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Dans ce qui suit, l'ensemble K désigne le corps R ou C et l'ensemble I un intervalle de R non
vide non réduit à un point.

Rappels : Soient E,F des K-ev et Φ ∈
L (E,F). Notant SL l'ensemble des solutions
de l'équation linéaire (L) : Φ(x) = b d'incon-
nue x ∈ E avec b ∈ F, a on a SL = ∅ ou
SL = xP +Ker Φ avec xP ∈ SL.

Ker Φ

xP

SL = xP +Ker Φ

Figure 1 � Espace a�ne de solutions

Vocabulaire : Une équation di�érentielle d'ordre p est dite sous forme normalisée si elle s'écrit

x(p) = f
(
t, x, x′, . . . , x(p−1)

)
I Équations di�érentielles linéaires scalaires d'ordre 1

1 Dé�nitions

Dé�nition 1. Une équation di�érentielle linéaire scalaire d'ordre 1 sur I est une équation de
la forme

x′ = a(t)x+ b(t) (L)

avec a, b dans C 0(I,K). Une solution de (L) est une application f : I → K dérivable telle que

∀t ∈ I f ′(t) = a(t)f(t) + b(t)

Vocabulaire : L'équation x′ = a(t)x (H)

est appelée équation homogène associée à l'équation (L). Le terme b est appelé second membre.

Notations : On note SL l'ensemble des solutions de (L) et SH l'ensemble des solutions de (H).

Proposition 1. Soient a, b dans C 0(I,K) et l'équation di�érentielle linéaire scalaire d'ordre 1

x′ = a(t)x+ b(t) (L)

Toute solution de (L) ou de (H) est dans C 1(I,K).

Démonstration. Si x ∈ SL, alors x′ = ax + b ∈ C 0(I,K) d'où x ∈ C 1(I,K). Le cas de SH

s'obtient avec b = 0.

2 Problème de Cauchy

Dé�nition 2. Soient a, b dans C 0(I,K) et (t0, x0) ∈ I×K. Le système®
x′ = a(t)x+ b(t) (L)

x(t0) = x0 (CI)

est dit problème de Cauchy. L'équation (CI) est la condition initiale du problème de Cauchy.
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Remarque : Ce problème de Cauchy peut aussi s'écrire sous forme intégrale :

∀t ∈ I x(t) = x0 +

∫ t

t0

[a(s)x(s) + b(s)] ds

Théorème 1 (Théorème de Cauchy linéaire). Soient a, b dans C 0(I,K) et (t0, x0) ∈ I×K.
Il existe une unique solution au problème de Cauchy®

x′ = a(t)x+ b(t) (L)

x(t0) = x0 (CI)

Démonstration. On pose A : t 7→
∫ t

t0

a(s) ds. La fonction t 7→ eA(t)

ï
x0 +

∫ t

t0

e−A(s)b(s) ds

ò
est

solution du problème. Si x est solution, on pose λ : t 7→ e−A(t)x(t). La fonction λ est dérivable
avec λ′(t) = e−A(t)b(t) pour t ∈ I. L'unicité s'ensuit après intégration.

3 Forme des solutions

Théorème 2. Soit a ∈ C 0(I,K) et l'équation di�érentielle linéaire homogène d'ordre 1

x′ = a(t)x (H)

Alors SH = Vect (φ) avec φ : t 7→ eA(t) et A(t) =

∫ t

a(s) ds

En particulier, l'ensemble SH est une droite vectorielle de C 1(I,K).

Démonstration. Soit x dérivable. On a

x′ = a(t)x ⇐⇒ d

dt

[
e−A(t)x(t)

]
= 0

d'où le résultat.

Corollaire 1. Soient a, b dans C 0(I,K) et l'équation di�érentielle linéaire d'ordre 1

x′ = a(t)x+ b(t) (L)

L'ensemble SL est une droite a�ne de C 1(I,K) de direction SH, plus précisément

SL = xP +Vect (φ) avec φ : t 7→ eA(t) et xP ∈ SL

Démonstration. D'après le théorème de Cauchy linéaire, il existe une solution xP ∈ SL (choisir
t0 ∈ I et une condition initiale x0). Puis, on a

x ∈ SL ⇐⇒ x− xP ∈ SH

et l'ensemble xP + SH est inclus dans C 1(I,K).

Vocabulaire : On appelle courbes intégrales de (L) les graphes des solutions de (L).
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Figure 2 � Courbes intégrales de x′ = − 1

1 + t
x+ sin t

Proposition 2 (Principe de superposition). Soient φ1, φ2 des solutions respectives de

x′ = a(t)x+ b1(t) (L1)

x′ = a(t)x+ b2(t) (L2)

avec a, b1, b2 ∈ C 0(I,K). Alors pour (α1, α2) ∈ K2, l'application α1φ1 + α2φ2 est solution de

x′ = a(t)x+ α1b1(t) + α2b2(t)

Démonstration. Immédiate.

Proposition 3 (Variation de la constante). Soient a, b dans C 0(I,K) et l'équation di�é-
rentielle linéaire d'ordre 1

x′ = a(t)x+ b(t) (L)

Soit φ solution non nulle de l'équation homogène associée et λ : I → K dérivable. Alors, la
fonction φ ne s'annule pas sur I et on a

λφ ∈ SL ⇐⇒ φλ′ = b ⇐⇒ λ′ = b/φ

Démonstration. On a

λφ ∈ SL ⇐⇒ λ′φ+ λφ′ = aλφ+ b ⇐⇒ λ′φ = b

En supposant φ non nulle, on a mieux à savoir que la fonction φ ne s'annule pas puisque
φ ∈ Vect

(
t 7→ eA(t)

)
avec A primitive de a. Ainsi, on a

λφ ∈ SL ⇐⇒ λ′ = b/φ

et le choix de λ s'ensuit par intégration.

Remarque : Cette technique permet de trouver le choix de solution faite pour la démonstration
du théorème de Cauchy linéaire, obtenue en posant x = λφ.
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II Équations di�érentielles linéaires scalaires d'ordre 2

1 Dé�nitions

Dé�nition 3. Une équation di�érentielle linéaire scalaire d'ordre 2 sur I est une équation de
la forme

x′′ = a(t)x′ + b(t)x+ c(t) (L)

avec a, b, c dans C 0(I,K). Une solution de (L) est une application f : I → K deux fois dérivable
telle que

∀t ∈ I f ′′(t) = a(t)f ′(t) + b(t)f(t) + c(t)

Vocabulaire : L'équation x′′ = a(t)x′ + b(t)x (H)

est appelée équation homogène associée à l'équation (L). Le terme c est appelé second membre.

Notations : On note SL l'ensemble des solutions de (L) et SH l'ensemble des solutions de (H).

Proposition 4. Soient a, b, c dans C 0(I,K) et l'équation di�érentielle linéaire d'ordre 2

x′′ = a(t)x′ + b(t)x+ c(t) (L)

Toute solution de (L) ou de (H) est dans C 2(I,K).

Démonstration. Si x ∈ SL, alors x′′ = ax′ + bx + c ∈ C 0(I,K) d'où x ∈ C 2(I,K). Le cas de SH

s'obtient avec c = 0.

2 Problème de Cauchy

Dé�nition 4. Soient a, b, c dans C 0(I,K) et (t0, x0, v0) ∈ I×K2. Le système®
x′′ = a(t)x′ + b(t)x+ c(t) (L)

(x(t0), x
′(t0)) = (x0, v0) (CI)

est dit problème de Cauchy. Les équations (CI) constituent les conditions initiales du problème
de Cauchy.

Théorème 3 (Cauchy linéaire). Soient a, b, c dans C 0(I,K) et (t0, x0, v0) ∈ I×K2. Il existe
une unique solution au problème de Cauchy®

x′′ = a(t)x′ + b(t)x+ c(t) (L)

(x(t0), x
′(t0)) = (x0, v0) (CI)

[Admis]

3 Forme des solutions

Théorème 4. Soient a, b, c dans C 0(I,K) et l'équation di�érentielle linéaire d'ordre 2

x′′ = a(t)x′ + b(t)x+ c(t) (L)

L'ensemble SH est un plan vectoriel de C 2(I,K) et l'ensemble SL est un plan a�ne de C 2(I,K)
de direction SH.
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Démonstration. Soit E = C 2(I,K), F = C 0(I,K) et Φ : E → F, x 7→ x′′ − ax′ − bx. On a
Φ ∈ L (E,F), SH = Ker Φ. D'après le théorème de Cauchy linéaire, quitte à choisir des condi-
tions initiales, l'équation (L) admet une solution donc SL est non vide d'où SL = xP + Ker Φ
avec xP ∈ SL, sous-espace a�ne de C 2(I,K).

Soit t0 ∈ I et Φ0 : SH → K2, x 7→ (x(t0), x
′(t0)). On a clairement Φ0 ∈ L (SH,K2) et d'après

le théorème de Cauchy linéaire, l'application Φ0 est un isomorphisme d'où dimSH = dimK2 =
2.

Proposition 5 (Principe de superposition). Soient φ1, φ2 des solutions respectives de

x′′ = a(t)x′ + b(t)x+ c1(t) (L1)

x′′ = a(t)x′ + b(t)x+ c2(t) (L2)

avec a, b, c1, c2 ∈ C 0(I,K). Alors pour (α1, α2) ∈ K2, l'application α1φ1 + α2φ2 est solution de

x′′ = a(t)x′ + b(t)x+ α1c1(t) + α2c2(t)

Démonstration. Immédiate.

4 Wronskien

Dé�nition 5. Soient a, b dans C 0(I,K) et l'équation di�érentielle linéaire homogène d'ordre 2

x′′ = a(t)x′ + b(t)x (H)

On appelle système fondamental de solutions de l'équation (H) toute base (φ, ψ) de SH.

