σ)
n∏

i=1

E
(
λδi,σ(i) − Xi,σ(i)

)
d'où, par linéarité E(χM(λ)) =

∑
σ∈Sn

ε(σ)
n∏

i=1

(
λδi,σ(i) − µ

)
= χµJ(λ)

avec J ∈ Mn(R) la matrice constituée de 1. Notant U la matrice colonne formée de 1, on a
JU = nJ et rg J = 1 d'où dimE0(J) = n − 1 et n ∈ Sp (J). Par conséquent, la matrice J est
diagonalisable avec J semblable à D = diag(n, 0, . . . , 0). On conclut

E(χM(λ)) = χµJ(M) = χµD(λ) = (λ− nµ)λn−1

Exercice 2 (***)

Soit (Ω,A ,P) un espace probabilisé et (An)n une suite d'événements. On note

A = � une in�nité d'événements An est réalisée �

1. Montrer que A est un événement.

2. Si la série
∑

P(Ak) converge, montrer que P(A) = 0.

On suppose désormais les événements (An)n indépendants.

3. Montrer ∀(n,N) ∈ N2 P

(
N⋂

k=n

Ak

)
⩽ exp

Å
−

N∑
k=n

P(Ak)

ã
4. On suppose que

∑
P(An) diverge. Montrer que P(A) = 1.
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Corrigé : 1. On a A = {ω ∈ Ω | ω appartient à une in�nité de An}

Ainsi, l'ensemble A s'écrit A =
⋂
n∈N

⋃
k⩾n

Ak

Par stabilité par intersection et union dénombrables, il s'ensuit

L'ensemble A est un événement.

2. Par continuité décroissante, on a

P(A) = lim
N→+∞

P

(⋃
n⩾N

An

)

et d'après l'inégalité de Boole P

(⋃
n⩾N

An

)
⩽

+∞∑
n=N

P(An)

le majorant étant le reste d'une série convergente donc de limite nulle. Par comparaison, il vient

P(A) = 0

3. Soit (n,N) ∈ N2. On a par indépendance

P

(
N⋂

k=n

Ak

)
=

N∏
k=n

P
(
Ak

)
=

N∏
k=n

(1− P(Ak))

Avec l'inégalité de convexité 1 + x ⩽ ex pour tout x réel, on obtient

∀(n,N) ∈ N2 P

(
N⋂

k=n

Ak

)
⩽ exp

Å
−

N∑
k=n

P(Ak)

ã
4. Par continuité décroissante, on a

P

(
N⋂

k=n

Āk

)
−−−−→
N→+∞

P

(
+∞⋂
k=n

Ak

)

et exp

Å
−

N∑
k=n

P(Ak)

ã
−−−−→
N→+∞

0

puisque
N∑

k=n

P(Ak) −−−−→
N→+∞

+∞ (série divergente à termes positifs). Par comparaison, on a donc

∀n ∈ N P

(
+∞⋂
k=n

Ak

)
= 0

Une union dénombrable d'événements négligeables étant négligeable, il s'ensuit par continuité
croissante

P

(
+∞⋂
k=n

Ak

)
−−−→
n→∞

P

(⋃
n∈N

+∞⋂
k=n

Ak

)
= 0

Par complémentation, on conclut

Si la série
∑

P(An) diverge, alors on a P(A) = 1.

Remarque : Ces résultats sont connus sous le nom de lemmes de Borel-Cantelli.
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Exercice 3 (***)

Soit (Ω,A ,P) un espace probabilisé. Montrer

∀(A,B) ∈ A 2 |P(A)P(B)− P(A ∩ B)| ⩽ 1

4

puis préciser le cas d'égalité.

