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Dans ce qui suit, I'ensemble K désigne le corps R ou C et ’ensemble I un intervalle de R non
vide non réduit a un point.

Rappels : Soient E,F des K-ev et & €
Z(E,F). Notant Sp, I'ensemble des solutions
de I'équation linéaire (L) : ®(z) = b d’incon-
nue x € E avec b € F, aon a S, = @ ou /'TP
St, = zp + Ker ® avec xp € St.. /

S;, = ap + Ker ©

Ker ¢

FIGURE 1 — Espace affine de solutions
Vocabulaire : Une équation différentielle d’ordre p est dite sous forme normalisée si elle s’écrit
z®) = f (t, x,x, ... ,x(p_l))
I Equations différentielles linéaires scalaires d’ordre 1

1 Définitions

Définition 1. Une équation différentielle linéaire scalaire d’ordre 1 sur I est une équation de
la forme

' =a(t)x + b(t) (L)
avec a, b dans €°(1,K). Une solution de (L) est une application f : 1 — K dérivable telle que
vVt el f'(t) =a(t)f(t) + b(t)

Vocabulaire : L’équation ¥ =a(t)x (H)

est appelée équation homogéne associée a 'équation (L). Le terme b est appelé second membre.

Notations : On note Si, I'ensemble des solutions de (L) et Sy I'ensemble des solutions de (H).

Proposition 1. Soient a, b dans €°(1,K) et I'équation différentielle linéaire scalaire d’ordre 1
' =a(t)x + b(t) (L)
Toute solution de (L) ou de (H) est dans €' (I, K).

Démonstration. Si x € Sy, alors 2/ = ax +b € €°(LK) don x € €'(I,K). Le cas de Sy
s’obtient avec b = 0. [

2 Probléme de Cauchy

Définition 2. Soient a, b dans €°(I,K) et (to,70) € I x K. Le systéme

{x’ = a(t)z +b(t) (L)

est dit probléme de Cauchy. L’équation (CI) est la condition initiale du probléme de Cauchy.
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Remarque : Ce probléme de Cauchy peut aussi s’écrire sous forme intégrale :

Vtel z(t) = o +/ la(s)z(s) +b(s)] ds

to

Théoréme 1 (Théoréme de Cauchy linéaire). Soient a, b dans €°(1,K) et (t, zo) € IXK.
1l existe une unique solution au probléme de Cauchy

{x’ =a(t)x+0b(t) (L)

t

t

Démonstration. On pose A : t + [ a(s)ds. La fonction ¢ — eA® |z + / e ~AlD(s) ds} est
to to

solution du probléme. Si x est solution, on pose A : ¢t — e A"z (¢). La fonction X est dérivable

avec X'(t) = e A®Wp(¢) pour ¢ € I. L’unicité s’ensuit aprés intégration. O

3 Forme des solutions

Théoréme 2. Soit a € €°(I,K) et ['équation différentielle linéaire homogéne d’ordre 1

7 = a(t)z (H)

t
Alors Su = Vect (p) avec @ :tr>ed® et At) = / a(s) ds

En particulier, ’ensemble Sy est une droite vectorielle de (1, K).

Démonstration. Soit x dérivable. On a

¥ =a(t)r < % [e=20z(t)] =0

d’out le résultat. O

Corollaire 1. Soient a, b dans €°(1,K) et ’équation différentielle linéaire d’ordre 1
' = a(t)r + b(t) (L)
L’ensemble Sy, est une droite affine de €*(1,K) de direction Sy, plus précisément

Sy, = xp + Vect (9) avec @ :trser® et 2p Sy

Démonstration. D’aprés le théoréme de Cauchy linéaire, il existe une solution xp € Sy, (choisir
to € I et une condition initiale x(). Puis, on a

T €S, < z—op €Sy

et Pensemble zp + Sy est inclus dans €' (I, K). O

Vocabulaire : On appelle courbes intégrales de (L) les graphes des solutions de (L).
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Proposition 2 (Principe de superposition). Soient @1, @y des solutions respectives de
' = a(t)r + by (t) (Ly)
' = a(t)x + ba(t) (Ly)
avec a, by, by € €°(1,K). Alors pour (a1, as) € K2, Uapplication aypy + aspy est solution de
' = a(t)r + arb(t) + azby(t)

Démonstration. Immeédiate. O

Proposition 3 (Variation de la constante). Soient a, b dans €°(I,K) et I’équation diffé-
rentielle linéaire d’ordre 1

' = a(t)r + b(t) (L)

Soit ¢ solution non nulle de [’équation homogéne associée et \ : 1 — K dérwable. Alors, la
fonction ¢ ne s’annule pas sur 1 et on a

Ap €S <= N =b <= N =b/p

Démonstration. On a
Ap €S <= No+ A =a\p+b <= Np=0»

En supposant ¢ non nulle, on a mieux a savoir que la fonction ¢ ne s’annule pas puisque
¢ € Vect (t+— e*)) avec A primitive de a. Ainsi, on a

Ap €S, <= N =0b/p
et le choix de A s’ensuit par intégration. O

Remarque : Cette technique permet de trouver le choix de solution faite pour la démonstration
du théoréeme de Cauchy linéaire, obtenue en posant x = Ap.
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II Equations différentielles linéaires scalaires d’ordre 2

1 Définitions

Définition 3. Une équation différentielle linéaire scalaire d’ordre 2 sur [ est une équation de
la forme

2" =a(t)z’ + b(t)x + c(t) (L)

avec a, b, ¢ dans €°(1,K). Une solution de (L) est une application f : 1 — K deuz fois dérivable
telle que

viel  f'(t) = a())f'(t) + b(£) f(#) + c(t)

Vocabulaire : L’équation 2" = a(t)z’ +b(t)x (H)

est appelée équation homogéne associée a 1’équation (L). Le terme c est appelé second membre.

Notations : On note Sy, 'ensemble des solutions de (L) et Sy I'ensemble des solutions de (H).

Proposition 4. Soient a, b, ¢ dans €°(1,K) et [’équation différentielle linéaire d’ordre 2
" =a(t)x’ +b(t)r + c(t) (L)
Toute solution de (L) ou de (H) est dans €¢*(I,K).

Démonstration. Si x € Sy, alors 2" = ax’ + br + ¢ € €°(I,K) d’'ou z € €*(I,K). Le cas de Sy
s’obtient avec ¢ = 0. O

2 Probléme de Cauchy

Définition 4. Soient a, b, ¢ dans €°(1,K) et (ty, o, v9) € I x K2 Le systéme
{:B” =a(t)r' +b(t)x +c(t) (L)
(x(to), «'(to)) = (w0, v0)  (CI)

est dit probléme de Cauchy. Les équations (CI) constituent les conditions initiales du probléeme
de Cauchy.

Théoréme 3 (Cauchy linéaire). Soient a, b, ¢ dans €°(I,K) et (to, o, v0) € I x K2. Il emiste
une unique solution au probleme de Cauchy

{x” =a(t)r’ +b(t)xr +c(t) (L)
(x(to), 2'(t0)) = (zo,v0)  (CI)

|Admis]

3 Forme des solutions

Théoréme 4. Soient a, b, ¢ dans €°(1,K) et [’équation différenticlle linéaire d’ordre 2
2" =a(t)r’ + b(t)x + c(t) (L)

L’ensemble Sy est un plan vectoriel de €*(1,K) et l’ensemble Sy, est un plan affine de €*(1,K)
de direction Sg.
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Démonstration. Soit E = €*(I,K), F = ¢°(LK) et ® : E —» F,z — 2’ — a2’ — bz. On a
¢ € Z(E,F), Sy = Ker ®. D’apreés le théoréme de Cauchy linéaire, quitte a choisir des condi-
tions initiales, ’équation (L) admet une solution donc Sy, est non vide d’ou Sy, = zp + Ker ®
avec Tp € Sy, sous-espace affine de €*(I, K).

Soit tg € T et @y : Sg — K2,z — (z(tg),2'(to)). On a clairement ®y € £ (S, K?) et d’aprés
le théoréme de Cauchy linéaire, I'application @, est un isomorphisme d’ott dim Sy = dimK? =

2. ]
Proposition 5 (Principe de superposition). Soient @1, oo des solutions respectives de
" = a(t)x’ + b(t)x + 1 (t) (Ly)
" = a(t)x’ + b(t)x + co(t) (Ls)

avec a,b, c1,cy € €01, K). Alors pour (ay, an) € K2, Uapplication aypy + asps est solution de
" =a(t)x’ + b(t)x + ajci(t) + ascy(t)

Démonstration. Immeédiate. O

4 Wronskien

Définition 5. Soient a, b dans €°(1,K) et I’équation différentielle linéaire homogeéne d’ordre 2
" = a(t)z’ + b(t)x (H)
On appelle systéme fondamental de solutions de [’équation (H) toute base (¢,v) de Sy.