Dé�nition 6. Soient a, b dans C 0(I,K). On appelle wronskien de deux solutions (φ, ψ) de
l'équation homogène

x′′ = a(t)x′ + b(t)x (H)

la fonction notée W dé�nie par

∀t ∈ I W(t) =

∣∣∣∣φ(t) ψ(t)
φ′(t) ψ′(t)

∣∣∣∣
Théorème 5. Soient a, b dans C 0(I,K) et l'équation di�érentielle linéaire homogène d'ordre 2

x′′ = a(t)x′ + b(t)x (H)

Le wronskien W de deux solutions (φ, ψ) de l'équation homogène (H) véri�e l'équation di�é-
rentielle linéaire d'ordre 1

W′ = a(t)W

Démonstration. On a W = φψ′ − φ′ψ dérivable puis

W′ = φψ′′ − ψφ′′ = φ(aψ′ + bψ)− ψ(aφ′ + bφ) = a(φψ′ − φ′ψ) = aW

d'où le résultat.

Exemple : Le wronskien d'un couple de solutions de l'équation x′′ + q(t)x = 0 est constant.

Corollaire 2. Le wronskien W de deux solutions d'une équation di�érentielle linéaire homogène
d'ordre 2 véri�e

W = 0 ⇐⇒ ∃t0 ∈ I | W(t0) = 0
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Démonstration. Le sens direct est immédiat. La réciproque résulte de l'unicité du théorème de
Cauchy linéaire puisque la fonction nulle est solution de x′ = a(t)x, x(t0) = 0.

Théorème 6. Soient a, b dans C 0(I,K) et (φ, ψ) deux solutions de l'équation di�érentielle
linéaire homogène d'ordre 2

x′′ = a(t)x′ + b(t)x (H)

Les conditions suivantes sont équivalentes :

1. (φ, ψ) système fondamental de solutions de (H) ;

2. W ne s'annule pas sur I.

Démonstration. Soit t0 ∈ I. L'application

Φ:


S2
H −→ M2(K)

(φ, ψ) 7−→
Å
φ(t0) ψ(t0)
φ′(t0) ψ′(t0)

ã
est un isomorphisme d'après le théorème de Cauchy-linéaire. Ainsi, on a rg (φ, ψ) = rg Φ(φ, ψ)
et le résultat suit.

III Recherche de solutions d'une équation di�érentielle li-
néaire scalaire d'ordre 2

1 Équations à coe�cients constants

Dé�nition 7. Soit (a, b) ∈ K2 et l'équation di�érentielle linéaire homogène d'ordre 2 à coe�-
cients constants

x′′ + ax′ + bx = 0 (H)

On appelle équation caractéristique de (H) l'équation

r2 + ar + b = 0 (R)

Théorème 7. Soit (a, b) ∈ K2 et l'équation di�érentielle linéaire homogène d'ordre 2

x′′ + ax′ + bx = 0 (H)

1. Si l'équation (R) admet deux racines distinctes α et β

x ∈ SH ⇐⇒ ∃(λ, µ) ∈ K2 | ∀t ∈ R x(t) = λeαt + µeβt

2. Si l'équation (R) admet une racine double α

x ∈ SH ⇐⇒ ∃(λ, µ) ∈ K2 | ∀t ∈ R x(t) = (λt+ µ)eαt

3. Si (a, b) ∈ R2 et si l'équation (R) admet deux racines complexes conjuguées r +− is (s ̸= 0)

x ∈ SH ⇐⇒ ∃(λ, µ) ∈ R2 | ∀t ∈ R x(t) = e rt [λ cos(st) + µ sin(st)]

Remarques : (a) Le troisième cas (qui est un sous-cas du premier) fournit une expression
réelle de la solution de l'équation di�érentielle à coe�cients réels.
(b) On pourrait rajouter l'unicité à l'existence des scalaires λ et µ dans chaque cas.
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Démonstration. Par récurrence, on véri�e que les solutions sont de classe C ∞ sur R. On note
E = C ∞(R,K) et D l'endomorphisme de dérivation de E dans E. On a SH = Ker P(D) où
P = X2 + aX+ b.

1. Si (R) admet deux racines distinctes α, β, on a d'après le lemme des noyaux

SH = Ker (D− α id ) ◦ (D− β id ) = Ker (D− α id )⊕Ker (D− β id )

et le résultat suit.

3. Si (R) admet deux racines complexes conjuguées r +− is avec s ̸= 0, le résultat précédent
s'applique d'où t 7→ e (r+is)t solution (non réelle) de (H). Considérant partie réelle et imaginaire,
les fonctions t 7→ Re e (r+is)t et t 7→ Im e (r+is)t sont solutions réelles de (H) et on véri�e sans
peine qu'elles forment une famille libre donc une base dans le plan vectoriel réel SH.

2. Si (R) admet une racine double α. On note eα : t 7→ eαt et on pose y = e−αx ce qui équivaut
à x = eαy. On a (D− α id )(x) = eαy

′ puis (D− α id )2(x) = eαy
′′. Le résultat suit.

Remarques : (a) On peut aussi considérer les couples de solutions annoncées et véri�er dans
chaque cas qu'ils forment bien un système fondamental de solutions mais ça n'explique pas le
choix des solutions en question.

(b) On peut procéder avec des techniques de réduction. On pose X =

Å
x
x′

ã
et on a X′ = AX

avec A =

Å
0 1
−b −a

ã
. On réduit la matrice A et notant P la matrice de passage vers la base de

réduction, on pose X = PY avec Y =

Å
u
v

ã
. Ainsi, on obtient un nouveau système di�érentiel

linéaire Y′ = P−1APY plus simple (diagonale ou triangulaire) que l'on sait résoudre. On revient
à une formulation en X avec X = PY et on voit, par le biais de dernier produit matriciel, que
x(t) sera une combinaison linéaire des composantes de Y(t).

Proposition 6. Soit (a, b) ∈ K2, P ∈ K[X] et m ∈ K. L'équation

x′′ + ax′ + bx = P(t)emt (L)

admet une solution particulière de la forme

1. x0 : t ∈ R 7→ Q(t)emt si m pas racine de (R)

2. x0 : t ∈ R 7→ tQ(t)emt si m racine simple de (R)

3. x0 : t ∈ R 7→ t2Q(t)emt si m racine double de (R)

avec Q ∈ K[X] et degQ = deg P.

Remarque : Avec m = 0, on a le cas d'une équation di�érentielle linéaire d'ordre 2 à coe�-
cients constants et avec un second membre polynomial.

Démonstration. Notons n = deg P.
1. Pour x0 : t 7→ Q(t)emt, on a

x′′0 + ax′0 + bx0 = P(t)emt ⇐⇒ (m2 + am+ b)Q + (2m+ a)Q′ +Q′′ = P

On pose ∀Q ∈ Kn[X] Φ(Q) = (m2 + am+ b)Q + (2m+ a)Q′ +Q′′
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On a clairement deg Φ(Q) = degQ pour Q ∈ Kn[X] puis Φ ∈ L (Kn[X]) et Ker Φ = {0} d'où
Φ isomorphisme. Le résultat suit.
2, 3. On procède comme au 1.

2 Variation des constantes

Théorème 8. Soient a, b, c dans C 0(I,K) et l'équation di�érentielle linéaire d'ordre 2

x′′ = a(t)x′ + b(t)x+ c(t) (L)

Étant donné un système fondamental (φ, ψ) de solutions de l'équation homogène (H), une so-
lution de (L) est fournie par t 7→ λ(t)φ(t) + µ(t)ψ(t) avec λ, µ : I → K dérivables et véri�ant®

λ′(t)φ(t) + µ′(t)ψ(t) = 0

λ′(t)φ′(t) + µ′(t)ψ′(t) = c(t)

Démonstration. Le système est de Cramer car son déterminant, le wronskien, ne s'annule pas
sur I d'après le corollaire 2. On choisit (λ, µ) telle que (λ′, µ′) solution du système. On pose
x = λφ+ µψ. On a x dérivable puis

x′ = λφ′ + µψ′ dérivable et x′′ = λ′φ′ + µ′ψ′ + λφ′′ + µψ′′

Ainsi x′′ = c+ λaφ′ + λbφ+ µaψ′ + µbψ = c+ ax′ + bx

d'où le résultat annoncé.

Exemple : Résoudre sur I =
]
−π
2
;
π

2

[
l'équation di�érentielle

x′′ + x =
1

cos(t)
(L)

On a clairement SH = Vect (cos, sin). Cherchons une solution de la forme x = λ cos+µ sin avec
λ, µ dérivables. On obtient

∀t ∈ I

Å
cos(t) sin(t)
− sin(t) cos(t)

ãÅ
λ′(t)
µ′(t)

ã
=

Ñ
0
1

cos(t)

é
ce qui équivaut à ∀t ∈ I

Å
λ′(t)
µ′(t)

ã
=

Å
cos(t) − sin(t)
sin(t) cos(t)

ãÑ 0
1

cos(t)

é
d'où ∀t ∈ I λ′(t) = − sin(t)

cos(t)
et µ′(t) = 1

Ainsi SL = {t ∈ I 7→ α cos(t) + β sin(t) + cos(t) ln(cos(t)) + t sin(t), (α, β) ∈ R2}

3 Solutions développables en série entière

Soit l'équation a(t)x′′ + b(t)x′ + c(t)x = d(t) (L)

sur un intervalle I. On suppose que a, b, c sont polynomiales et d est développable en série
entière. On peut alors envisager de chercher une solution de (L) qui soit développable en série

entière i.e. une solution x sous la forme x(t) =
+∞∑
n=0

ant
n. Pour t ∈ ]−R ;R [ avec R supposé > 0,

il vient par dérivation de séries entières
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x(t) =
+∞∑
n=0

ant
n, x′(t) =

+∞∑
n=1

nant
n−1, x′′(t) =

+∞∑
n=2

n(n− 1)ant
n−2

Ensuite :
� on injecte ces expressions dans (L) et on distribue les produits ;
� on procède à des changements d'indice pour avoir partout les mêmes puissances de t ;
� on rassemble les puissances de t par linéarité de Σ car on travaille dans l'intervalle de

convergence ;
� on utilise l'unicité du développement en série entière pour obtenir une relation sur les

coe�cients an ;
� on détermine une expression des an (par récurrence ou avec un produit téléscopique) ;
� on s'assure que le rayon de convergence R est non nul (série entière non dégénérée) avec

I ⊂ ]−R ;R [ ;
� en�n, on exprime x(t) avec des fonctions usuelles (si c'est possible).