Corrigé : Soit (A,B) ∈ A 2. Avec le système complet
{
B, B̄

}
, on obtient

P(A)P(B)− P(A ∩ B) =
[
P(A ∩ B) + P(A ∩ B̄)

]
P(B)− P(A ∩ B)

= P(A ∩ B) [P(B)− 1] + P(A ∩ B̄)P(B)

P(A)P(B)− P(A ∩ B) = P(A ∩ B̄)P(B)− P(B̄)P(A ∩ B)

D'où P(A)P(B)− P(A ∩ B) ⩽ P(A ∩ B̄)P(B) ⩽ P(B̄)P(B) = (1− P(B))P(B) ⩽
1

4

et P(A)P(B)− P(A ∩ B) ⩾ −P(B̄)P(A ∩ B) ⩾ −P(B̄)P(B) = −(1− P(B))P(B) ⩾ −1

4

Ainsi ∀(A,B) ∈ A 2 |P(A)P(B)− P(A ∩ B)| ⩽ 1

4

L'inégalité est une égalité si P(B) =
1

2
, P(A ∩ B̄) = P(B̄) et P(B̄)P(A ∩ B) = 0 c'est-à-dire

P(A ∩ B) = 0 ou P(B) =
1

2
, P(A ∩ B) = P(B) et P(B)P(A ∩ B̄) = 0 c'est-à-dire P(A ∩ B) = 0.

Comme P(A) = P(A ∩ B) + P(A ∩ B̄), on conclut

L'inégalité est une égalité si et seulement si P(A) = P(B) =
1

2
et P(A ∩ B) =

1

2
ou P(A ∩ B̄) =

1

2
.

Remarque : Il s'agit de l'inégalité dite de Kosmanek.

Variante : Soit (A,B) ∈ A 2. D'après l'inégalité de Cauchy-Schwarz, on a

|Cov(1A,1B)| ⩽ σ(1A)σ(1B)

Or, pour X variable aléatoire de loi B(p) avec p ∈ [ 0 ; 1 ], on a

σ(X) =
√
p(1− p) ⩽

1

2

D'après la relation de König-Huygens, il vient

Cov(1A,1B) = E(1A1B)− E(1A)E(1B) = E(1A∩B)− E(1A)E(1B) = P(A ∩ B)− P(A)P(B)

Le résultat suit. Si l'inégalité est une égalité, on a σ(1A) = σ(1B) =
1

4
d'où P(A) = P(B) =

1

2

puis P(A ∩ B) ∈
ß
0,

1

2

™
. La réciproque est immédiate.

Exercice 4 (***)

Soit (Ω,A ,P) un espace probabilisé et σn∼USn . On note Xn le nombre de points �xes de σn.

Montrer P(Xn = 0) −−−→
n→∞

e−1
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Corrigé :NotonsDn,k le nombre de permutations de Sn avec k points �xes. La famille ({Xn = k})k∈[[ 0 ;n ]]

est un système complet d'événements d'où

1 =
n∑

k=0

P(Xn = k)

Comme σn suit la loi uniforme sur Sn, on a

∀k ∈ [[ 0 ; n ]] P(Xn = k) =
Dn,k

n!
Or, choisir une permutation de Sn à k points �xes équivaut à choisir k points �xes puis à choisir
une permutation sans point �xe (un dérangement) sur les n − k points restants. Comme il y a(
n
k

)
manières de choisir les points �xes, on a

∀k ∈ [[ 0 ; n ]] Dn,k =
(
n
k

)
Dn−k,0

Ainsi ∀k ∈ [[ 0 ; n ]] P(Xn = k) =

(
n
k

)
Dn−k,0

n!
=

1

k!
P(Xn−k = 0)

D'où ∀n ∈ N 1 =
n∑

k=0

1

k!
P(Xn−k = 0)

Les séries entières
∑zn

n!
et
∑

P(Xn = 0)zn ont des rayons supérieurs à 1 d'où, par produit de

Cauchy de séries entières

∀z ∈ D(0, 1)
+∞∑
n=0

zn =

Å
+∞∑
n=0

zn

n!

ãÅ
+∞∑
n=0

P(Xn = 0)zn
ã

d'où ∀z ∈ D(0, 1)
+∞∑
n=0

P(Xn = 0)zn =
e−z

1− z
=

Å
+∞∑
n=0

(−1)nzn

n!

ãÅ
+∞∑
n=0

zn
ã

À nouveau par théorème du produit de Cauchy et unicité du développement en série entière, on
conclut

∀n ∈ N P(Xn = 0) =
n∑

k=0

(−1)k

k!