Définition 6. Soient a, b dans €°(I,K). On appelle wronskien de deuz solutions (p,v) de
[’équation homogéne

" = a(t)z’ + b(t)z (H)
la fonction notée W définie par
_ |e(®) ()
Vtel W(t) = 2(1) W(t)‘

Théoréme 5. Soient a, b dans €°(1,K) et I’équation différentielle linéaire homogéne d’ordre 2
2" =a(t)z’ + b(t)x (H)

Le wronskien W de deuz solutions (p,1) de I’équation homogéne (H) wvérifie I’équation diffé-
rentielle linéaire d’ordre 1

W = a(t)W

Démonstration. On a W = o’ — ') dérivable puis

W' = " — " = (a4 bip) —p(ap’ + bp) = a(py’ — @) = aW
d’ou le résultat. O

Exemple : Le wronskien d’un couple de solutions de I’équation x” + ¢(¢)z = 0 est constant.

Corollaire 2. Le wronskien W de deux solutions d’une équation différentielle linéaire homogéne
d’ordre 2 vérifie

W=0 <« dt, el | W(to)zo
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Démonstration. Le sens direct est immeédiat. La réciproque résulte de I'unicité du théoréme de
Cauchy linéaire puisque la fonction nulle est solution de 2’ = a(t)z, x(ty) = 0. O

Théoréme 6. Soient a, b dans €°(I,K) et (p,v) deuz solutions de I'équation différentielle
linéaire homogéne d’ordre 2

" = a(t)x’ + b(t)x (H)
Les conditions suivantes sont équivalentes :

1. (@, ) systeme fondamental de solutions de (H) ;

2. W ne s’annule pas sur 1.

Démonstration. Soit ty € 1. L’application

Q: (to) (to)

est un isomorphisme d’aprés le théoréme de Cauchy-linéaire. Ainsi, on a rg (p, ) =rg ®(p, 1)
et le résultat suit. O

III Recherche de solutions d’une équation différentielle li-
néaire scalaire d’ordre 2

1 Equations a coefficients constants

Définition 7. Soil (a,b) € K? et I’équation différentielle linéaire homogéne d’ordre 2 a coeffi-
cients constants

2" +axr' +br =0 (H)
On appelle équation caractéristique de (H) [’équation

r+ar+b=0 (R)

Théoréme 7. Soit (a,b) € K? et I’équation différentielle linéaire homogéne d’ordre 2
2" +ax' +bxr =0 (H)
1. Si l’équation (R) admet deux racines distinctes a et [
r €Sy = I\pek® | VteR  x(t) = e™ + peft
2. Si Uéquation (R) admet une racine double o
re€Sy < I\puekK® | VieR  xz(t)= M+ pe™
8. Si(a,b) € R? et si l’équation (R) admet deuz racines complezes conjuguées r *is (s #0)

r€Sy < I\, u)eR* | VteR  z(t) =e"[Acos(st) + usin(st)]

Remarques : (a) Le troisiéme cas (qui est un sous-cas du premier) fournit une expression
réelle de la solution de I’équation différentielle & coefficients réels.
(b) On pourrait rajouter I'unicité a I'existence des scalaires A et u dans chaque cas.
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Démonstration. Par récurrence, on vérifie que les solutions sont de classe ¥ sur R. On note
E = ¢>*(R,K) et D I'endomorphisme de dérivation de E dans E. On a Sy = Ker P(D) ou
P=X*+aX+b.

1. Si (R) admet deux racines distinctes a, 3, on a d’aprés le lemme des noyaux
Sy = Ker (D —aid) o (D — fid) = Ker (D — aid) & Ker (D — fid)

et le résultat suit.

3. Si (R) admet deux racines complexes conjuguées r*is avec s # 0, le résultat précédent
s'applique d’ot t +— e ") solution (non réelle) de (H). Considérant partie réelle et imaginaire,
les fonctions ¢ + Re e "9 et ¢ s Im e "™+ sont solutions réelles de (H) et on vérifie sans
peine qu’elles forment une famille libre donc une base dans le plan vectoriel réel Sy.

2. Si (R) admet une racine double .. On note e, : t — e® et on pose y = e_,x ce qui équivaut
Az =ceyny. On a (D —aid)(z) = e,y puis (D — aid)?(z) = e,y”. Le résultat suit. O

Remarques : (a) On peut aussi considérer les couples de solutions annoncées et vérifier dans
chaque cas qu’ils forment bien un systéme fondamental de solutions mais ¢a n’explique pas le
choix des solutions en question.

(b) On peut procéder avec des techniques de réduction. On pose X = (f,) et on a X' = AX

0 1

avec A = <—b a

). On réduit la matrice A et notant P la matrice de passage vers la base de

réduction, on pose X = PY avec Y = (g) Ainsi, on obtient un nouveau systéme différentiel

linéaire Y = P~'APY plus simple (diagonale ou triangulaire) que I'on sait résoudre. On revient
a une formulation en X avec X = PY et on voit, par le biais de dernier produit matriciel, que
x(t) sera une combinaison linéaire des composantes de Y (t).

Proposition 6. Soil (a,b) € K%, P € K[X] et m € K. L’équation
" 4+ ax’ + br = P(t)e™ (L)
admet une solution particuliere de la forme
1. xo:t € R Q(t)e™ sim pas racine de (R)
2. xo:t € R tQ(t)e™ sim racine simple de (R)
8. xg:t € R t2Q(t)e™ si m racine double de (R)
avec Q € K[X] et degQ = degP.

Remarque : Avec m = 0, on a le cas d’une équation différentielle linéaire d’ordre 2 & coeffi-
cients constants et avec un second membre polynomial.

Démonstration. Notons n = deg P.
1. Pour zg : t — Q(t)e™, on a

zy 4 ary + brg = P(t)e™ <= (m*+am+0)Q+ (2m+a)Q +Q" =P

On pose VQeK,X]  @®Q)=(m?+am+bQ+ (2m+a)Q + Q"
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On a clairement deg ®(Q) = deg Q pour Q € K, [X] puis ¢ € Z(K,[X]) et Ker & = {0} d'ou
® isomorphisme. Le résultat suit.
2, 3. On procéde comme au 1. O

2 Variation des constantes

Théoréme 8. Soient a, b, ¢ dans €°(1,K) et I'équation différentielle linéaire d’ordre 2
2" =a(t)z’ + b(t)x + c(t) (L)

Etant donné un systéme fondamental (o,v) de solutions de I’équation homogéne (H), une so-
lution de (L) est fournie par t — \(t)p(t) + u(t)(t) avec A\, p: 1 — K dérivables et vérifiant

)
{ ")) + 1/ ()y(t) =0
N(O)@'(t) + /()Y (8) = c(t)

Démonstration. Le systéme est de Cramer car son déterminant, le wronskien, ne s’annule pas
sur I d’aprés le corollaire 2| On choisit (A, u) telle que (N, i) solution du systéme. On pose
x = Ap + p. On a x dérivable puis

' = o' + )’ dérivable et " = N + p'v + A" + u)”
Ainsi 2 = c+ ay' + Nop + pay)’ + pbyy = ¢ + azx’ + bx
d’ou le résultat annoncé. O
Exemple : Résoudre sur [ = ] —g g [ I’équation différentielle

1
cos(t) (L)

On a clairement Sy = Vect (cos, sin). Cherchons une solution de la forme x = X cos 4 sin avec
A, p dérivables. On obtient

el (cos(t) sin(t)) </\’(t)>: 0

¥+ =

—sin(t) cos(t)/) \p'(t) cos (1)
o N\ (cos(t) —sin(t) 0

ce qui équivaut a VvVt el <M/(t)> = <sin(t) cos(?) ) Cosl(t)
d’on Vit el N(t) = —(S;)I;((?) et p/(t)=1

Ainsi S = {t € I~ acos(t) + Bsin(t) + cos(t) In(cos(t)) + tsin(t), (o, B) € R?}

3 Solutions développables en série entiére

Soit 'équation a(t)z” + b(t)x' + c(t)x = d(t) (L)

sur un intervalle I. On suppose que a, b, c sont polynomiales et d est développable en série
entiére. On peut alors envisager de chercher une solution de (L) qui soit développable en série

+00
entiére i.e. une solution x sous la forme z(t) = > a,t". Pour t € | =R ;R [ avec R supposé > 0,

il vient par dérivation de séries entieres
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+00

+00 +00
z(t) = Y a,t", 2'(t) = Y na, "t 2(t) = S n(n — 1)a,t"?
n=0 n=1

n=2

Ensuite :

on injecte ces expressions dans (L) et on distribue les produits ;

on procede a des changements d’indice pour avoir partout les mémes puissances de ¢ ;
on rassemble les puissances de t par linéarité de X car on travaille dans I'intervalle de
convergence ;

on utilise 'unicité du développement en série entiére pour obtenir une relation sur les
coefficients a,, ;

on détermine une expression des a,, (par récurrence ou avec un produit téléscopique) ;
on s’assure que le rayon de convergence R est non nul (série entiére non dégénérée) avec
IC]-R;R[;

enfin, on exprime z(t) avec des fonctions usuelles (si ¢’est possible).