Exemple : Déterminons une solution développable en série entière de

tx′′ + 2x′ − tx = 0 (H)

Pour t ∈ ]−R ;R [ avec R supposé > 0, on a

x(t) =
+∞∑
n=0

ant
n, x′(t) =

+∞∑
n=1

nant
n−1, x′′(t) =

+∞∑
n=2

n(n− 1)ant
n−2

On injecte dans (H) :
+∞∑
n=2

n(n− 1)ant
n−1 +

+∞∑
n=1

2nant
n−1 −

+∞∑
n=0

ant
n+1 = 0

Avec un changement d'indice dans la dernière somme, on obtient
+∞∑
n=2

n(n− 1)ant
n−1 +

+∞∑
n=1

2nant
n−1 −

+∞∑
n=2

an−2t
n−1 = 0

En isolant le premier terme de la seconde somme, on peut ensuite rassembler les trois sommes
par linéarité :

2a1 +
+∞∑
n=2

[n(n+ 1)an − an−2] t
n−1 = 0

Par unicité du développement en série entière, on en déduit®
a1 = 0

n(n+ 1)an − an−2 = 0 ∀n ⩾ 2

Une récurrence immédiate donne

∀n ∈ N a2n+1 = 0 et a0 ̸= 0 =⇒ a2n ̸= 0 ∀n ∈ N
Pour obtenir une expression simple de a2n, on écrit un produit téléscopique

a2n =
n

Π
k=1

ï
a2k

a2(k−1)

ò
× a0 =

n

Π
k=1

ï
1

(2k + 1)(2k)

ò
× a0 =

a0
(2n+ 1)!

On trouve un rayon de convergence R = +∞ puis on identi�e

x = a0φ avec φ(t) =


sh (t)

t
si t ̸= 0

1 sinon

Remarque : Souvent, on ne trouve pas toutes les solutions d'une équation di�érentielle li-
néaire d'ordre 2 en recherchant celles qui sont développables en série entière. Si l'équation est
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normalisée, homogène et qu'on a une solution développable en série entière dé�nie à constante
multiplicative près (a0 ou a1 en facteur le plus souvent), on a donc une droite vectorielle de so-
lutions. Or on sait que l'espace des solutions est un plan vectoriel. On peut donc ensuite mettre
en ÷uvre laméthode du wronskien ouméthode de Lagrange pour déterminer toutes les solutions.

Application :
Soit f une fonction développable en série entière en zéro. Si f est solution d'un problème de
Cauchy d'ordre 1 ou 2 à coe�cients polynomiaux, on peut alors alors déterminer le développe-
ment de f en cherchant une solution développable en série entière à ce problème de Cauchy et
en concluant grâce à l'unicité du théorème de Cauchy linéaire.

Exemple : Déterminer le développement en série entière de x(t) = sin(t). La fonction sin est
solution du problème de Cauchy

(C) :

®
x′′ + x = 0

(x(0), x′(0)) = (0, 1)

Cherchons une solution développable en série entière de (C). Soit x(t) =
+∞∑
n=0

ant
n pour t ∈

]−R ;R [ avec R supposé > 0. Il vient après changement d'indice et linéarité

(C) ⇐⇒


+∞∑
n=0

[(n+ 2)(n+ 1)an+2 + an] t
n = 0

(a0, a1) = (0, 1)

Par unicité du développement en série entière, on trouve

∀n ∈ N an+2 =
−1

(n+ 2)(n+ 1)
an

Une récurrence immédiate donne a2n = 0 et a2n+1 ̸= 0 pour tout n ∈ N. Par suite

∀n ∈ N a2n+1 =
n

Π
k=1

ï
a2k+1

a2k−1

ò
× a1 =

(−1)n

(2n+ 1)!

Le rayon de convergence
+∞∑
n=0

(−1)n

(2n+ 1)!
t2n+1 est R = +∞ d'où l'existence d'une solution déve-

loppable en série entière à (C). En�n, par unicité du théorème de Cauchy linéaire, on conclut
que

∀t ∈ R sin(t) =
+∞∑
n=0

(−1)n

(2n+ 1)!
t2n+1
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4 Utilisation du wronskien, méthode de Lagrange

Méthode : Résolution de l'équation di�érentielle linéaire homogène d'ordre 2

x′′ = a(t)x′ + b(t)x (H)

avec a, b dans C 0(I,K) connaissant une solution φ de (H) qui ne s'annule pas sur I. On procède
ainsi :

1. On détermine une expression du wronskien comme solution de l'équation W′ = a(t)W ;

2. On résout l'équation di�érentielle linéaire d'ordre 1

φ(t)ψ′ − φ′(t)ψ = W(t)

d'inconnue ψ par variation de la constante ; on connaît déjà φ solution de l'équation
homogène donc il su�t de chercher ψ de la forme ψ = λφ avec λ dérivable.

Exemple : On reprend l'équation di�érentielle

tx′′ + 2x′ − tx = 0 (H)

Sur I = ] 0 ; +∞ [ ou ] −∞ ; 0 [, l'ensemble des solutions est un plan vectoriel. Soit φ : t 7→ sh (t)

t

et ψ une solution de (H). Notant W leur wronskien, il véri�e W′ = −2

t
W d'où W(t) = − β

t2
pour t ∈ I avec β réel. Ainsi

∀t ∈ I φ(t)ψ′(t)− φ′(t)ψ(t) = − β

t2

La fonction φ est solution de (H) et posant ψ = λφ avec λ : I → R dérivable, il vient λ′(t) =

− β

sh (t)2
pour t ∈ I puis

∀t ∈ I λ(t) = α + β
ch (t)

sh (t)

Ainsi SH =

ß
t 7→ α sh (t) + β ch (t)

t
, (α, β) ∈ R2

™
Théorème 9 (Méthode de Lagrange). Soient a, b, c, d dans ∈ C 0(I,K) avec a(t) ̸= 0 pour
tout t ∈ I et soit l'équation di�érentielle linéaire d'ordre 2

a(t)x′′ + b(t)x′ + c(t)x = d(t) (L)

Si φ est une solution de l'équation homogène associée (H) telle que φ(t) ̸= 0 pour tout t ∈ I,
alors posant x = φ y avec y ∈ C 2(I,K), il existe une équation di�érentielle linéaire d'ordre 1
notée (L′) telle que

y′ ∈ SL′ ⇐⇒ x ∈ SL

Démonstration. On a x = φy, x′ = φ′y + φy′, x′′ = φ′′y + 2φ′y′ + φy′′

D'où x ∈ SL ⇐⇒ y [aφ′′ + bφ′ + cφ] + y′ [2aφ′ + bφ] + y′′aφ = d

Autrement dit, z = y′ est solution de l'équation di�érentielle linéaire d'ordre 1

aφz′ + [2aφ′ + bφ] z = d
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Exemple : Sur l'équation di�érentielle

tx′′ + 2x′ − tx = 0 (H)

avec I = ] 0 ; +∞ [ ou ] −∞ ; 0 [, on reprend φ(t) =
sh (t)

t
pour t ∈ I, on applique la méthode de

Lagrange et on retrouve le plan vectoriel précédemment décrit.

Remarques : (1) Pour chacune de ces méthodes, on trouve souvent une deuxième solution qui
� ressemble � à la première.
(2) On peut démontrer que ces méthodes fonctionnent et qu'on obtient à l'issue de chacune un
plan vectoriel de solution pour l'équation homogène.

Commentaires : La technique du wronskien est très e�cace pour la résolution d'une équation
linéaire homogène d'ordre 2 : on connaît l'équation dont le wronskien est solution et l'équation

φ(t)ψ′ − φ′(t)ψ = W(t)

d'inconnue ψ admet évidemment φ comme solution de l'équation homogène associée ce qui
rend la résolution très rapide. S'il y a un second membre à l'équation de départ, on peut alors
�naliser la résolution avec une méthode de variation des constantes. Dans le cas d'une équation
homogène, la méthode avec wronskien est plus performante que la méthode de Lagrange ; dans
le cas d'une équation avec second membre, les deux approches se valent sensiblement.

5 Changement de variables

Soient a, b, c, d dans C 0(I,K) avec a(t) ̸= 0 pour t ∈ I et soit l'équation di�érentielle linéaire
d'ordre 2

a(t)x′′ + b(t)x′ + c(t)x = d(t) (L)

Dans certains cas, il est suggéré d'utiliser un changement de variables t = ψ(u) avec ψ un
C 2-di�éomorphisme d'un intervalle J sur I, i.e. une bijection de classe C 2 dont la réciproque
est également de classe C 2.

Méthode : On pose y(u) = x(ψ(u)) et on détermine les dérivées premières et secondes de y
en fonction de celles de x :®

y′(u) = ψ′(u)x′(ψ(u))

y′′(u) = ψ′′(u)x′(ψ(u)) + ψ′(u)2x′′(ψ(u))

Puis, en écrivant l'équation (L) avec la variable u

a(ψ(u))x′′(ψ(u)) + b(ψ(u))x′(ψ(u)) + c(ψ(u))x(ψ(u)) = d(ψ(u))

on en déduit une nouvelle équation di�érentielle pour y, plus simple que (L) en principe.