Ainsi P(Xn = 0) −−−→
n→∞

e−1

Variante : On peut utiliser la formule du crible (hors-programme donc à retrouver et à redé-
montrer). On a

P

(
n⋃

k=1

Ak

)
=

n∑
k=1

(−1)k+1
∑

1⩽i1<...<ik⩽n

P

(
k⋂

j=1

Aij

)
Par suite, on a

P(Xn ̸= 0) = P

(
n⋃

k=1

{σn(k) = k}

)
=

n∑
k=1

(−1)k+1
∑

1⩽i1<...<ik⩽n

P(σn(i1) = i1, . . . , σn(ik) = ik)

Comme σn suit la loi uniforme sur Sn, on a

P(Xn ̸= 0) =
n∑

k=1

(−1)k+1
∑

1⩽i1<...<ik⩽n

(n− k)!

n!
=

n∑
k=1

(−1)k+1
(
n
k

)(n− k)!

n!
=

n∑
k=1

(−1)k+1

k!

Ainsi P(Xn = 0) = 1− P(Xn ̸= 0) =
n∑

k=0

(−1)k

k!

et on retrouve le résultat précédent.
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Exercice 5 (***)

Peut-on truquer deux dés à six faces de sorte que la somme des points soit équirépartie sur
[[ 2 ; 12 ]] ?

Corrigé : Soient X et Y les résultats des lancers de chaque dé. Les variables aléatoires X,Y à
valeurs dans [[ 1 ; 6 ]] sont indépendantes. Supposons que X+Y∼U[[ 2 ; 12 ]]. On a

∀t ∈ [ 0 ; 1 ] GX(t) =
6∑

k=1

akt
k GY(t) =

6∑
k=1

bkt
k GX+Y(t) =

1

11

12∑
k=2

tk

avec ak = P(X = k) et bk = P(Y = k) pour tout k ∈ [[ 1 ; 6 ]]. Par indépendance de X et Y, on
obtient

∀t ∈ [ 0 ; 1 ] GX+Y(t) = GX(t)GY(t)

c'est-à-dire ∀t ∈ [ 0 ; 1 ]

Å
6∑

k=1

akt
k

ãÅ
6∑

k=1

bkt
k

ã
=

1

11

12∑
k=2

tk

Après factorisation ∀t ∈ [ 0 ; 1 ] t2
Å

5∑
k=0

ak+1t
k

ãÅ
5∑

k=0

bk+1t
k

ã
=

t2

11

10∑
k=0

tk

Notant T une indéterminée, on a

T2

Å
5∑

k=0

ak+1T
k

ãÅ
5∑

k=0

bk+1T
k

ã
=

T2

11

10∑
k=0

Tk

puisque la di�érence des deux polynômes admet une in�nité de racines. Par suiteÅ
5∑

k=0

ak+1T
k

ãÅ
5∑

k=0

bk+1T
k

ã
=

1

11

10∑
k=0

Tk

et (T− 1)

Å
10∑
k=0

Tk

ã
= T11 − 1 =

10∏
k=0

Ä
T− e

2ikπ
11

ä
= (T− 1)

10∏
k=1

Ä
T− e

2ikπ
11

ä
d'où

Å
5∑

k=0

ak+1T
k

ãÅ
5∑

k=0

bk+1T
k

ã
=

1

11

10∏
k=1

Ä
T− e

2ikπ
11

ä
Il su�t alors d'observer a6b6 =

1

11
̸= 0 pour conclure puisque les polynômes intervenant dans le

produit à gauche sont de degré 5 donc admettent chacune une racine réelle tandis que le membre
de droite n'en admet aucune. Ainsi

On ne peut piper deux dés pour que leur somme suive une loi uniforme sur [[ 2 ; 12 ]].

Exercice 6 (***)

Soit (Xn)n⩾1 une suite de variables aléatoires indépendantes de loi B(p) avec p ∈ ] 0 ; 1 [.