Exemple : Déterminons une solution développable en série entiére de

te" + 22" —te =0 (H)

Pour t € | =R ;R [ avec R supposé > 0, on a

+00 +0o0 +0o0

z(t) = Y a,t", 2'(t) = dona, " 2" (t) = don(n — 1)a,t"?

n=0 n=1 n=2
On injecte dans (H) :

+00 +00 +00

Stn(n —Dat™ 1t + 3 2na, "t — Y a, "t =0

n=2 n=1 n=0

Avec un changement d’indice dans la derniére somme, on obtient

+00 +00 +00
Son(n —1a "+ > 2na, "t — > a, ot" =0
n=2 n=1 n=2

En isolant le premier terme de la seconde somme, on peut ensuite rassembler les trois sommes
par linéarité :

+00
2a1 + Y. [n(n+ 1)a, —a,o|t" 1 =0

n=2

Par unicité du développement en série entiére, on en déduit

ale
nn+1)a, —a, =0 Vn>=2

Une récurrence immédiate donne

VneN ag1=0 et ag#0=ag, #0 VYneN

Pour obtenir une expression simple de as,, on écrit un produit téléscopique

- 1 ap
o= kl;ll {(Zk + 1)(%)} 9= Bn 1)

& a
aznzn{ %

k=1 Lag(—1)

On trouve un rayon de convergence R = +oo puis on identifie

sh (t)

sit#£0

1 sinon

r=app avec (t)=

Remarque : Souvent, on ne trouve pas toutes les solutions d’une équation différentielle li-
néaire d’ordre 2 en recherchant celles qui sont développables en série entiére. Si I’équation est
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normalisée, homogéne et qu’on a une solution développable en série entiére définie & constante
multiplicative prés (ag ou a; en facteur le plus souvent), on a donc une droite vectorielle de so-
lutions. Or on sait que ’espace des solutions est un plan vectoriel. On peut donc ensuite mettre
en ceuvre la méthode du wronskien ou méthode de Lagrange pour déterminer toutes les solutions.

Application :

Soit f une fonction développable en série entiére en zéro. Si f est solution d’un probléme de
Cauchy d’ordre 1 ou 2 a coefficients polynomiaux, on peut alors alors déterminer le développe-
ment de f en cherchant une solution développable en série entiére a ce probléme de Cauchy et
en concluant grace a 'unicité du théoréme de Cauchy linéaire.

Exemple : Déterminer le développement en série entiére de z(t) = sin(¢). La fonction sin est
solution du probléeme de Cauchy

_ ' +xr=0
) {<z<0>,az'<0>> _0.1)

+0o0o
Cherchons une solution développable en série entiére de (C). Soit x(t) = > a,t™ pour t €
n=0

| =R ;R [ avec R supposé > 0. Il vient aprés changement d’indice et linéarité

+00

(C) 2 [0+ 20+ Dansz + an] " = 0

(ag,a1) = (0,1)
Par unicité du développement en série entiére, on trouve
-1
n+2)(n+1)

Une récurrence immédiate donne ag, = 0 et as,1 # 0 pour tout n € N. Par suite

Vn € N Apio = ( an,

7 [a2r (—1)"
Vn € N gy = 11 [ = ——
0 Lage ! (2n + 1)!
X (_1)71 2n+1 EJRENEE ER 3 . /
Le rayon de convergence ) m t*" est R = +oo d’ou l'existence d'une solution déve-
n=0\4T !

loppable en série entiére a (C). Enfin, par unicité du théoréme de Cauchy linéaire, on conclut
que
& (1

VteR sin(t) = ;::0(271 Yy

2n+1
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4 Utilisation du wronskien, méthode de Lagrange

Méthode : Résolution de ’équation différentielle linéaire homogéne d’ordre 2
2" =a(t)x’ + b(t)x (H)
avec a, b dans €°(I, K) connaissant une solution ¢ de (H) qui ne s’annule pas sur I. On procéde
ainsi :
1. On détermine une expression du wronskien comme solution de 1’équation W' = a(t)W;

2. On résout I'équation différentielle linéaire d’ordre 1

()Y — ' (t)p = W(t)

d’inconnue v par variation de la constante; on connait déja ¢ solution de 1’équation
homogéne donc il suffit de chercher ¢ de la forme ) = Ay avec X\ dérivable.

Exemple : On reprend I'équation différentielle

te" + 22" —tx =0 (H)

’ . . . sh (t)

Sur I =]0;+00] ou | -00;0][, 'ensemble des solutions est un plan vectoriel. Soit ¢ : t — —
2

et ¢ une solution de (H). Notant W leur wronskien, il vérifie W' = _ZW d’ou W(t) = —g

pour t € I avec (3 réel. Ainsi

vtel  pt'(t) — ¢ ()p(t) = —t%

La fonction ¢ est solution de (H) et posant ) = Ay avec A : I — R dérivable, il vient \'(t) =
——ﬁ 5 pour ¢ € I puis

sh (t)
wel  A(#) = a+5$g;
Ainsi Sy = {t > ash (?) —; Beh (t), (a, B) € RQ}

Théoréme 9 (Méthode de Lagrange). Soient a, b, ¢, d dans € €°(1,K) avec a(t) # 0 pour
tout t € 1 et soit l'équation différentielle linéaire d’ordre 2
a(t)z” + b(t)x’ + c(t)z = d(t) (L)

Si @ est une solution de I’équation homogéne associée (H) telle que p(t) # 0 pour tout t € 1,
alors posant x = ¢ y avec y € €*(1,K), il existe une équation différentielle linéaire d’ordre 1
notée (L) telle que

y’GSL/ < 1 € S

Démonstration. On a =y, T=¢y+ey, 2"="y+20Y + oy’

D’ou x €Sy, <= ylap” + by + co] + v [2ap" + bp] + y'ap = d
Autrement dit, z = ¢ est solution de I'équation différentielle linéaire d’ordre 1

apz’ + [2a¢" + byl z = d
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Exemple : Sur ’équation différentielle
te" + 22" —tr =0 (H)

b (#)

avec [ =]0;+00] ou |-00;0[, on reprend p(t) = i\ pour t € I, on applique la méthode de

Lagrange et on retrouve le plan vectoriel précédemment décrit.

Remarques : (1) Pour chacune de ces méthodes, on trouve souvent une deuxiéme solution qui
« ressemble » & la premiére.

(2) On peut démontrer que ces méthodes fonctionnent et qu’on obtient a l'issue de chacune un
plan vectoriel de solution pour I'équation homogeéne.

Commentaires : La technique du wronskien est trés efficace pour la résolution d’une équation
linéaire homogene d’ordre 2 : on connait I’équation dont le wronskien est solution et I’équation

p(t)y — @' () = W(t)
d’inconnue v admet évidemment ¢ comme solution de 1’équation homogéne associée ce qui
rend la résolution trés rapide. S’il y a un second membre & I’équation de départ, on peut alors
finaliser la résolution avec une méthode de variation des constantes. Dans le cas d’une équation
homogéne, la méthode avec wronskien est plus performante que la méthode de Lagrange ; dans
le cas d’une équation avec second membre, les deux approches se valent sensiblement.

5 Changement de variables

Soient a, b, ¢, d dans €°(I,K) avec a(t) # 0 pour t € I et soit Péquation différentielle linéaire
d’ordre 2
a(t)z” + b(t)x' + c(t)x = d(t) (L)

Dans certains cas, il est suggéré d’utiliser un changement de variables ¢t = ¢ (u) avec ¢ un
¢?-diffecomorphisme d’un intervalle J sur I, i.e. une bijection de classe € dont la réciproque
est également de classe €.