Exemple : Résoudre sur ]−1 ; 1 [ l'équation di�érentielle linéaire d'ordre 2

(1− t2)x′′ − tx′ + n2x = 0 (L)

avec n ∈ N à l'aide du changement de variable t = cos(u). On pose y(u) = x(cos(u)). Par
dérivation, il vient ®

y′(u) = − sin(u)x′(cos(u))

y′′(u) = (1− cos(u)2)x′′(cos(u))− cos(u)x′(cos(u))
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On obtient x ∈ SL ⇐⇒ y′′ + ny = 0

puis ∃(λ, µ) ∈ R2 | ∀t ∈ ]−1 ; 1 [ x(t) = λ cos(nArccos (t)) + µ sin(nArccos (t))

IV Équations di�érentielles linéaires vectorielles

Dans ce qui suit, l'ensemble E désigne un K-ev normé de dimension �nie égale à n. Pour x ∈ E,
on note le morphisme d'évaluation L (E) → E, f 7→ f · x a�n d'éviter une surabondance de
parenthèses.

1 Dé�nitions

Dé�nition 8. Une équation di�érentielle linéaire vectorielle d'ordre 1 sur I est une équation
de la forme

x′ = a(t) · x+ b(t) (L)

avec a une application continue de I dans L (E) et b une application continue de I dans E. Une
solution de (L) est une application f : I → E dérivable telle que

∀t ∈ I f ′(t) = a(t) · f(t) + b(t)

Remarque : Soit B base de E. Posant A(t) = matBa(t) ∈ Mn(K), B(t) = matBb(t) ∈ Mn,1(K)
et X(t) = matBx(t) ∈ Mn,1(K) avec t ∈ I, l'écriture matricielle fournit le système di�érentiel
linéaire

x′ = a(t) · x+ b(t) ⇐⇒ X′ = A(t)X + B(t)

Vocabulaire : L'équation x′ = a(t) · x (H)

est appelée équation homogène associée à l'équation (L). Le terme b est appelé second membre.

Notations : On note SL l'ensemble des solutions de (L) et SH l'ensemble des solutions de (H).

Proposition 7. Soit a ∈ C 0(I,L (E)), b ∈ C 0(I,E) et l'équation di�érentielle linéaire vecto-
rielle

x′ = a(t) · x+ b(t) (L)

Toute solution de (L) ou de (H) est dans C 1(I,E).

Démonstration. Soit (εi,j)1⩽i,j⩽n une base de L (E) et a =
∑

1⩽i,j⩽n

ai,jεi,j avec les ai,j dans

C 0(I,K) (fonctions coordonnées de a). Si x ∈ SL, on a x′ =
∑

1⩽i,j⩽n

ai,jεi,j ◦ x+ b ∈ C 0(I,E). Les

εi,j sont continues (applications linéaires en dimension �nie) et par opération sur des fonctions
continues, il s'ensuit que x ∈ C 1(I,E). Le cas de SH s'obtient avec b = 0.

2 Problème de Cauchy

Dé�nition 9. Soit a ∈ C 0(I,L (E)), b ∈ C 0(I,E) et (t0, x0) ∈ I× E. Le système®
x′ = a(t) · x+ b(t) (L)

x(t0) = x0 (CI)

est dit problème de Cauchy. L'équation (CI) est la condition initiale du problème de Cauchy.
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Remarque : Ce problème de Cauchy peut s'écrire sous forme intégrale :

∀t ∈ I x(t) = x0 +

∫ t

t0

[a(s) · x(s) + b(s)] ds

Théorème 10 (Théorème de Cauchy linéaire). Soit a ∈ C 0(I,L (E)), b ∈ C 0(I,E) et
(t0, x0) ∈ I× E. Il existe une unique solution au problème de Cauchy®

x′ = a(t) · x+ b(t) (L)

x(t0) = x0 (CI)

[Admis]

3 Forme des solutions

Théorème 11. Soit a ∈ C 0(I,L (E)), b ∈ C 0(I,E) et l'équation di�érentielle linéaire vecto-
rielle

x′ = a(t) · x+ b(t) (L)

L'ensemble SH est un sev de C 1(I,E) de dimension n et l'ensemble SL est un sous-espace a�ne
de C 1(I,E) de direction SH.

Démonstration. Soit F = C 1(I,E), G = C 0(I,E) et Φ : F → G, x 7→ x′ − a(·) · x. On a
Φ ∈ L (F,G), SH = Ker Φ. D'après le théorème de Cauchy linéaire, quitte à choisir des condi-
tions initiales, l'équation (L) admet une solution donc SL est non vide d'où SL = xP + Ker Φ
avec xP ∈ SL, sous-espace a�ne de C 1(I,E).

Soit t0 ∈ I et Φ0 : SH → E, x 7→ x(t0). On a clairement Φ0 ∈ L (SH,E) et d'après le théorème
de Cauchy linéaire, l'application Φ0 est un isomorphisme d'où dimSH = dimE = n.

Proposition 8 (Principe de superposition). Soient φ1, φ2 des solutions respectives de

x′ = a(t) · x+ b1(t) (L1)

x′ = a(t) · x+ b2(t) (L2)

avec a ∈ C 0(I,L (E)), b1, b2 ∈ C 0(I,E). Alors pour (α1, α2) ∈ K2, l'application α1φ1+α2φ2 est
solution de

x′ = a(t) · x+ α1b1(t) + α2b2(t)

Démonstration. Immédiate.

4 Variation des constantes

Dé�nition 10. Soit a ∈ C 0(I,L (E)) et l'équation di�érentielle linéaire vectorielle homogène

x′ = a(t) · x (H)

On appelle système fondamental de solutions de (H) une base (φ1, . . . , φn) de SH.
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Théorème 12. Soit a ∈ C 0(I,L (E)) et l'équation di�érentielle linéaire vectorielle homogène

x′ = a(t) · x (H)

Soit B une base de E et φ1, . . . , φn des solutions de (H), on dé�nit

∀t ∈ I W(t) = detB(φ1(t), . . . , φn(t))

Alors, on a

(φ1, . . . , φn) système fondamental de solutions de (H) ⇐⇒ W ne s'annule pas sur I

Démonstration. Soit t0 ∈ I. L'application Sn
H → Mn(K), (φ1, . . . , φn) 7→ matB(φ1(t0), . . . , φn(t0))

est un isomorphisme d'après le théorème de Cauchy linéaire. Le résultat suit.

Remarque : Il s'agit évidemment d'une extension de la notion de wronskien vue pour les
équations di�érentielles linéaires scalaires d'ordre 2. Bizarrement, cette extension ne �gure pas
au programme.

Théorème 13. Soit a ∈ C 0(I,L (E)), b ∈ C 0(I,E) et l'équation di�érentielle linéaire vecto-
rielle

x′ = a(t) · x+ b(t) (L)

Étant donné (φ1, . . . , φn) un système fondamental de solutions de l'équation homogène associée

(H), une solution de (L) est fournie par t 7→
n∑

i=1

λi(t)φi(t) avec les λi : I → K dérivables et

véri�ant

∀t ∈ I
n∑

i=1

λ′i(t)φi(t) = b(t)

Démonstration. On pose x =
n∑

i=1

λiφi. On a

x′ = a(·) · x+ b ⇐⇒
n∑

i=1

λ′iφi +
n∑

i=1

λia(·) · φi =
n∑

i=1

λia(·) · φi + b ⇐⇒
n∑

i=1

λ′iφi = b

Et le système admet une unique solution car, pour B base de E, la matricematB(φ1(t), . . . , φn(t))
avec t ∈ I est inversible.

Remarque : C'est une généralisation du procédé vu pour les équations d'ordre 1 et 2. Consi-
dérant

x′′ = a(t)x′ + b(t)x+ c(t) (L)

équation di�érentielle linéaire scalaire d'ordre 2, on pose pour t ∈ I

X(t) =

Å
x(t)
x′(t)

ã
et X′ = A(t)X + B(t) avec A =

Å
0 1
b(t) a(t)

ã
B(t) =

Å
0
c(t)

ã
L'écriture matricielle de la méthode de variation des constantes donne :

λ′(t)

Å
φ(t)
φ′(t)

ã
+ µ′(t)

Å
ψ(t)
ψ′(t)

ã
=

Å
0
c(t)

ã
avec (φ, ψ) un système fondamental de solutions de (H) équation homogène associée à (L). On
retrouve les conditions sur λ′ et ψ′ obtenues dans le théorème 8.
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V Exponentielle d'une matrice, d'un endomorphisme

Dans ce qui suit, l'ensemble E est un K-ev normé de dimension �nie.

1 Dé�nitions

Proposition 9. Pour A ∈ Mp(K), la série
∑An

n!
converge absolument.

Démonstration. On munit Mp(K) d'une norme sous-multiplicative, par exemple la norme su-

bordonnée à une norme sur Mp,1(K) avec ∥A∥op = Sup
∥X∥=1

∥AX∥. La série exponentielle
∑∥A∥nop

n!
converge d'où la convergence absolue.

Dé�nition 11. On appelle exponentielle de la matrice A ∈ Mp(K) notée exp(A) ou eA la
somme

exp(A) =
+∞∑
n=0

An

n!

On munit L (E) de la norme subordonnée dé�nie pour a ∈ L (E) par ∥a∥op = Sup
∥x∥=1

∥a · x∥.

Dé�nition 12. On appelle exponentielle de l'endomorphisme a ∈ L (E) notée exp(a) ou e a la
somme

exp(a) =
+∞∑
n=0

an

n!

Remarques : (1) Le choix d'une norme sous-multiplicative sur L (E) garantit la convergence

absolue de
∑an

n!
.