On pose ∀n ⩾ 1 Yn = XnXn+1

1. Déterminer la loi de Yn pour n ⩾ 1.

2. Discuter de l'indépendance de Yi et Yj pour (i, j) ∈ (N∗)2.

3. Montrer ∀ε > 0 P
Å∣∣∣∣ 1n n∑

i=1

Yi − p2
∣∣∣∣ ⩾ ε

ã
−−−→
n→∞

0
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Corrigé : 1. Soit n ⩾ 1. On a Yn(Ω) ⊂ {0, 1} et P(Yn = 1) = P(Xn = 1,Xn+1 = 1) = p2 par
indépendance de Xn et Xn+1 d'où

∀n ⩾ 1 Yn∼B(p2)

2. Supposons i ̸= j et en particulier i < j sans perte de généralité. Si j = i+ 1, on a

P(Yi = 1,Yi+1 = 1) = P(Xi = 1,Xi+1 = 1,Xi+2 = 1) = p3 ̸= p4 = P(Yi = 1)× P(Yi+1 = 1)

D'où Les variables aléatoires Yi et Yi+1 sont dépendantes.

Si i+1 < j, comme (Xi,Xi+1) et (Xj,Xj+1) sont indépendantes puisque {i, i+ 1}∩{j, j + 1} = ∅,
il s'ensuit

Les variables aléatoires Yi et Yj avec i+ 1 < j sont indépendantes.

3. Soit ε > 0. D'après l'inégalité de Bienaymé-Tchebyche�, il vient

P
Å∣∣∣∣ 1n n∑

i=1

Yi − p2
∣∣∣∣ ⩾ ε

ã
⩽

1

n2ε2
V
Å

n∑
i=1

Yi

ã
On a V

Å
n∑

i=1

Yi

ã
=

n∑
i=1

V(Yi) + 2
∑

1⩽i<j⩽n

Cov(Yi,Yj) = nV(Y1) + 2
n−1∑
i=1

Cov(Yi,Yi+1)

Les couples (Yi,Yi+1) suivent tous la même loi pour i ∈ [[ 1 ; n− 1 ]]. Ainsi

V
Å

n∑
i=1

Yi

ã
= nV(Y1) + 2(n− 1)Cov(Y1,Y2) = O(n)

Par suite ∀ε > 0 P
Å∣∣∣∣ 1n n∑

i=1

Yi − p2
∣∣∣∣ ⩾ ε

ã
−−−→
n→∞

0

Exercice 7 (***)

Soit E un ensemble �ni de cardinal n.

1. Dénombrer le cardinal de l'ensemble des couples (X,Y) ∈ P(E)2 tels que X ⊂ Y.

2. Une urne contient n boules. On tire une poignée aléatoirement, on remet les boules dans
l'urne et on tire une deuxième poignée. Quelle est la probabilité pour qu'aucune boule
n'ait été tirée deux fois ?

Corrigé : 1. Soit (X,Y) ∈ P(E)2. Choisir X ⊂ Y équivaut à choisir X puis Z = Y ∖ X puisque
Y = X ∪ Z. Ainsi

Card {(X,Y) ∈ P(E)2,X ⊂ Y} = Card {(X,Z) ∈ P(E)2,Z ∈ P(E∖ X)}

Puis {(X,Z) ∈ P(E)2,Z ∈ P(E∖ X)} =
n⊔

k=0

⊔
X∈P(E),Card X=k

P(E∖ X)

Par conséquent, il vient

Card {(X,Y) ∈ P(E)2,X ⊂ Y} =
n∑

k=0

∑
X∈P(E),Card X=k

Card P(E∖ X) =
n∑

k=0

(
n
k

) k∑
ℓ=0

(
k
ℓ

)
=

n∑
k=0

(
n
k

)
2k

Ainsi Card {(X,Y) ∈ P(E)2,X ⊂ Y} = 3n
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Remarque : On peut aussi choisir Y à k éléments avec k ∈ [[ 0 ; n ]] puis choisir X une partie
de Y pour laquelle on a 2k choix et le résultat suit.