Méthode : On pose y(u) = z(1(u)) et on détermine les dérivées premiéres et secondes de y
en fonction de celles de x :

{y’(U) = ¢'(u)2(P(u))
y'(u) = ¥ (w)a'(¥(w) +¢'(u)’2" (¥ (u))
Puis, en écrivant 1'équation (L) avec la variable u
a(yp(u)z" (P (u)) + b (u)z' (P (u)) + c(¥(u)z(P(u) = d((u))

on en déduit une nouvelle équation différentielle pour y, plus simple que (L) en principe.

Exemple : Résoudre sur | —1; 1] I’équation différentielle linéaire d’ordre 2
(1 —t*)2" —tr' + n*x =0 (L)

avec n € N a l'aide du changement de variable t = cos(u). On pose y(u) = x(cos(u)). Par
dérivation, il vient

{y’(u) = —sin(u)z'(cos(u))

y"(u) = (1 —cos(u)?)z”(cos(u)) — cos(u) x’(cos(u))
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On obtient r€eS, <<= ¥ +ny=0

puis I\, pu)€R? | Vte]|—-1;1[ x(t) = Acos(n Arccos (t)) + psin(n Arccos (t))

IV  Equations différentielles linéaires vectorielles
Dans ce qui suit, ’'ensemble E désigne un K-ev normé de dimension finie égale & n. Pour x € E,

on note le morphisme d’évaluation Z(E) — E, f +— f -z afin d’éviter une surabondance de
parenthéses.

1 Définitions

Définition 8. Une équation différentielle linéaire vectorielle d’ordre 1 sur I est une équation
de la forme

' =a(t) -z +b(t) (L)

avec a une application continue de 1 dans £ (E) et b une application continue de 1 dans E. Une
solution de (L) est une application f :1— E dérivable telle que

Vel  f(t) =alt) - f(t) +b(t)

Remarque : Soit & base de E. Posant A(t) = matga(t) € #,(K), B(t) = matzb(t) € #,1(K)
et X(t) = matgx(t) € #,1(K) avec t € I, 'écriture matricielle fournit le systéme différentiel
linéaire

' =a(t) x+b(t) — X =A(t)X+ B(¢)
Vocabulaire : L’équation ¥ =a(t) x (H)

est appelée équation homogéne associée a 1'équation (L). Le terme b est appelé second membre.

Notations : On note S, I'ensemble des solutions de (L) et Sy 'ensemble des solutions de (H).

Proposition 7. Soit a € €°(1, Z(E)), b € €°(LLE) et I'équation différentielle linéaire vecto-
rielle

' =a(t) - x+ b(t) (L)
Toute solution de (L) ou de (H) est dans €' (I, E).

Démonstration. Soit (g;;)1<ij<n une base de Z(E) et a = > a;;e;; avec les a;; dans
1<ij<n

%°(1,K) (fonctions coordonnées de a). Siz € Sy, onaz’' = Y. a6 j0x+b€ €°1E). Les
1<i,5<n

€;j sont continues (applications linéaires en dimension finie) et par opération sur des fonctions

continues, il s’ensuit que z € €' (I,E). Le cas de Sy s’obtient avec b = 0. m

2 Probléme de Cauchy

Définition 9. Soit a € €°(I, Z(E)), b € €°(LLE) et (to, o) €I x E. Le systéeme

{x' —a(t)-z+b(t) (L)

est dit probléme de Cauchy. L’équation (CI) est la condition initiale du probléme de Cauchy.
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Remarque : Ce probléme de Cauchy peut s’écrire sous forme intégrale :

Vtel z(t) = xo +/ la(s) - z(s) + b(s)] ds

to

Théoréme 10 (Théoréme de Cauchy linéaire). Soit a € €°(I, 4(E)), b € €°(LLE) et
(to, z0) € I x E. Il existe une unique solution au probléme de Cauchy

{x’ =a(t) -z +b(t) (L)

|Admis]

3 Forme des solutions

Théoréme 11. Soit a € €°(1, Z(E)), b € €°(LE) et I’équation différentielle linéaire vecto-
rielle

2 = a(t) - 2+ b(1) (L)

L’ensemble Sy est un sev de €' (I, E) de dimension n et [’ensemble Sy, est un sous-espace affine
de €*(1I,E) de direction Sy.

Démonstration. Soit F = €Y (1LE), G = €°(LE) et ® : F — G,z — 2’ —a(-) - z. On a
¢ € Z(F,G), Sy = Ker ®. D’apreés le théoréme de Cauchy linéaire, quitte & choisir des condi-
tions initiales, I’équation (L) admet une solution donc Sy, est non vide d’ou Sy, = xp + Ker @
avec Tp € Sy, sous-espace affine de €1(I, E).

Soit tg € L et ®g : Sy — E, 2 — x(tp). On a clairement &g € £ (Sy, E) et d’aprés le théoréme
de Cauchy linéaire, I’application @y est un isomorphisme d’ou dim Sy = dimE = n. O

Proposition 8 (Principe de superposition). Soient @1, ps des solutions respectives de

' =a(t) - x+ bi(t) (Ly)

=a(t) - + ba(t) (L)

(El
avec a € €°(1, Z(E)), by, by € €°(I,E). Alors pour (ay, as) € K2, Uapplication ayp1 + aops est
solution de

' =a(t) - x + a1b(t) + asbs(t)

Démonstration. Immeédiate. O

4 Variation des constantes

Définition 10. Soit a € €°(1, Z(E)) et I’équation différentielle linéaire vectorielle homogéne
¥ =at) -z (H)
On appelle systéme fondamental de solutions de (H) une base (¢1,...,pn) de Sy.
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Théoréme 12. Soit a € €°(1, Z(E)) et I’équation différentielle linéaire vectorielle homogéne
' =a(t) x (H)
Soit B une base de E et p1,...,p, des solutions de (H), on définit
vVt el W(t) = detg(pi(t), ..., pal(t))

Alors, on a

(p1, .-, ¢n) systéme fondamental de solutions de (H) <= W ne s’annule pas sur I

Démonstration. Soit ty € 1. L’application S}, — A#,(K), (p1, ..., ¢n) — matg(p1(to), ..., on(to))
est un isomorphisme d’aprés le théoréme de Cauchy linéaire. Le résultat suit. O

Remarque : Il s’agit évidemment d’une extension de la notion de wronskien vue pour les
équations différentielles linéaires scalaires d’ordre 2. Bizarrement, cette extension ne figure pas
au programme.

Théoréme 13. Soit a € €°(I, Z(E)), b € €°(L,E) et I’équation différentielle linéaire vecto-
rielle

' =a(t) -z +b(t) (L)

Etant donné (@4, ..., n) un systéme fondamental de solutions de I’équation homogéne associée

(H), une solution de (L) est fournie par t — > X\i(t)pi(t) avec les N; : 1 — K dérivables et
i=1

vérifiant

Viel  SN(Det) = b(1)

n

Démonstration. On pose x = > \;p;. On a
i=1

¥=a()-x4+b <= Y N+ D Na(-) @i => Nal-) i +b <= > N, =0b
i=1 =1 i=1 i=1

1

Et le systéme admet une unique solution car, pour 2 base de E, la matrice matz(p1(t), ..., ©n(t))
avec t € I est inversible. ]

Remarque : C’est une généralisation du procédé vu pour les équations d’ordre 1 et 2. Consi-
dérant

" =a(t)z’ + b(t)x + c(t) (L)
équation différentielle linéaire scalaire d’ordre 2, on pose pour t € I

X)= () e X =A0X+BO) e A= (5 ,0) BO

L’écriture matricielle de la méthode de variation des constantes donne :

v (50) w0 (510) = ()

avec (p,1) un systéme fondamental de solutions de (H) équation homogéne associée a (L). On
retrouve les conditions sur A" et ¢’ obtenues dans le théoréme [§]

I
7 N\
8
-« O
S~—
~
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V Exponentielle d’une matrice, d’'un endomorphisme

Dans ce qui suit, 'ensemble E est un K-ev normé de dimension finie.

1 Définitions

n

Proposition 9. Pour A € #,(K), la série ) — converge absolument.
n!