(2) Notant A = matBa avec B base de E, on a clairement eA = matBe
a (continuité de

l'isomorphisme u 7→ matBu).

2 Propriétés

Proposition 10 (À refaire). Soit A ∈ Mp(K). Les matrices A et eA commutent et
(
eA

)⊤
=

eA⊤
.

Démonstration. Conséquence de la continuité du produit matriciel et de la transposition.

Proposition 11. Soient A, B dans Mp(K) et P ∈ GLp(K) telles que A = PBP−1. On a

eA = PeBP−1

Démonstration. Conséquence de la continuité du produit matriciel.

Les résultats qui suivent sont énoncés vectoriellement mais existent à l'identique matricielle-
ment.

Théorème 14. Soit (u, v) ∈ L (E)2 avec u ◦ v = v ◦ u. Alors, on a

exp(u+ v) = exp(u) ◦ exp(v)
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Démonstration. On pose pour n entier

∆n =

Å
n∑

i=0

ui

i!

ã
◦
Ç

n∑
j=0

vj

j!

å
−

n∑
k=0

(u+ v)k

k!

Comme u et v commutent, on a

∀k ∈ [[ 0 ; n ]]
(u+ v)k

k!
=

1

k!

k∑
i=0

(
k
i

)
ui ◦ vk−i =

∑
0⩽i,j⩽k,i+j=k

ui ◦ vj

i!j!

puis ∆n =
∑

0⩽i,j⩽n

ui ◦ vj

i!j!
−

∑
0⩽i,j⩽n,i+j⩽n

ui ◦ vj

i!j!
=

∑
0⩽i,j⩽n,n+1⩽i+j⩽2n

ui ◦ vj

i!j!

Ainsi

∥∆n∥op ⩽
∑

0⩽i,j⩽n,n+1⩽i+j⩽2n

∥u∥iop∥v∥jop
i!j!

=

Ç
n∑

i=0

∥u∥iop
i!

åÇ
n∑

j=0

∥v∥jop
j!

å
−

∑
i+j⩽n

∥u∥iop∥v∥jop
i!j!

et le majorant tend vers zéro pour n→ +∞. Le résultat suit par encadrement et continuité de
la composition L (E)2 → L (E), (a, b) 7→ a ◦ b, bilinéaire en dimension �nie.

Remarques : (1) Matriciellement, pour (A,B) ∈ Mp(K)2 tel que AB = BA, on a exp(A+B) =
exp(A) exp(B).

(2) Si AB ̸= BA, on n'a plus la propriété annoncée précédemment. Soit θ réel, A =

Å
0 0
θ 0

ã
et

B =

Å
0 −θ
0 0

ã
. On a A2 = B2 = 0 puis eA =

Å
1 0
θ 1

ã
, eB =

Å
1 −θ
0 1

ã
. On observe A + B =

θR(π/2) et par suite

∀n ∈ N (A + B)n = θnR(nπ/2)

d'où

eA+B =

Å
c(θ) −s(θ)
s(θ) c(θ)

ã
avec c(θ) =

+∞∑
n=0

θn

n!
cos

(nπ
2

)
s(θ) =

+∞∑
n=0

θn

n!
sin

(nπ
2

)
Avec des considérations trigonométriques, on remarque c(θ) = cos(θ), s(θ) = sin(θ) d'où

eAeB =

Å
1 −θ
θ 1− θ2

ã
et eA+B = R(θ)

Pour θ ̸= 0, les matrices A et B ne commutent pas et on a eAeB ̸= eA+B.

Corollaire 3. Pour a ∈ L (E), on a exp(a) ∈ GL(E) et exp(a)−1 = exp(−a).

Démonstration. Immédiate.

Théorème 15. L'application exp est continue sur L (E).

Démonstration. Pour n entier, on pose un(a) =
an

n!
pour a ∈ L (E). Les fonctions un sont

continues car la composition, linéaire dans L (E) de dimension �nie, est continue. Soit R ⩾ 0.
Pour ∥a∥op ⩽ R, on a

∥un(a)∥op ⩽
∥a∥nop
n!

⩽
Rn

n!

d'où la convergence normales sur Bf (0,R). Ainsi, la série de fonctions continues
∑
un converge

normalement donc uniformément sur Bf (0,R) et ce pour tout R ⩾ 0 d'où la continuité de
exp.
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Théorème 16. Soit a ∈ L (E). L'application t 7→ e ta est de classe C ∞ sur R et

d

dt
[e ta] = a ◦ e ta = e ta ◦ a

Démonstration. On pose un(t) =
tnan

n!
pour n entier et t réel. Les fonctions un sont à coor-

données polynomiales et donc de classe C ∞. La série
∑
un converge simplement et la série∑

n⩾1

u′n =
∑
u′n+1 converge normalement sur tout segment [−R ;R ] donc uniformément sur tout

segment. On en déduit le caractère C 1 de t 7→ exp(ta) et

d

dt
[e ta] =

+∞∑
n=0

tnan+1

n!
=

+∞∑
n=0

Å
(ta)n

n!
◦ a
ã
=

+∞∑
n=0

Å
a ◦ (ta)n

n!

ã
Par continuité de la composition, on aÅ

+∞∑
n=0

(ta)n

n!

ã
◦ a =

+∞∑
n=0

Å
(ta)n

n!
◦ a
ã
=

+∞∑
n=0

Å
a ◦ (ta)n

n!

ã
= a ◦

Å
+∞∑
n=0

(ta)n

n!

ã
Le caractère C ∞ s'obtient par récurrence.

Remarque : Matriciellement, pour A ∈ Mp(K), on a

d

dt

[
e tA

]
= Ae tA = e tAA

3 Calcul d'exponentielles de matrices

Proposition 12. Pour D = diag(λ1, . . . , λp) ∈ Mp(K), on a

exp(D) = diag(eλ1 , . . . , eλp)

Démonstration. On a
+∞∑
n=0

Dn

n!
= diag

Å
+∞∑
n=0

λn1
n!
, . . . ,

+∞∑
n=0

λnp
n!

ã
= diag(eλ1 , . . . , eλp)

Remarque : Si A diagonale, on a donc eA diagonale mais la réciproque est fausse comme le

montre l'exemple A =

Å
0 −2π
2π 0

ã
.

Proposition 13. Soit A ∈ Mp(K) diagonalisable avec A = PDP−1 et P ∈ GLp(K), D diago-
nale. On a

exp(A) = P exp(D)P−1

Démonstration. Résulte de la proposition 11.

Proposition 14. Soit A ∈ Mp(K) nilpotente d'indice r. On a

exp(A) =
r−1∑
n=0

An

n!

Démonstration. Immédiate.
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Proposition 15. Soit A ∈ Mp(K) et P ∈ GLp(K) telle que P−1AP = diag(λ1Im1 +
T1, . . . , λrImr + Tr) avec les Ti triangulaires supérieures strictes. On a

exp(A) = Pdiag(eλ1 exp(T1), . . . , e
λr exp(Tr))P

−1

Démonstration. D'après la proposition 11, on a

exp(A) = P exp diag(λ1Im1 + T1, . . . , λrImr + Tr)P
−1

Puis, un calcul par bloc donne

exp diag(λ1Im1 + T1, . . . , λrImr + Tr) = diag(exp(λ1Im1 + T1), . . . , exp(λrImr + Tr))

En�n, comme λiImi
matrice d'homothétie commute avec Ti, on trouve

∀i ∈ [[ 1 ; r ]] eλiImi+Ti = eλiImieTi = eλieTi

Le résultat suit.

Proposition 16. Soit A ∈ Mp(K) et P ∈ GLp(K) telle que

P−1AP = diag(λ1, . . . , λp) + T avec T triangulaire supérieure stricte

Alors P−1eAP = diag(eλ1 , . . . , eλp) + Q

avec Q ∈ Mp(K) triangulaire supérieure stricte. En particulier, on a

Sp
(
eA

)
= exp (Sp (A))

Démonstration. On a pour n entier

P−1
n∑

k=0

Ak

k!
P = diag

Ç
n∑

k=0

λk1
k!
, . . . ,

n∑
k=0

λkp
k!

å
+ Tn

avec la suite (Tn)n suite convergente (di�érence de deux suites convergentes avec la continuité du
produit matriciel pour le premier terme) dans l'ensemble des matrices triangulaires supérieures
strictes qui est fermé en tant que sev de Mp(K). Faisant tendre n → +∞, on a le résultat
annoncé.

Méthode : Calcul de exp(A) avec A ∈ Mp(K) et P ∈ K[X] un polynôme annulateur de A.
On note q = deg P. D'après le théorème de la division euclidienne, pour n entier, il existe Qn

et Rn dans K[X] tels que Xn = PQn + Rn avec degRn < q. Notant Rn =
q−1∑
k=0

αk,nX
k, on trouve

An = Rn(A) =
q−1∑
k=0

αk,nA
k et après permutation des sommes à justi�er, on trouve

exp(A) =
+∞∑
n=0

1

n!
Rn(A) =

q−1∑
k=0

Ak
+∞∑
n=0

αk,n

n!

VI Système di�érentiel linéaire à coe�cients constants

Dans ce qui suit, k'ensemble E désigne un K-ev normé de dimension �nie égale à n. Pour x ∈ E,
on note le morphisme d'évaluation L (E) → E, f 7→ f · x.
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1 Dé�nitions, résultats théoriques

Dé�nition 13. Une équation di�érentielle linéaire vectorielle d'ordre 1 à coe�cients constants
sur I est une équation de la forme

x′ = a · x+ b(t) (L)

avec a ∈ L (E) et b ∈ C 0(I,E).

Remarque : L'écriture matricielle fournit le système di�érentiel linéaire

x′ = a · x+ b(t) ⇐⇒ X′ = AX+ B(t)

avec A ∈ Mn(K) et B ∈ C 0(I,Mn,1(K)) (et les conventions vues dans la remarque faisant suite
à la dé�nition 8).