2. Soit (Ω,A ,P) espace probabilisé et X̃, Z̃ les variables aléatoires correspondant aux tirages
de poignées successifs. On a X̃ et Z̃ indépendantes de même loi UP(E) où E est l'ensemble des
boules. On cherche P(X̃ ∩ Z̃ = ∅). On a

P(X̃ ∩ Z̃ = ∅) =
Card {(X,Z) ∈ P(E)2,X ∩ Z = ∅}

Card P(E)2

=
Card {(X,Z) ∈ P(E)2,Z ∈ P(E∖ X)}

Card P(E)2

On conclut P(X̃ ∩ Z̃ = ∅) =

Å
3

4

ãn
Remarques : (1) Pour lier plus précisément les deux questions, on peut interpréter le comptage
de X, Z parties de E véri�ant X ∩ Z = ∅ comme le comptage de X, Z̄ parties de E véri�ant
X ⊂ Z̄.
(2) Pour le cadre formel, on peut considérer Ω = P(E)2 muni de la tribu discrète et de la pro-
babilité uniforme et X̃ : ω = (ω1, ω2) 7→ ω1, Z̃ : ω = (ω1, ω2) 7→ ω2.
(3) On peut aussi reformuler l'énoncé en considérant qu'un tirage de X ∼ UP([[ 1 ;n ]]) (on nu-
mérote les éléments de E de 1 à n) équivaut à n tirages indépendants X1,. . ., Xn de même loi
B(1/2). Si on dispose de X, on dé�nit Xi = 1X(i) pour i ∈ [[ 1 ; n ]]. Réciproquement, on dé�nit
X = {i ∈ [[ 1 ; n ]],Xi = 1}. On peut alors véri�er qu'on a bien les comportements attendus. La
probabilité attendue s'écrit alors

P

(
n⋂

i=1

{Xi = Yi = 1}

)
=

n∏
i=1

(1− P(Xi = 1,Yi = 1)) =

Å
3

4

ãn
Exercice 8 (***)

Soit (Ω,A ,P) un espace probabilisé et X,Y indépendantes de loi uniforme sur P([[ 1 ; n ]]) avec
n entier non nul. Calculer E(Card X) puis E(Card X ∩ Y).

Corrigé : Les variables aléatoires X et Y sont �nies donc Card X et Card Y également et
admettent donc une espérance. On a clairement (Card X)(Ω) = (Card X ∩ Y)(Ω) ⊂ [[ 0 ; n ]]

et Card P([[ 1 ; n ]]) =
n∑

k=0

(
n
k

)
= 2n puisque choisir une partie équivaut à choisir une partie à k

éléments pour k ∈ [[ 0 ; n ]] et il y a
(
n
k

)
manières de choisir une partie à k éléments. Puis, on

trouve

E(Card X) =
n∑

k=0

kP(Card X = k)

et comme la variable X suit la loi uniforme

∀k ∈ [[ 0 ; n ]] P(Card X = k) =
Card {A ⊂ [[ 1 ; n ]] | Card A = k}

2n
=

1

2n
(
n
k

)
autrement dit Card X∼B(n, 1/2). On obtient

E(Card X) =
n

2
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Ensuite, il vient E(Card X ∩ Y) =
n∑

k=0

kP(Card X ∩ Y = k)

et comme les variables X et Y sont indépendantes et suivent la loi uniforme sur P([[ 1 ; n ]]), alors
le couple (X,Y) suit la loi uniforme sur P([[ 1 ; n ]])2 et on a

∀k ∈ [[ 0 ; n ]] P(Card X ∩ Y = k) =
Card {A,B ⊂ [[ 1 ; n ]] | Card A ∩ B = k}

22n

Reste donc évaluer ce numérateur qu'on note N. Compter les parties A, B dont l'intersection est
de cardinal égal à k équivaut à choisir d'abord cette intersection avec

(
n
k

)
choix possibles puis

choisir les éléments de A hors de A ∩ B soit choisir ℓ ∈ [[ 0 ; n − k ]] éléments avec
(
n−k
ℓ

)
choix

possibles et choisir les éléments de B qui ne sont pas dans A∩B soit choisir p ∈ [[ 0 ; n− (k+ ℓ) ]]
éléments avec