Démonstration. On munit .#,(K) d’une norme sous-multiplicative, par exemple la norme su-

A n

bordonnée & une norme sur .#,;(K) avec ||Alj,, = Sup ||AX]|. La série exponentielle Zw
[IX]=1 n:

converge d’ou la convergence absolue. []

Définition 11. On appelle exponentielle de la matrice A € .#,(K) notée exp(A) ou e® la

somime

exp(A) = 2. —

On munit .Z(E) de la norme subordonnée définie pour a € Z(E) par ||a|op = Sup |ja - z||.

[l]|=1

Définition 12. On appelle exponentielle de 'endomorphisme a € Z(E) notée exp(a) ou e® la
somme
+oo gn

exp(a) = ‘'l
n=omn!

Remarques : (1) Le choix d’une norme sous-multiplicative sur .Z(E) garantit la convergence
an

absolue de > —-.
n

(2) Notant A = matga avec # base de E, on a clairement e® = matge® (continuité de
I'isomorphisme u — matgu).

2 Propriétés

Proposition 10 (A refaire). Soit A € .#,(K). Les matrices A et e® commutent et (eA)T =

.
et .

Démonstration. Conséquence de la continuité du produit matriciel et de la transposition. [

Proposition 11. Soient A, B dans #,(K) et P € GL,(K) telles que A =PBP~'. On a

e = PeBp1

Démonstration. Conséquence de la continuité du produit matriciel. O]

Les résultats qui suivent sont énoncés vectoriellement mais existent a l'identique matricielle-
ment.

Théoréme 14. Soit (u,v) € Z(E)? avec uov =vou. Alors, on a

exp(u + v) = exp(u) o exp(v)

B. Landelle 17 ISM MP




Démonstration. On pose pour n entier
n_ gl n_ qd n (U+U)k
A, = < _> o =) g luto)t
;)i! (;%j!) 2 k!

Comme u et v commutent, on a

ko1 .k ‘ . tod
Vke[0;n] M:—Z(f)uzovk’lz 2oy
k! k'i= 0<i,j<k,i+j=k ilj!
, ut o vl ut o vd ut o vd
puis A, = >, — 3 — = —
0<i,j<n v J- 0<i,j<n,i+j<n ¥2J: 0<i,j<n,n+1<i+j<2n  0:J:
Ainsi
lulleplloll] n ||ulle n o]l lulleplllld
Anllop < e DL = Mlop ) 5~ [Mlopll Tllop
1Anlop < O<i,j<n,n§1<i+j<2n ilg! ;) 7! j;) J! i+jz<n ilj!
et le majorant tend vers zéro pour n — +00. Le résultat suit par encadrement et continuité de
la composition .Z(E)?> — Z(E), (a,b) — a o b, bilinéaire en dimension finie. O

Remarques : (1) Matriciellement, pour (A, B) € .#,(K)? tel que AB = BA, on a exp(A+B) =
exp(A) exp(B).

(2) Si AB # BA, on n’a plus la propriété annoncée précédemment. Soit 6 réel, A = <g 8) et

_ (0 -0 2 w2 . A_(l 0) B_<1 _9> B
B_<O O).OnaA = B® = 0 puis e” = 0 1)0¢ =\o 1 . On observe A + B =
OR(m/2) et par suite

Vn e N (A +B)" = 6"R(nn/2)
d’ou

() ) e = Een(5) 0= En ()

Avec des considérations trigonométriques, on remarque () = cos(f), s(6) = sin(6) d’ou

eteP = <é ] :902> et e2B =R(0)

Pour 6 # 0, les matrices A et B ne commutent pas et on a e’eP #£ eATBE,

‘Corollaire 3. Pour a € Z(E), on a exp(a) € GL(E) et exp(a)™ = exp(—a).

Démonstration. Immeédiate. O

’Théoréme 15. L’application exp est continue sur £ (E).

. . a” .
Démonstration. Pour n entier, on pose u,(a) = — pour a € Z(E). Les fonctions u, sont
n

continues car la composition, linéaire dans Z(E) de dimension finie, est continue. Soit R > 0.
Pour ||allop <R, on a

lall, _ R

~

() op < -

n!
d’ou la convergence normales sur B(0, R). Ainsi, la série de fonctions continues » u, converge
normalement donc uniformément sur B¢(0,R) et ce pour tout R > 0 d’ou la continuité de

exp. O
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Théoréme 16. Soit a € £(E). L’application t — e'® est de classe € sur R et

d
_[eta] :aoeta:etaoa
dt
nn
Démonstration. On pose u,(t) = [~ bour n entier et ¢ réel. Les fonctions w, sont a coor-
n

données polynomiales et donc de classe €. La série » u, converge simplement et la série

> u, = > u, ., converge normalement sur tout segment [ —R ;R | donc uniformément sur tout
n=1

segment. On en déduit le caractére €' de t — exp(ta) et
d +oo gngntl +00 (ta)” +00 (ta)n
o £ (1) (o)
Par continuité de la composition, on a

(55 oo 5 (S on) = oo Sr) =ao (£57)

Le caractére €°° s’obtient par récurrence. O

Remarque : Matriciellement, pour A € .#,(K), on a
d

a [etA] _ AetA _ etAA

3 Calcul d’exponentielles de matrices

Proposition 12. Pour D = diag(\,...,\,) € 4,(K), on a
exp(D) = diag(e’, ..., e?r)

Démonstration. On a

+oo D" +0o 711 +oo)\z N N
—zdiag(Z—,...,Z—) = diag(e™,...,e’?)
n=0 n! n=0 n! n—=0 n!

]

Remarque : Si A diagonale, on a donc e® diagonale mais la réciproque est fausse comme le

, (0 =27
montre exemple A = <27T 0 )

Proposition 13. Soit A € #,(K) diagonalisable avec A = PDP~! et P € GL,(K), D diago-
nale. On a

exp(A) = Pexp(D)P*

Démonstration. Résulte de la proposition [11] O

Proposition 14. Soit A € .#,(K) nilpotente d’indice r. On a
r—1AM

n=0 7!

exp(A) =

Démonstration. Immeédiate. O
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Proposition 15. Soit A € #,(K) et P € GL,(K) telle que P"'AP = diag(AL,, +
Ty, ..., N, +T,) avec les T; triangulaires supérieures strictes. On a

exp(A) = P diag(e* exp(T),...,e* exp(T,))P~!

Démonstration. D’aprés la proposition 11} on a
exp(A) = Pexpdiag(MIL,, + T1, ..., ALy, + T,)P 7!
Puis, un calcul par bloc donne
expdiag(ALy,, + Tq, ..., ALy, + T,) = diag(exp(Ai Ly, + T1), ..., exp(ALn, + T4))
Enfin, comme \;I,,,, matrice d’homothétie commute avec T;, on trouve
Vie[l;r] eMilmi+Ti — eAilmieTi = ghieTi

Le résultat suit. O

Proposition 16. Soit A € #,(K) et P € GL,(K) telle que
P7'AP =diag(A1,...,\y) + T avec T triangulaire supérieure stricte
Alors P~leAP = diag(e™,...,e*) + Q

avec Q € M,(K) triangulaire supérieure stricte. En particulier, on a

Sp (e®) = exp(Sp(A))

Démonstration. On a pour n entier
Py ——P=diag| > 75,.., > 7 | +Ta
& W SR R
avec la suite (T),,),, suite convergente (différence de deux suites convergentes avec la continuité du
produit matriciel pour le premier terme) dans ’ensemble des matrices triangulaires supérieures
strictes qui est fermé en tant que sev de .#,(K). Faisant tendre n — +oo, on a le résultat
annonce. [

Meéthode : Calcul de exp(A) avec A € #,(K) et P € K[X] un polynéme annulateur de A.
On note ¢ = deg P. D’aprés le théoréme de la division euclidienne, pour n entier, il existe Q,,

q—1
et R,, dans K[X] tels que X" = PQ,, + R,, avec degR,, < ¢. Notant R,, = Y_ ., X", on trouve
k=0

q—1
A" =R, (A) = Y ap A" et aprés permutation des sommes & justifier, on trouve
k=0

+oo g=1  +oo

exp(A) = 3 Ra(A) = SAS e

k=0 n=0 n!

VI Systéme différentiel linéaire & coefficients constants

Dans ce qui suit, k’ensemble E désigne un K-ev normé de dimension finie égale a n. Pour x € E,
on note le morphisme d’évaluation Z(E) — E, f — f - x.
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1 Définitions, résultats théoriques

Définition 13. Une équation différentielle linéaire vectorielle d’ordre 1 & coefficients constants
sur | est une équation de la forme

' =a-x+b(t) (L)
avec a € Z(E) et b € €°(I,E).