Théorème 17. Soit a ∈ L (E) et (t0, x0) ∈ R× E. Le problème de Cauchy®
x′ = a · x (H)

x(t0) = x0 (CI)

admet pour unique solution x : t 7→ e (t−t0)a · x0.

Démonstration. Le morphisme d'évaluation L (E) → E, f 7→ f · y0 avec y0 = e−t0a · x0 est
continu (linéaire en dimension �nie). Par ailleurs, on a par commutation

∀t ∈ R e (t−t0)a = e ta ◦ e−t0a

Ainsi, pour t, h réels avec h ̸= 0, il vient par continuité du morphisme d'évaluation

x(t+ h)− x(t)

h
=

e (t+h)a − e ta

h
· y0 −−→

h→0
a ◦ e ta · y0 = a · x(t)

autrement dit ∀t ∈ R x′(t) = a · x(t)
Le résultat suit sachant que l'unicité est fournie par le théorème de Cauchy linéaire.

Variante. On peut établir l'unicité sans recours au théorème de Cauchy linéaire. Pour x ∈ SH,
on trouve par bilinéarité de L (E)× E → E, (f, y) 7→ f · y

d

dt

[
e−(t−t0)a · x(t)

]
= −e−(t−t0)a ◦ a · x(t) + e−(t−t0)a · x′(t) = 0

d'où ∀t ∈ R e−(t−t0)a · x(t) = e−(t0−t0)a · x(t0) = id ·x0 = x0

d'où l'unicité annoncée.

Remarque : Matriciellement, la solution de X′ = AX avec X(t0) = X0 s'écrit

∀t ∈ R X(t) = exp((t− t0)A)X0

Théorème 18. Soit a ∈ L (E), b ∈ C 0(I,E) et (t0, x0) ∈ I× E. Le problème de Cauchy®
x′ = a · x+ b(t) (L)

x(t0) = x0 (CI)

admet pour unique solution

t 7→ e (t−t0)a ·
Å
x0 +

∫ t

t0

e−(s−t0)a · b(s) ds
ã
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Démonstration. On applique la méthode de variation des constantes. Pour λ : I → E dérivable,

on pose x(t) = e (t−t0)a · λ(t) avec λ(t) =
n∑

i=1

λi(t)ei où (ei)1⩽i⩽n base de E et t ∈ I. Le résultat

suit. La démarche est licite car
(
t 7→ e (t−t0)a · ei

)
1⩽i⩽n

est un système fondamental de solutions :

∀t ∈ I
n∑

i=1

αie
(t−t0)a · ei = 0 ⇐⇒

n∑
i=1

αiei = 0

le sens direct s'obtenant simplement en évaluant en t0. Ceci prouve la liberté de la famille des
solutions et cette famille est de cardinal égal à dimSH ce qui prouve qu'il s'agit d'une base de
SH.

Remarque : Matriciellement, la solution du problème de Cauchy®
X′ = AX+ B(t)

X(t0) = X0

avec B ∈ C 0(I,Mn,1(K)) et (t0,X0) ∈ I× Mn,1(K) s'écrit

∀t ∈ I X(t) = e (t−t0)A

Å
X0 +

∫ t

t0

e−(s−t0)AB(s) ds

ã
2 Résolution pratique

Théorème 19. Soit A ∈ Mn(K) diagonalisable. Toute solution de X′ = AX est de la forme

∀t ∈ R X(t) =
n∑

i=1

αie
λitVi

avec les λi valeurs propres de A, les Vi des vecteurs propres associés et les αi des scalaires.

Démonstration. Pour X ∈ C 1(R,Mn,1(K)), on pose Y = P−1X avec P ∈ GLn(K) telle que
D = P−1AP diagonale. On note (Ei)1⩽i⩽n la base canonique de Mn,1(K). On a

X′ = AX ⇐⇒ Y′ = DY ⇐⇒ Y ∈ Vect (t 7→ eλitEi)1⩽i⩽n

En observant P =
(
V1| . . . |Vn

)
, on conclut

X′ = AX ⇐⇒ X ∈ Vect (t 7→ eλitPEi)1⩽i⩽n = Vect (t 7→ eλitVi)1⩽i⩽n

Remarques : (1) Si Re (λi) ⩽ 0 pour tout i ∈ [[ 1 ; n ]], les solutions sont bornées sur R+ . Si
Re (λi) < 0 pour tout i ∈ [[ 1 ; n ]], les solutions ont une limite nulle en +∞.
(2) On lit le système fondamental de solutions dans l'expression de X(t) pour t réel. La liberté
peut se déduire de la structure de SH ou plus simplement en évaluant en t = 0.

Exemples : 1. On considère le système di�érentiel linéaire®
x′ = 4x− 2y

y′ = x+ y

On trouve ∃(α, β) ∈ R2 | ∀t ∈ R X(t) = αe 2t

Å
1
1

ã
+ βe 3t

Å
2
1

ã
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−2 −1 0 1 2
−2

−1

0

1

2

Figure 3 � Tracé de courbes solutions de X′ = AX

2. On considère le système di�érentiel linéaire®
x′ = x− y

y′ = x+ y

La matrice associée est diagonalisable dans C mais pas dans R. On commence par réduire dans
C. On trouve

∃(α, β) ∈ C2 | ∀t ∈ R X(t) = αe (1+i)t

Å
1
−i

ã
+ βe (1−i)t

Å
1
i

ã
Notant Φ(t) = e (1+i)t

Å
1
−i

ã
pour t réel, les fonctions Re Φ et Im Φ sont clairement solutions

réelles du système initial et on véri�e sans di�culté la liberté de ces fonctions.

Remarque : Notant A =

Å
1 −1
1 1

ã
, on obtient d'abord AX1 = (1+ i)X1 avec X1 =

Å
1
−i

ã
puis

on conjugue la relation précédente pour en déduire la valeur propre conjuguée et un vecteur
propre associé.

−2 −1 0 1 2
−2

−1

0

1

2

Figure 4 � Tracé de courbes solutions de X′ = AX
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Méthode : Résolution de X′ = AX + B(t) avec A ∈ Mn(K) diagonalisable et B ∈
C 0(I,Mn,1(K)). Soit P ∈ GLn(K) telle que D = P−1AP diagonale. On peut :

� résoudre le système homogène puis appliquer la méthode de variation des constantes ;
� poser X = PY puis résoudre Y′ = DY+P−1B(t), système d'équations linéaires scalaires

d'ordre 1 avec second membre ;
� résoudre le système homogène et chercher une solution particulière (si le contexte s'y

prête).

Exemple : On considère ensuite le système di�érentiel linéaire avec second membre®
x′ = 4x− 2y

y′ = x+ y + t

On peut procéder par variation des constantes :

λ′(t)

Å
e 2t

e 2t

ã
+ µ′(t)

Å
2e 3t

e 3t

ã
=

Å
0
t

ã
⇐⇒

®
λ′(t) = 2te−2t

µ′(t) = −te−3t
⇐⇒ etc.

ou chercher directement une solution particulière, par exemple, xP(t) = a+ bt et yP(t) = c+ dt
qui fournit ici un système de Cramer à 4 équations, 4 inconnues (pas palpitant). On peut encore
résoudre

Y′ = DY+ P−1B(t) ⇐⇒
Å
u′

v′

ã
=

Å
2u
3v

ã
+

Å
−1 2
1 −1

ãÅ
0
t

ã
⇐⇒

®
u′ = 2u+ 2t

v′ = 3v − t

On revient à la formulation en X avec X = PY.

Méthode : Résolution de X′ = AX avec A ∈ Mn(K) trigonalisable. Soit P ∈ GLn(K) telle que
T = P−1AP =

(
ti,j

)
triangulaire supérieure. On note X = PY avec Y(t) =

(
yi(t)

)
pour t réel.

On a

X′ = AX ⇐⇒ Y′ = TY ⇐⇒


y′1 = t1,1y1 + . . . t1,nyn
...

...

y′n = tn,nyn

On résout la dernière équation puis on substitue l'expression de yn dans les autres équations,
on résout l'avant-dernière, etc. . . . On conclut avec X = PY.

Exemple : On considère le système di�érentiel linéaire®
x′ = 3x− y

y′ = x+ y

On a A =

Å
3 −1
1 1

ã
, χA = (X − 2)2. On écrit A − 2I2 =

Å
1 −1
1 −1

ã
et on choisit P =

Å
1 1
1 01

ã
pour trigonaliser. On a donc

X′ = AX ⇐⇒ Y′ = TY ⇐⇒
®
u′ = 2u+ v

v′ = 2v

⇐⇒ ∃(α, β) ∈ R2 | ∀t ∈ R
®
u(t) = (α + βt)e 2t

v(t) = βe 2t
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Ainsi ∃(α, β) ∈ R2 | X(t) = αe 2t

Å
1
1

ã
+ βe 2t

Å
t+ 1
t

ã
Méthode : Résolution de X′ = AX + B(t) avec A ∈ Mn(K) trigonalisable et B ∈
C 0(I,Mn,1(K)). On applique les méthodes vues dans le cas diagonalisable.

VII Équation scalaire linéaire d'ordre n

Dans ce qui suit, n désigne un entier non nul.

1 Dé�nitions

Dé�nition 14. Une équation di�érentielle linéaire scalaire d'ordre n est une équation de la
forme

x(n) = an−1(t)x
(n−1) + . . .+ a0(t)x+ b(t) (L)

avec a0, . . ., an−1, b dans C 0(I,K). Une solution de (L) est une application f : I → K n fois
dérivable telle que

∀t ∈ I f (n)(t) = an−1(t)f
(n−1)(t) + . . .+ a0(t)f(t) + b(t)

Vocabulaire : L'équation x(n) = an−1(t)x
(n−1) + . . .+ a0(t)x (H)

est appelée équation homogène associée à l'équation (L). Le terme b est appelé second membre.