(
n−(k+ℓ)

p

)
choix possibles. Ainsi, on trouve

N =
n−k∑
ℓ=0

n−(k+ℓ)∑
p=0

(
n
k

)(
n−k
ℓ

)(
n−(k+ℓ)

p

)
=
(
n
k

)n−k∑
ℓ=0

2n−(k+ℓ)
(
n−k
ℓ

)
On remarque la somme restante est un binôme de Newton développé d'où

N =
(
n
k

)
(1 + 2)n−k = 3n−k

(
n
k

)
et donc ∀k ∈ [[ 0 ; n ]] P (Card X ∩ Y = k) =

(
k
n

)Å1
4

ãk Å3
4

ãn−k

c'est-à-dire Card X ∩ Y∼B(n, 1/4) et on conclut

E(Card X ∩ Y) =
n

4

Exercice 9 (****)

Soit (Ω,A ,P) espace probabilisé et (Xi)i⩾1 une suite de variables indépendantes de loi uniforme

sur {−1, 1}. On pose Sn =
n∑

i=1

Xi pour n entier. On appelle marche aléatoire la suite (Sn)n⩾1.

1. Pour n ⩾ 1, préciser
n∏

i=1

Xi(Ω) et la loi du n-uplet (X1, . . . ,Xn).

2. Soit f : R → R et n ⩾ 1. Déterminer une expression sous forme de somme pour

Tn(f) = E(f(Sn))

3. Pour f : R → R, en déduire la relation de récurrence

∀n ⩾ 2 Tn(f) = Tn−1(g) avec g : x 7→ f(x+ 1) + f(x− 1)

2

4. Établir la monotonie de la suite (E(|Sn|))n⩾1.

5. Comparer les suites (E(|Sn|))n⩾1 et (
√
n)n⩾1.

6. Déterminer la loi de Sn pour n entier non nul.

7. Montrer que la marche aléatoire repasse une in�nité de fois presque sûrement par zéro.

Corrigé : 1. Soit n ⩾ 1. On a
n∏

i=1

Xi(Ω) = {−1, 1}n

8



On remarque (X1, . . . ,Xn)(Ω) ⊂
n∏

i=1

Xi(Ω) et pour (x1, . . . , xn) ∈ {−1, 1}n, il vient par indépen-

dance

P ((X1, . . . ,Xn) = (x1, . . . , xn)) =
n∏

i=1

P(Xi = xi) =
1

2n

Ainsi (X1, . . . ,Xn) ∼ U{−1,1}n

2. Soit n ⩾ 1 et f : R → R. On a

Tn(f) = E(f(Sn)) = E
Å
f

Å
n∑

k=1

Xk

ãã
Par transfert, on obtient

∀f ∈ F (R,R) ∀n ⩾ 1 Tn(f) =
1

2n
∑

(x1,...,xn)∈{−1,1}n
f

Å
n∑

i=1

xi

ã
3. Soit n ⩾ 2 et f : R → R. On a

Tn(f) =
1

2n
∑

(x1,...,xn)∈{−1,1}n
f

Å
n∑

i=1

xi

ã
=

1

2n−1

∑
(x1,...,xn−1)∈{−1,1}n−1

1

2

ï
f

Å
n−1∑
i=1

xi + 1

ã
+ f

Å
n−1∑
i=1

xi − 1

ãò
On conclut ∀f ∈ F (R,R) ∀n ⩾ 1 Tn(f) = Tn−1(g)

4. Soit n ⩾ 1. On choisit f = |·|. On a

E(|Sn+1|) = E(g(Sn))

Pour x réel, il vient par inégalité triangulaire

|x| = 1

2
|x+ 1 + x− 1| ⩽ g(x)

Par croissance de l'espérance, on conclut

∀n ∈ N∗ E(|Sn+1|) ⩾ E(|Sn|)

5. Soit n ⩾ 1. Avec l'inégalité de Cauchy-Schwarz ou la positivité de V(|Sn|), on obtient

E(|Sn|)2 ⩽ E((Sn)
2) = V(Sn) = n

Ainsi ∀n ⩾ 1 E(|Sn|) ⩽
√
n

6. La suite
Å
Xi + 1

2

ã
i⩾1

est une suite de variables indépendantes de loi B(1/2). Ainsi, on a

n∑
i=1

Å
Xi + 1

2

ã
∼B(n, 1/2) puis

∀k ∈ [[ 0 ; n ]] P
Å

n∑
i=1

Å
Xi + 1

2

ã
= k

ã
= P(Sn = 2k − n) =

1

2n
(
n
k

)

Ainsi ∀ℓ ∈ [[−n ; n ]] P(Sn = ℓ) =


1

2n
(

n
ℓ+n
2

)
si ℓ+ n ∈ 2N

0 sinon
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Remarque : Le calcul précédent dit plus précisément que Sn(Ω) = {2k − n, k ∈ [[ 0 ; n ]]}.