Remarque : L’écriture matricielle fournit le systéme différentiel linéaire
¥=a-v+b(t) < X' =AX+ B(?)

avec A € #,(K) et B € €°(1, #,1(K)) (et les conventions vues dans la remarque faisant suite
a la définition [g)).

Théoréme 17. Soit a € Z(E) et (to,z9) € R x E. Le probléme de Cauchy
{x’ =a-x (H)

admet pour unique solution x : t — e(tto)a.

Démonstration. Le morphisme d’évaluation Z(E) — E, f — f -y avec yg = e 0

continu (linéaire en dimension finie). Par ailleurs, on a par commutation

Vi eR e(t—to)a — eta o e—toa

. xo est

Ainsi, pour ¢, h réels avec h # 0, il vient par continuité du morphisme d’évaluation

x(t+h)—z(t gtthla _ gta

autrement dit VieR  2/(t)=a-x(t)

Le résultat suit sachant que 'unicité est fournie par le théoréme de Cauchy linéaire.

Variante. On peut établir 'unicité sans recours au théoréme de Cauchy linéaire. Pour x € Sy,
on trouve par bilinéarité de Z(E) x E — E, (f,y) — f-y

d
T [e= 0. ()] = —e =)0 g - p(t) + e~ 3/ (¢) = 0
d’ou VteR e Wt g(t) = e~lto—t)a. (ty) = id -z = g
d’oul I'unicité annoncée. ]

Remarque : Matriciellement, la solution de X’ = AX avec X(t9) = X s’écrit
VieR  X(t) =exp((t — to)A)Xo

Théoréme 18. Soit a € L(E), b € €°(1I,E) et (tg, z9) € I x E. Le probléme de Cauchy
{a:’ =a-z+0b(t) (L)

admet pour unique solution

t
i ete (g / e b(5) s )

to
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Démonstration. On applique la méthode de variation des constantes. Pour A\ : I — E dérivable,

on pose x(t) = ett)a . \(t) avec \(t) = Y \i(t)e; ot (e;)1<i<n base de E et ¢t € I. Le résultat
i=1

suit. La démarche est licite car (t > e(t—to)e. ei) est un systéme fondamental de solutions :

1<i<n

n n
Viel Yl e, =0 <= Y ae; =0
i=1 i=1
le sens direct s’obtenant simplement en évaluant en ty. Ceci prouve la liberté de la famille des
solutions et cette famille est de cardinal égal a dim Sy ce qui prouve qu’il s’agit d’une base de
SH. ]

Remarque : Matriciellement, la solution du probléme de Cauchy

X' = AX + B(t)
X(to) = Xo

avec B € €°(1, #,1(K)) et (to, Xo) € I x M, 1(K) sécrit

t
Vtel  X(t) =eltt)A (Xo + / e ~(s—t)AB(s) ds)

to

2 Résolution pratique

Théoréme 19. Soit A € #,(K) diagonalisable. Toute solution de X' = AX est de la forme
VEER  X(t) = S aettV,
i=1

avec les \; valeurs propres de A, les V; des vecteurs propres associés et les «; des scalaires.

Démonstration. Pour X € €*(R, #,1(K)), on pose Y = P'X avec P € GL,(K) telle que
D = P7'AP diagonale. On note (E;)1<i<, la base canonique de ., ;(K). On a

X'=AX <= Y' =DY <= Y € Vect (t = eME;)1cicn
En observant P = (Vi]...|V,), on conclut
X' = AX <= X € Vect (t = eM'PE;)1cic, = Vect (t = eV iy,
[
Remarques : (1) Si Re();) < 0 pour tout ¢ € [1; n], les solutions sont bornées sur R, . Si
Re (\;) < 0 pour tout i € [1; n], les solutions ont une limite nulle en +oo.

(2) On lit le systéme fondamental de solutions dans l'expression de X(¢) pour ¢ réel. La liberté
peut se déduire de la structure de Sy ou plus simplement en évaluant en ¢t = 0.

Exemples : 1. On considére le systéme différentiel linéaire

' =dx — 2y
y=x+y
2 ot (1 3t (2
On trouve o, 5) e R | VteR X(t) = ae 1)+ Be 1
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FIGURE 3 — Tracé de courbes solutions de X’ = AX

2. On considére le systéme différentiel linéaire

¥=x—y

y=x+y
La matrice associée est diagonalisable dans C mais pas dans R. On commence par réduire dans
C. On trouve

J(a,8)€C? | VteR X@)zcwﬂﬁﬁ(jg_+ﬁdLﬂt(D

o (1 . . .
Notant ®(t) = e+t (—i) pour t réel, les fonctions Re ® et Im ® sont clairement solutions

réelles du systéme initial et on vérifie sans difficulté la liberté de ces fonctions.

1 -1 . : 1 .
11 ), on obtient d’abord AX; = (141)X; avec X; = (—i> puis
on conjugue la relation précédente pour en déduire la valeur propre conjuguée et un vecteur
propre associé.

Remarque : Notant A = (

S SN RN
R N L L B B |
e — * L NLEL ) T
et <— — « w® k\**:f ;
4 4 4 +— - * % ¥ »* \» A4
11«««***"" A4 A S
ke 4 4 —= v N L4 YRS
o s A & < < M\ A 4 4 f/‘/‘
o x g FE\\W <« % A AN
O,’// X 7S f Z v v ~ //'
5 »/ N\~ v
f/f’: » " N - v T
¥ ¥ WY \| S~ > > /v/v/v::
AN
_ 7¢ (1 " A A 2 > > > -
¢ +***‘ N ‘$<>4>F»H
ffﬂ\\\ WA R e
o LTI N NS e
—2 —1 0 1 2

FIGURE 4 — Tracé de courbes solutions de X’ = AX
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Méthode : Résolution de X' = AX + B(t) avec A € ,(K) diagonalisable et B €
¢°(1, M,1(K)). Soit P € GL,(K) telle que D = P~'AP diagonale. On peut :
— résoudre le systéme homogeéne puis appliquer la méthode de variation des constantes
— poser X = PY puis résoudre Y’ = DY + P~'B(#), systéme d’équations linéaires scalaires
d’ordre 1 avec second membre ;
— résoudre le systéme homogeéne et chercher une solution particuliére (si le contexte s’y
préte).

Exemple : On considére ensuite le systéme différentiel linéaire avec second membre
' =4dx — 2y
y=r+y+t

On peut procéder par variation des constantes :

vt (Ca) 0 (2) = () =

ou chercher directement une solution particuliére, par exemple, zp(t) = a + bt et yp(t) = c+dt
qui fournit ici un systéme de Cramer a 4 équations, 4 inconnues (pas palpitant). On peut encore
résoudre

;- 1 u\ 2u) (—1 2)(0) u = 2u+ 2t
Y =DY+P B(t)<:><v,>—<3v t\y L)) = o — 30t

On revient a la formulation en X avec X = PY.

< etc.

N(t) = 2te 2
pt) = —te™™

Méthode : Résolution de X' = AX avec A € ., (K) trigonalisable. Soit P € GL,,(K) telle que
T = P~*AP = (t;;) triangulaire supérieure. On note X = PY avec Y(¢) = (vi(t)) pour ¢ réel.
On a
yi =ty + .. tialn
X'=AX <= Y'=TY <=

/ —
Yn = lnn¥n
On résout la derniére équation puis on substitue 'expression de y,, dans les autres équations,
on résout 'avant-derniére, etc. ... On conclut avec X = PY.

Exemple : On considére le systéme différentiel linéaire
¥ =3r—vy
y=z+y

~1 e o e e A _(1 —1> ) _(1 1)
1>,XA—(X 2)%. On écrit A —2I, = 1 1 et on choisit P = 1 o1

onaA:G’

pour trigonaliser. On a donc
X ZAX o Y= TY e U T2
v =2
u(t) = (a + Bt)e

2
<~ (o, f) eR® | VteR {v(t):6e2t
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s o e | X0 = (1) e (1)

Méthode : Résolution de X' = AX + B(t) avec A € #,(K) trigonalisable et B €
¢°(1, #,1(K)). On applique les méthodes vues dans le cas diagonalisable.

VII Equation scalaire linéaire d’ordre n

Dans ce qui suit, n désigne un entier non nul.