Notations : On note SL l'ensemble des solutions de (L) et SH l'ensemble des solutions de (H).

Proposition 17. Soient a0, . . ., an−1, b dans C 0(I,K) et x : I → K n fois dérivable. Pour
t ∈ I, on note X(t)⊤ =

(
x(t) . . . x(n−1)(t)

)
. On a

x ∈ SL ⇐⇒ X′ = A(t)X + B(t) et x ∈ SH ⇐⇒ X′ = A(t)X

avec ∀t ∈ I A(t) =


0 1 0 . . . 0
...

. . .
. . .

. . .
...

...
. . .

. . . 0
0 . . . . . . 0 1

a0(t) . . . . . . . . . an−1(t)

 et B(t) =

á
0
...
0
b(t)

ë
Démonstration. Immédiate.

Proposition 18. Soient a0, . . ., an−1, b dans C 0(I,K) et l'équation di�érentielle linéaire d'ordre
n

x(n) = an−1(t)x
(n−1) + . . .+ a0(t)x+ b(t) (L)

Toute solution de (L) ou de (H) est dans C n(I,K).

Démonstration. On applique la proposition 7 à la formulation matricielle d'ordre 1 de l'équation
di�érentielle d'ordre n et on spécialise le résultat pour la dernière coordonnée.
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2 Problème de Cauchy

Dé�nition 15. Soient a0, . . ., an−1, b dans C 0(I,K) et (t0, x0, . . . , xn−1) ∈ I×Kn. Le système®
x(n) = an−1(t)x

(n−1) + . . .+ a0(t)x+ b(t) (L)

∀k ∈ [[ 0 ; n− 1 ]] x(k)(t0) = xk (CI)

est dit problème de Cauchy. Les équations (CI) constituent les conditions initiales du problème
de Cauchy.

Théorème 20 (Cauchy linéaire). Soient a0, . . ., an−1, b dans C 0(I,K) et (t0, x0, . . . , xn−1) ∈
I×Kn. Il existe une unique solution au problème de Cauchy®

x(n) = an−1(t)x
(n−1) + . . .+ a0(t)x+ b(t) (L)

∀k ∈ [[ 0 ; n− 1 ]] x(k)(t0) = xk (CI)

admet une unique solution.

Démonstration. On applique le théorème de Cauchy linéaire à la formulation matricielle d'ordre
1 de l'équation di�érentielle d'ordre n et on spécialise le résultat pour la première coordonnée.

3 Forme des solutions

Théorème 21. Soient a0, . . ., an−1, b dans C 0(I,K) et l'équation di�érentielle linéaire d'ordre
n

x(n) = an−1(t)x
(n−1) + . . .+ a0(t)x+ b(t) (L)

L'ensemble SH est un sev de C n(I,K) de dimension n et l'ensemble SL est un sous-espace a�ne
de C n(I,K) de direction SH.

Démonstration. On applique le théorème 11 à la formulation matricielle d'ordre 1 de l'équation
di�érentielle d'ordre n et on spécialise le résultat pour la première coordonnée :

x ∈ SH ⇐⇒ X′ = A(t)X ⇐⇒ X ∈ Vect (Φ1, . . . ,Φn) ⇐⇒ x ∈ Vect (φ1, . . . , φn)

avec (φ1, . . . , φn) libre puisque (Φ1, . . . ,Φn) l'est et qu'on a

∀i ∈ [[ 1 ; n ]] Φi
⊤ =
Ä
φi φ′

i . . . φ
(n−1))
i

ä
On procède de même pour le cas a�ne :

x ∈ SL ⇐⇒ X′ = A(t)X + B(t) ⇐⇒ X ∈ XP +Vect (Φ1, . . . ,Φn) ⇐⇒ x ∈ xp + SH

Proposition 19 (Principe de superposition). Soient φ1, φ2 des solutions respectives de

x(n) = an−1(t)x
(n−1) + . . .+ a0(t)x+ b1(t) (L1)

x(n) = an−1(t)x
(n−1) + . . .+ a0(t)x+ b2(t) (L2)

avec a0, . . . , an−1, b1, b2 ∈ C 0(I,K). Alors pour (α1, α2) ∈ K2, l'application α1φ1 + α2φ2 est
solution de

x(n) = an−1(t)x
(n−1) + . . .+ a0(t)x+ α1b1(t) + α2b2(t)

Démonstration. Immédiate.
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4 Équations à coe�cients constants

Dé�nition 16. Une équation di�érentielle linéaire scalaire d'ordre n à coe�cients constants
est une équation de la forme

x(n) + an−1x
(n−1) + . . .+ a0x = b(t) (L)

avec a0, . . . , an−1 des scalaires et b ∈ C 0(I,K).

Théorème 22. Soit l'équation di�érentielle linéaire scalaire homogène d'ordre n à coe�cients
constants

x(n) + an−1x
(n−1) + . . .+ a0x = 0 (H)

avec a0, . . . , an−1 des scalaires. Si la matrice compagne A du système di�érentiel associé à (H)
est diagonalisable, alors on a

SH = Vect (t 7→ eλit)1⩽i⩽n

avec les λi valeurs propres de A.

Démonstration. On applique le théorème 19 à la formulation matricielle d'ordre 1 de l'équation
di�érentielle d'ordre n et on spécialise le résultat pour la première coordonnée :

x ∈ SH ⇐⇒ X′ = AX ⇐⇒ X ∈ Vect (t 7→ eλitVi)1⩽i⩽n =⇒ x ∈ Vect (t 7→ eλit)1⩽i⩽n

On a donc prouvé SH ⊂ Vect (t 7→ eλit)1⩽i⩽n

avec dimSH = n et SH inclus dans un espace engendré par une famille de cardinal ⩽ n. L'égalité
s'ensuit.

Remarque : L'espace SH est un K-ev de dimension n. L'égalité obtenue ci-avant impose donc
que les λi soient distincts. C'est un fait connu : une matrice compagne d'ordre n est diagonali-
sable si et seulement si elle admet n valeurs propres distinctes. On peut également en déduire
une base de vecteurs propres de A en injectant l'écriture de x dans X puisqu'on a en fait
l'équivalence

x ∈ Vect (t 7→ eλit)1⩽i⩽n ⇐⇒ X ∈ Vect (t 7→ eλitVi)1⩽i⩽n

Proposition 20. Soit l'équation di�érentielle linéaire scalaire homogène d'ordre n à coe�cients
constants

x(n) + an−1x
(n−1) + . . .+ a0x = 0 (H)

avec a0, . . . , an−1 des scalaires. Les solutions de (H) sont de classe C ∞ sur R.

Démonstration. On procède par récurrence.

Théorème 23. Soit l'équation di�érentielle linéaire scalaire homogène d'ordre n à coe�cients
constants

x(n) + an−1x
(n−1) + . . .+ a0x = 0 (H)

avec a0, . . . , an−1 des scalaires. On note P = Xn+
n−1∑
k=0

akX
k. Si P peut s'écrire sous forme scindé

P =
r∏

i=1

(X− λi)
mi dans K[X] avec les λi distincts et les mi entiers non nuls, alors(

t 7→ tjeλit, i ∈ [[ 1 ; r ]], j ∈ [[ 0 ; mi − 1 ]]
)

est un système fondamental de solutions de (H).
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Démonstration. On pose E = C ∞(R,K) et D l'endomorphisme de dérivation de E dans E.
D'après le théorème des noyaux, on a

SH = Ker P(D) = Ker
r

⃝
i=1

(D− λi id )
mi =

r⊕
i=1

Ker (D− λi id )
mi

Soit λ ∈ K et x ∈ E. On pose x = eλy avec eλ : t 7→ eλt. Par dérivation, on trouve

(D− λ id )(x) = eλD(y)

et par récurrence immédiate, pour m entier non nul

(D− λ id )m(x) = eλD
m(y)

Ainsi x ∈ Ker (D− λ id )m ⇐⇒ y ∈ Ker Dm ⇐⇒ y ∈ Vect (t 7→ tj)j∈[[ 0 ;m−1 ]]

On en déduit la famille génératrice annoncée et la liberté vient soit par une véri�cation directe
(caractérisation d'une somme directe puis famille de fonctions polynomiales) ou par un argu-
ment de dimension (plus rapide mais requiert le théorème de Cauchy linéaire, argument non
trivial).
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Annexes

Théorème de Cauchy linéaire

Théorème 10. Soit a ∈ C 0(I,L (E)), b ∈ C 0(I,E) et (t0, x0) ∈ I× E. Le problème de Cauchy®
x′ = a(t) · x+ b(t)

x(t0) = x0

admet une unique solution.

Démonstration. Considérons la suite de fonctions (φn)n dé�nies par

∀t ∈ I φ0(t) = x0 et φn+1(t) = x0 +

∫ t

t0

[a(s) · φn(s) + b(s)] ds

Par récurrence immédiate, on établit l'existence et la continuité de φn pour tout n entier.

L'espace L (E) est muni de la norme subordonnée. Soit K un segment inclus dans I contenant t0.
L'application t 7→ ∥a(t)∥op est continue sur le segmentK donc bornée. NotonsM = Sup

t∈K
∥a(t)∥op

et

P(n) : ∀t ∈ K ∥φn+1(t)− φn(t)∥ ⩽ Mn |t− t0|n

n!
∥φ1 − φ0∥∞,K

• Initialisation P(0) : Immédiat.