7. On pose S0 = 0. L'événement � la marche aléatoire passe un nombre �ni de fois par zéro �
s'écrit

A =
⊔
n∈N

{S2n = 0} ∩
⋂
k⩾1

®
2n+k∑

i=2n+1

Xi ̸= 0

´
autrement dit, la marche aléatoire passe une dernière fois en zéro à l'instant 2n pour un certain n
entier puis n'y repasse plus. Par incompatibilité et par indépendance de S2n avecX2n+1,X2n+2, . . .,
il vient

P(A) =
+∞∑
n=0

P(S2n = 0)P

(⋂
k⩾1

®
2n+k∑

i=2n+1

Xi ̸= 0

´)
On a égalité en loi pour toutes familles �nies extraites de (Xi)i⩾2n+1 et (Xi)i⩾1. Par suite, avec
la continuité décroissante, on obtient

P

(⋂
k⩾1

®
2n+k∑

i=2n+1

Xi ̸= 0

´)
= lim

K→+∞
P

(
K⋂

k=1

®
2n+k∑

i=2n+1

Xi ̸= 0

´)
= lim

K→+∞
P

(
K⋂

k=1

ß
k∑

i=1

Xi ̸= 0

™)
= P

(⋂
k⩾1

ß
k∑

i=1

Xi ̸= 0

™)
qui est donc une quantité indépendante de n et qu'on peut noter α. Ainsi, on a

P(A) =
+∞∑
n=0

P(S2n = 0)α

Par ailleurs ∀n ∈ N P(S2n = 0) =

(
2n
n

)
4n

=
(2n)!

4n(n!)2
∼

n→+∞

1√
πn

Pour que la somme dé�nissant P(A) soit convergente, on a donc nécessairement α = 0 et par
conséquent P(A) = 0 et on conclut

La marche aléatoire repasse une in�nité de fois par zéro presque sûrement.

Exercice 10 (***)

Soit α ∈
ï
0 ;

1

2

ï
. On pose

∀n ∈ N un =
n∑

k=⌊αn⌋+1

(
n
k

)
vn =

n∑
k=⌊αn⌋+1

ln(k)
(
n
k

)
Déterminer un équivalent simple de un et vn pour n → +∞.

Corrigé : Soit n entier. On a l'équivalence pour k entier

k ⩾ ⌊αn⌋+ 1 ⇐⇒ k > αn

puis un = 2n
∑

αn<k⩽n

(
n
k

)
2n

= 2nP(Sn > αn) et P(Sn > αn) = P
Å
Sn

n
− 1

2
> −ε

ã
avec Sn =

n∑
i=1

Xi où (Xk)k⩾1 est une suite de variables aléatoires indépendantes de même loi

B(1/2) et ε =
1

2
− α > 0. Puis, on observe
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ß∣∣∣∣Sn

n
− 1

2

∣∣∣∣ < ε

™
=

ß
−ε <

Sn

n
− 1

2
< ε

™
⊂
ß
Sn

n
− 1

2
> −ε

™
D'après la loi faible des grands nombres, il vient

P
Å∣∣∣∣Sn

n
− 1

2

∣∣∣∣ < ε

ã
= 1− P

Å∣∣∣∣Sn

n
− 1

2

∣∣∣∣ ⩾ ε

ã
−−−→
n→∞

1

d'où par comparaison P(Sn > αn) −−−→
n→∞

1

On conclut un ∼
n→+∞

2n

Par croissance de ln, il vient

ln(αn)
∑

αn<k⩽n

(
n
k

)
⩽ vn ⩽ ln(n)

∑
αn<k⩽n

(
n
k

)
d'où ln(αn)un ⩽ vn ⩽ ln(n)un

Ainsi vn ∼
n→+∞

ln(n)2n

11