1 Définitions

Définition 14. Une équation différentielle linéaire scalaire d’ordre n est une équation de la
forme

2™ = a,_ 1 ()z™ Y + .+ ag(t)z + b(t) (L)

avec ag, - - ., an_1, b dans €°(1,K). Une solution de (L) est une application f : 1 — K n fois
dérivable telle que

vtel  fW@) = an1()fO V@) + ..+ ao(®)f(2) + b(2)

Vocabulaire : L'¢quation 2™ = a,_1(£)2"V 4+ ... 4+ ag(t)z (H)

est appelée équation homogéne associée a 1'équation (L). Le terme b est appelé second membre.

Notations : On note S, 'ensemble des solutions de (L) et Sy 'ensemble des solutions de (H).

Proposition 17. Soient ag, ..., an_1, b dans €°(I,K) et x : I — K n fois dérivable. Pour
t €1, on note X(t)" = (z(t) ... 2" D(@®). Ona

r €S, < X =A(t)X+B(t) et z€Syg << X =A@)X

0 1 0 ... 0
0
avec vVt el A(t) = : S 0 et B(t) = :
0 ... ... 0 1 b(t)
ao(t) 550 o000 ooo an,l(t)
Démonstration. Immédiate. O]
Proposition 18. Soient ay, - . ., a,_1, b dans €°(I,K) et I’équation différentielle linéaire d’ordre
n
2™ = a, 1 ()2 + .+ ag(t)x + b(t) (L)
Toute solution de (L) ou de (H) est dans €"(1,K).

Démonstration. On applique la proposition [7]a la formulation matricielle d’ordre 1 de ’équation
différentielle d’ordre n et on spécialise le résultat pour la derniére coordonnée. O
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2 Probléme de Cauchy

Définition 15. Soient ag, ..., a,_1, b dans €°(1,K) et (to, zo,...,Tn1) € I x K*. Le systéme
2™ = a,_1()x™ D + .+ ag(t)z +b(t) (L)
Vee[0;n—1]  z®(ty) = z4 (CT)

est dit probléme de Cauchy. Les équations (CI) constituent les conditions initiales du probléme
de Cauchy.

Théoréme 20 (Cauchy linéaire). Soient aq, - .., a,_1, b dans €°(I,K) et (to, g, ..., Tp 1) €
I x K™, [ existe une unique solution au probléme de Cauchy

™ =a, 1 ()z™ Y + .. +at)z+b) (L)
VEe[0;n—1] z®) (tg) = x4, (CI)

admet une unique solution.

Démonstration. On applique le théoréme de Cauchy linéaire a la formulation matricielle d’ordre

1 de ’équation différentielle d’ordre n et on spécialise le résultat pour la premiére coordonnée.
m

3 Forme des solutions

Théoréme 21. Soient ag, ..., a,_1, b dans €°(I,K) et I’équation différentielle linéaire d’ordre
n

™ = a, ()2 + ..+ ag(t)r + b(t) (L)

L’ensemble Sy est un sev de €"(1,K) de dimension n et ['ensemble Sy, est un sous-espace affine

de €"(1,K) de direction Sy.

Démonstration. On applique le théoréme[11]a la formulation matricielle d’ordre 1 de ’équation
différentielle d’ordre n et on spécialise le résultat pour la premiére coordonnée :

r €Sy <= X =At)X < X €& Vect(Py,...,P,) < z € Vect (p1,...,¢n)
avec (p1,...,p,) libre puisque (®y,...,®,) lest et qu’on a
Vie[l;n] d;" = (901' o ... @5“71))>
On procéde de méme pour le cas affine :
reS, «— X =A{t)X+B(t) < Xe&Xp+ Vect (Py,...,9,) <= v €2,+ S
O

Proposition 19 (Principe de superposition). Soient @1, @y des solutions respectives de

2™ = a, 1)z + .. +ag(t)x + bi(2) (L)

2™ =, ()™ + ..+ ag(t)z + ba(2) (L2)

avee ag, ..., an_1,b1,00 € €1, K). Alors pour (ay,as) € K2, Uapplication aip; + asps est
solution de

2™ = a,_1()z™ Y + ..+ ag(t)z 4+ arbi(t) + agby(2)

Démonstration. Immeédiate. O
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4 Equations & coeflicients constants

Définition 16. Une équation différentielle linéaire scalaire d’ordre n a coefficients constants
est une équation de la forme

™ 4+ @12 + .+ agz = b(t) (L)

avec ag, . . ., ay_1 des scalaires et b € €°(1,K).

Théoréme 22. Soit I’équation différentielle linéaire scalaire homogéne d’ordre n a coefficients
constants

™ + a, 12"V 4+ .. +az =0 (H)

avec ag, . .. ,an_1 des scalaires. Si la matrice compagne A du systéme différentiel associé a (H)
est diagonalisable, alors on a

S = Vect (t — e*!) 1 cicn

X

avec les \; valeurs propres de A.

Démonstration. On applique le théoréme [19]a la formulation matricielle d’ordre 1 de ’équation
différentielle d’ordre n et on spécialise le résultat pour la premiére coordonnée :

x € SH — X' = AX < X € Vect (t — e)‘itvi)lgign — x € Vect (t — e)‘it)ngn

X

On a donc prouvé S C Vect (t — eXit)cicp

avec dim Sy = n et Sy inclus dans un espace engendré par une famille de cardinal < n. L’égalité
s’ensuit. O

Remarque : L’espace Sy est un K-ev de dimension n. L’égalité obtenue ci-avant impose donc
que les \; soient distincts. C’est un fait connu : une matrice compagne d’ordre n est diagonali-
sable si et seulement si elle admet n valeurs propres distinctes. On peut également en déduire
une base de vecteurs propres de A en injectant 1’écriture de x dans X puisqu’on a en fait
I’équivalence

x € Vect (t — e)‘it)lgi@ <— X € Vect (t — e’\itVi)Ki@

Proposition 20. Soit [’équation différentielle linéaire scalaire homogéne d’ordre n a coefficients
constants

™ +a, 12D+ . +az =0 (H)
avec ag, - . ., a,—1 des scalaires. Les solutions de (H) sont de classe €>° sur R.
Démonstration. On procéde par récurrence. O

Théoréeme 23. Soit I’équation différentielle linéaire scalaire homogéne d’ordre n a coefficients
constants

™ 4+ ap, 12"V 4. 4 az =0 (H)
n—1

avec ag, . . . , a1 des scalaires. On note P = X"+ Y a, Xk, Si P peut s’écrire sous forme scindé
k=0

r

P=J1(X—=X)™ dans K[X] avec les \; distincts et les m; entiers non nuls, alors
i=1

(thjeAit,ie [1;7],7€[0; mi_l]])

est un systéme fondamental de solutions de (H).
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Démonstration. On pose E = €°°(R,K) et D I'’endomorphisme de dérivation de E dans E.
D’aprés le théoréme des noyaux, on a

Sy = Ker P(D) = Ker O(D — \;id)™ = @ Ker (D — \;id )™
i=1 i=1
Soit A € K et € E. On pose © = e,y avec ey : t — e*'. Par dérivation, on trouve
(D —Aid)(z) = exD(y)
et par récurrence immeédiate, pour m entier non nul

(D —Aid)™(x) = exD™(y)

Ainsi x € Ker (D — Aid)™ <= y € Ker D" <= y € Vect (t = /) [g.,n_1]

On en déduit la famille génératrice annoncée et la liberté vient soit par une vérification directe
(caractérisation d’une somme directe puis famille de fonctions polynomiales) ou par un argu-
ment de dimension (plus rapide mais requiert le théoréme de Cauchy linéaire, argument non
trivial). O
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Annexes

Théoréme de Cauchy linéaire

Théoréme 10. Soit a € €°(1, Z(E)), b € €°(I,E) et (to, z0) € I X E. Le probléme de Cauchy
{x’ = a(t) -z +b(t)
l‘(to) = 29

admet une unique solution.

Démonstration. Considérons la suite de fonctions (p,,), définies par

Viel <Ww=xoetwwﬂw:%+/EM@¢Mﬁ+MMds

to

Par récurrence immeédiate, on établit 'existence et la continuité de ¢, pour tout n entier.