• Hérédité P(n) =⇒ P(n+ 1) :

∀t ∈ K φn+2(t)− φn+1(t) =

∫ t

t0

a(s) · (φn+1(s)− φn(s)) ds

Soit t ∈ K tel que t ⩾ t0. On a

∥φn+2(t)− φn+1(t)∥ ⩽
∫ t

t0

M× ∥φn+1(s)− φn(s)∥ ds

⩽ M

∫ t

t0

Mn (s− t0)
n

n!
∥φ1 − φ0∥∞,K ds = Mn+1 |t− t0|n+1

(n+ 1)!
∥φ1 − φ0∥∞,K

Pour t ⩽ t0, les intégrales sont changées en
∫ t0

t

et on obtient la même inégalité ce qui clôt la

récurrence.

Notant α = Sup
t∈K

|t− t0|, il vient

∀n ∈ N ∥φn+1 − φn∥∞,K ⩽ Mnα
n

n!
∥φ1 − φ0∥∞,K

La série
∑

∥φn+1 − φn∥∞,K converge donc la série
∑

[φn+1 − φn] converge normalement sur
tout segment de I (puisque tout segment est contenu dans un segment contenant également t0).
Par téléscopage, il s'ensuit que la suite (φn)n converge uniformément sur tout segment de I vers
une fonction φ continue.

Soit K un segment inclus dans I contenant t0. On a

Sup
s∈K

∥a(s) · (φn(s)− φ(s)) ∥ ⩽ M∥φn − φ∥∞,K = o(1)
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Soit t ∈ K. Par convergence uniforme sous l'intégrale, on peut faire tendre n → +∞ dans
l'égalité

φn+1(t) = x0 +

∫ t

t0

[a(s) · φn(s) + b(s)] ds

On trouve φ(t) = x0 +

∫ t

t0

[a(s) · φ(s) + b(s)] ds

Le choix de K étant arbitraire, l'égalité a lieu pour tout t ∈ I. En particulier pour t = t0, on a
φ(t0) = x0. D'après le théorème fondamental d'analyse, l'application φ est de classe C 1 sur I
et par dérivation

∀t ∈ I φ′(t) = a(t) · φ(t) + b(t)

D'où φ est une solution du problème de Cauchy.

Considérons φ et ψ deux solutions du problème de Cauchy et notons δ = φ−ψ. Cette di�érence
véri�e

∀t ∈ I δ(t) =

∫ t

t0

a(s) · δ(s) ds

Soit K un segment inclus dans I contenant t0 et C = Sup
t∈K

∥δ(t)∥. Une récurrence donne

∀n ∈ N ∀t ∈ K ∥δ(t)∥ ⩽ CMn |t− t0|n

n!

Faisant n → +∞, on en déduit que δ s'annule sur K et le choix de K étant arbitraire, on a
l'annulation sur I tout entier ce qui prouve l'unicité.

Variante pour l'unicité. Par inégalité triangulaire, on a

∀t ∈ I ∩ [ t0 ; +∞ [ ∥δ(t)∥ ⩽
∫ t

t0

∥a(s)∥op∥δ(s)∥ ds

Le lemme de Gronwall permet de conclure sur l'intervalle I∩ [ t0 ; +∞ [. On remarque que choix
de t0 ∈ I n'intervient pas et le résultat suit.

Méthode du wronskien et méthode de Lagrange

Méthode : Résolution de l'équation di�érentielle linéaire homogène d'ordre 2

x′′ = a(t)x′ + b(t)x (H)

avec a, b dans C 0(I,K) connaissant une solution φ de (H) qui ne s'annule pas sur I. On procède
ainsi :

1. On détermine une expression du wronskien comme solution de l'équation W′ = a(t)W ;

2. On résout l'équation di�érentielle linéaire d'ordre 1

φ(t)ψ′ − φ′(t)ψ = W(t)

d'inconnue ψ par variation de la constante ; on connaît déjà φ solution de l'équation
homogène donc il su�t de chercher ψ de la forme ψ = λφ avec λ dérivable.

Considérons l'équation di�érentielle linéaire homogène d'ordre 2
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x′′ = a(t)x′ + b(t)x (H)

avec a, b dans C 0(I,K). Soit φ solution de (H) qui ne s'annule pas sur I. Si ψ est également
solution de (H), on peut considérer le wronskien W associé dé�ni par

∀t ∈ I W(t) =

∣∣∣∣φ(t) ψ(t)
φ′(t) ψ′(t)

∣∣∣∣ = φ(t)ψ′(t)− φ′(t)ψ(t)

On sait que W est solution de l'équation di�érentielle linéaire d'ordre 1

W′ = a(t)W

On en déduit W : t 7→ αeA(t) avec α ∈ K et A une primitive de a. On peut désormais considérer
la relation

φ(t)ψ′ − φ′(t)ψ = αeA(t)

comme une équation di�érentielle linéaire d'ordre 1 d'inconnue ψ. La fonction φ est solution
de l'équation homogène associée. Par variation de la constante, posant ψ = λφ, on trouve

∀t ∈ I λ′(t)φ(t)2 = αeA(t)

d'où ∀t ∈ I λ(t) = α

∫
eA(t)

φ2(t)
dt+ β

Et on conclut SH =

®
t 7→ αφ(t)

∫
eA(t)

φ2(t)
dt+ βφ(t), (α, β) ∈ K2

´
La fonction t 7→

∫
eA(t)

φ2(t)
dt n'est pas constante et on obtient bien un plan vectoriel de solutions.

Théorème 9 (Méthode de Lagrange). Soit a, b, c, d ∈ C 0(I,K) avec a(t) ̸= 0 pour tout t ∈ I
et soit l'équation di�érentielle linéaire d'ordre 2

a(t)x′′ + b(t)x′ + c(t)x = d(t) (L)

Si φ est une solution de l'équation homogène associée (H) telle que φ(t) ̸= 0 pour tout t ∈ I,
alors posant x = φ y avec y ∈ C 2(I,K), il existe une équation di�érentielle linéaire d'ordre 1
notée (L′) telle que

y′ ∈ SL′ ⇐⇒ x ∈ SL

À l'issue de la méthode de Lagrange, on est assuré d'avoir toutes les solutions de (L). En e�et,
notant u ∈ SL′ et (ψ) base de SH′ , on a

y′ = u+ βψ avec β réel

puis y = U+ α + βΨ avec U =

∫
u et Ψ =

∫
ψ

et par suite x = Uφ+ αφ+ βφΨ avec α, β réels

La famille (φ, φΨ) est libre car Ψ non constant et on obtient bien un plan a�ne de solutions.
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Méthode : Calcul de exp(A) avec A ∈ Mp(K) et P ∈ K[X] un polynôme annulateur de A.
On note q = deg P. D'après le théorème de la division euclidienne, pour n entier, il existe Qn

et Rn dans K[X] tels que Xn = PQn + Rn avec degRn < q. Notant Rn =
q−1∑
k=0

αk,nX
k, on trouve

An = Rn(A) =
q−1∑
k=0

αk,nA
k et après permutation des sommes à justi�er, on trouve

exp(A) =
+∞∑
n=0

1

n!
Rn(A) =

q−1∑
k=0

Ak
+∞∑
n=0

αk,n

n!

On va justi�er que la permutation des sommes est licite. Quitte à travailler dans Mp(C), on

peut supposer P scindé avec P =
r∏

i=1

(X−xi)mi , les λi deux à deux distincts et les mi des entiers

non nuls.
Soit i ∈ [[ 1 ; r ]]. On a xi racine de P d'ordre mi. Ainsi, par dérivations successives puis substi-
tution de X par xi, on obtient

xni =
q−1∑
k=0

αk,nx
k
i

nxn−1
i =

q−1∑
k=1

αk,nkx
k−1
i

...

n!

(n−mi + 1)!
xn−mi+1
i =

q−1∑
k=mi−1

αk,n
k!

(k −mi + 1)!
xk−mi+1
i

que l'on peut écrire matriciellement



x01 x11 x21 . . . . . . xq−1
1

0 x01 2x11 . . . . . . (q − 1)xq−2
1

...
. . .

. . .
...

0 . . . 0 (m1 − 1)!x01 . . . (q−1)!
(q−m1)!

xq−m1

1

x02 x12 x22 . . . . . . xq−1
2

0 x02 2x12 . . . . . . (q − 1)xq−2
2

...
. . .

. . . . . . . . .
...



á
α0,n

α1,n

...
αq−1,n

ë
=



xn1
nxn−1

1
...

n!
(n−m1+1)!

xn−m1+1
1

xn2
nxn−1

2
...
...

n!
(n−mr+1)!

xn−mr+1
r


que l'on notera AX = B pour alléger les écritures. En admettant que la matrice A soit inversible,
il s'ensuit que la solution est à coordonnées combinaison linéaire des coordonnées de B. Comme

les séries
∑ n!

(n− k)!

xn−k

n!
=

∑ xn−k

(n− k)!
avec x réel convergent, il en résulte que le procédé de

calcul d'une exponentielle avec un polynôme annulateur fonctionne. Justi�ons que la matrice
A est inversible. On pose

Φ:

®
Kq−1[X] −→ Kq

P 7−→
(
P(x1),P

′(x1), . . . ,P
(m1−1)(x1),P(x2),P

′(x2) . . . , . . . ,P(xr),P
′(xr), . . . ,P

(mr−1)(xr)
)

Notant B = (1,X, . . . ,Xq−1) et C la base canonique de Kq, on observe que

matB,CΦ = A
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L'application φ est linéaire par linéarité de la dérivation et de l'évaluation. Soit P ∈ Ker Φ. On
a

∀i ∈ [[ 1 ; r ]] (X− xi)
mi |P

Or, les polynômes (X− xi)
mi sont premiers entre eux et par conséquent

r∏
i=1

(X− xi)
mi |P avec

r∑
i=1

mi = b

On conclut que P = 0. Ainsi, l'application linéaire Φ est injective entre deux espaces de même
dimension �nie. On conclut que Φ est un isomorphisme et la matrice A est donc inversible.
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