L’espace Z(E) est muni de la norme subordonnée. Soit K un segment inclus dans I contenant t.
L’application ¢t — ||a(t)]|op est continue sur le segment K donc bornée. Notons M = Sup ||a(t)||op
teK

et

t—to|"
P): HEK  fpunl) - en® <0 o

e Initialisation Z2(0) : Immédiat.
e Hérédité Z(n) —= Z(n+1) :

Vi€ K %H@—wwﬁwa/MQ«%H@—wmmds

to
Soit t € K tel que t > t5. On a

t
wmw—%uw</wam@—%@Ms
to

¢ (5 . t0>n ’t o t0|n+1
< M/ MHTWM — 00||oox ds = Mn+1m||901 — 00lloo,x
to : :

to
Pour t < tg, les intégrales sont changées en / et on obtient la méme inégalité ce qui clot la
t

récurrence.

Notant aw = Sup |t — o], il vient
teK

an
Vn € N lnt1 — SOnHoo,K < M”JH% - SPOHOO,K

La série > ||¢n+1 — ©nlloox converge donc la série Y [¢n4+1 — @n] converge normalement sur
tout segment de I (puisque tout segment est contenu dans un segment contenant également ¢y).
Par téléscopage, il s’ensuit que la suite (g,,), converge uniformément sur tout segment de I vers
une fonction ¢ continue.

Soit K un segment inclus dans I contenant ;. On a

Sg};() la(s) - (pn(s) — @(s)) | < Ml@n — ¢locx = 0(1)
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Soit t € K. Par convergence uniforme sous l'intégrale, on peut faire tendre n — +oo dans
I’égalité

i1 (t) = 20+ / a(s) - ou(s) + b(s)] ds

to

On trouve o(t) =z + / [a(s) - p(s) +b(s)] ds

to
Le choix de K étant arbitraire, I’égalité a lieu pour tout ¢t € 1. En particulier pour ¢t = ty, on a
©(tg) = zo. D’apreés le théoréme fondamental d’analyse, Iapplication ¢ est de classe ¢! sur I
et par dérivation
Vi el o' (t) = a(t) - p(t) + b(t)

D’out @ est une solution du probléme de Cauchy.

Considérons ¢ et 1 deux solutions du probléme de Cauchy et notons § = ¢ —1). Cette différence
vérifie
t
Vtel o(t) :/a(s)-é(s) ds
to

Soit K un segment inclus dans I contenant ¢y et C = Sup ||0(¢)||. Une récurrence donne
teK

[t —to|”

meN  WteK [5(t)] <Mt

Faisant n — +o00, on en déduit que ¢ s’annule sur K et le choix de K étant arbitraire, on a
I’annulation sur I tout entier ce qui prouve l'unicité.

Variante pour ['unicité. Par inégalité triangulaire, on a
t

vt € 1N [to;+o0] WNOH<L/HGQN%MMQNMB
to

Le lemme de Gronwall permet de conclure sur U'intervalle IN [ ; +00 [. On remarque que choix
de ty € I n’intervient pas et le résultat suit. O

Méthode du wronskien et méthode de Lagrange

Meéthode : Résolution de I'équation différentielle linéaire homogéne d’ordre 2
" = a(t)z’ + b(t)z (H)
avec a, b dans €°(I, K) connaissant une solution ¢ de (H) qui ne s’annule pas sur I. On procéde
ainsi :
1. On détermine une expression du wronskien comme solution de ’équation W' = a(t)W;

2. On résout I'équation différentielle linéaire d’ordre 1

()Y — ' () = W(t)

d’inconnue v par variation de la constante; on connait déja ¢ solution de I’équation
homogéne donc il suffit de chercher ¢ de la forme 1) = Ay avec A\ dérivable.

Considérons I'équation différentielle linéaire homogéne d’ordre 2
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2" = a(t)r’ +b(t)x (H)

avec a, b dans €°(I,K). Soit ¢ solution de (H) qui ne s’annule pas sur I. Si 1 est également
solution de (H), on peut considérer le wronskien W associé défini par

A0 o) = eow o - S

On sait que W est solution de I’équation différentielle linéaire d’ordre 1
W' = a(t)W

On en déduit W : t — ae®® avec a € K et A une primitive de a. On peut désormais considérer
la relation

viel W(t) =

p(t) — ¢ () = e
comme une équation différentielle linéaire d’ordre 1 d’inconnue . La fonction ¢ est solution
de ’équation homogéne associée. Par variation de la constante, posant ¢ = Ap, on trouve

vtel  N#)p(t)? = aer®

A(t)
d’ou viel )\(t):a/ dt + 3
(1)
o AD)
Et on conclut Sp=<t— ago(t)/ 20 dt + Bep(t), (o, B) € K2
2
cA®)
La fonction t +— / % dt n’est pas constante et on obtient bien un plan vectoriel de solutions.
12

Théoréme 9 (Méthode de Lagrange). Soit a,b,c,d € €°(1,K) avec a(t) # 0 pour tout t €
et soit I’équation différentielle linéaire d’ordre 2

a(t)z” +b(t)x" + c(t)r = d(t) (L)

Si @ est une solution de l'équation homogéne associée (H) telle que p(t) # 0 pour tout t € 1,
alors posant © = ¢ y avec y € €*(1,K), il existe une équation différentielle linéaire d’ordre 1
notée (L) telle que

Yy €Sy <= xS,

A Tissue de la méthode de Lagrange, on est assuré d’avoir toutes les solutions de (L). En effet,
notant u € Sy, et (¢) base de Sy, on a

Yy =u+ P avec [ réel
puis y=U+a+ ¥ avec U:/u et \Il:/w

et par suite r=Up+ap+ Bp¥ avec «, [ réels

La famille (p, pV) est libre car ¥ non constant et on obtient bien un plan affine de solutions.
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Meéthode : Calcul de exp(A) avec A € #,(K) et P € K[X] un polynéme annulateur de A.
On note ¢ = deg P. D’aprés le théoréme de la division euclidienne, pour n entier, il existe Q,,
q—1
et R, dans K[X] tels que X" = PQ,, + R,, avec degR,, < ¢. Notant R,, = >_ ., X", on trouve
k=0
q—1
A" =R, (A) = Y a A" et aprés permutation des sommes & justifier, on trouve
k=0
+o0 1 q—1 k+oo Ok
exp(A) = 3o —R,(A) = S AFY
n=0T0: k=0 n=0 T

On va justifier que la permutation des sommes est licite. Quitte & travailler dans .#,(C), on
'

peut supposer P scindé avec P = [[ (X —x;)™, les \; deux & deux distincts et les m; des entiers
i=1

non nuls.

Soit i € [1; r]. On a x; racine de P d’ordre m;. Ainsi, par dérivations successives puis substi-

tution de X par x;, on obtient

( q—l
n _ k
; = 2. Qi
k=0
1 = k—1
— B _
=1
| q—1 |
n: xn—mi—i-l _ Z ay k! k—m;+1
i = n i
| (n —m; +1)! ki1 (K —m;+1)!
que 'on peut écrire matriciellement
n
0 1 2 q—1 nx~
xy xy Ty - - ] , 1
0 1 q—
0 2] 2 oo (g—=1)ad :
: : Qon _nl  n—mi+l
: : (n—mi+1)1""1
1,:0 (=1 .g=m1 1 xh
0 ... 0 (m—Dli ... x - = 2
1 (g—ma1)!™1 . n—1
xy xl  a? 4! Ny
2 2 2 DY ... 2 2 a
0 1 q— q—1,n
0 x5 2 (¢ — 1)a3
n! $n—m7>+1
(n—my4+1)Ir

que I'on notera AX = B pour alléger les écritures. FEn admettant que la matrice A soit inversible,

il s’ensuit que la solution est & coordonnées combinaison linéaire des coordonnées de B. Comme

n! xn—k xn—k
les séries Z—‘—| = Z—‘ avec z réel convergent, il en résulte que le procédé de
n—k)! n! (n—k)!

calcul d’une exponentielle avec un polynéme annulateur fonctionne. Justifions que la matrice
A est inversible. On pose

K,_1[X] — K¢
P (P(z1),P(z1),...,.P™ D (2q), P(22),P'(22) ...,..., P(z,), P(x,),..., PV (x,))
Notant Z = (1,X,...,X% 1) et € la base canonique de K9, on observe que

matgg;g(p =A
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L’application ¢ est linéaire par linéarité de la dérivation et de I’évaluation. Soit P € Ker . On
a

Vie[l;r] (X —x;)™|P

Or, les polynomes (X — z;)™ sont premiers entre eux et par conséquent

r

(X~ )™

=1

,
P avec > m;=1b
i=1

On conclut que P = 0. Ainsi, 'application linéaire ® est injective entre deux espaces de méme
dimension finie. On conclut que ® est un isomorphisme et la matrice A est donc inversible.
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